| Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > volicofmpt | Structured version Visualization version GIF version | ||
| Description: ((vol ∘ [,)) ∘ 𝐹) expressed in maps-to notation. (Contributed by Glauco Siliprandi, 3-Mar-2021.) |
| Ref | Expression |
|---|---|
| volicofmpt.1 | ⊢ Ⅎ𝑥𝐹 |
| volicofmpt.2 | ⊢ (𝜑 → 𝐹:𝐴⟶(ℝ × ℝ*)) |
| Ref | Expression |
|---|---|
| volicofmpt | ⊢ (𝜑 → ((vol ∘ [,)) ∘ 𝐹) = (𝑥 ∈ 𝐴 ↦ (vol‘((1st ‘(𝐹‘𝑥))[,)(2nd ‘(𝐹‘𝑥)))))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfcv 2891 | . . 3 ⊢ Ⅎ𝑥𝐴 | |
| 2 | nfcv 2891 | . . . 4 ⊢ Ⅎ𝑥(vol ∘ [,)) | |
| 3 | volicofmpt.1 | . . . 4 ⊢ Ⅎ𝑥𝐹 | |
| 4 | 2, 3 | nfco 5812 | . . 3 ⊢ Ⅎ𝑥((vol ∘ [,)) ∘ 𝐹) |
| 5 | volicofmpt.2 | . . . 4 ⊢ (𝜑 → 𝐹:𝐴⟶(ℝ × ℝ*)) | |
| 6 | 5 | volicoff 45996 | . . 3 ⊢ (𝜑 → ((vol ∘ [,)) ∘ 𝐹):𝐴⟶(0[,]+∞)) |
| 7 | 1, 4, 6 | feqmptdf 6897 | . 2 ⊢ (𝜑 → ((vol ∘ [,)) ∘ 𝐹) = (𝑥 ∈ 𝐴 ↦ (((vol ∘ [,)) ∘ 𝐹)‘𝑥))) |
| 8 | ressxr 11178 | . . . . . . . 8 ⊢ ℝ ⊆ ℝ* | |
| 9 | xpss1 5642 | . . . . . . . 8 ⊢ (ℝ ⊆ ℝ* → (ℝ × ℝ*) ⊆ (ℝ* × ℝ*)) | |
| 10 | 8, 9 | ax-mp 5 | . . . . . . 7 ⊢ (ℝ × ℝ*) ⊆ (ℝ* × ℝ*) |
| 11 | 10 | a1i 11 | . . . . . 6 ⊢ (𝜑 → (ℝ × ℝ*) ⊆ (ℝ* × ℝ*)) |
| 12 | 5, 11 | fssd 6673 | . . . . 5 ⊢ (𝜑 → 𝐹:𝐴⟶(ℝ* × ℝ*)) |
| 13 | 12 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐹:𝐴⟶(ℝ* × ℝ*)) |
| 14 | simpr 484 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝑥 ∈ 𝐴) | |
| 15 | 13, 14 | fvvolicof 45992 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (((vol ∘ [,)) ∘ 𝐹)‘𝑥) = (vol‘((1st ‘(𝐹‘𝑥))[,)(2nd ‘(𝐹‘𝑥))))) |
| 16 | 15 | mpteq2dva 5188 | . 2 ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ (((vol ∘ [,)) ∘ 𝐹)‘𝑥)) = (𝑥 ∈ 𝐴 ↦ (vol‘((1st ‘(𝐹‘𝑥))[,)(2nd ‘(𝐹‘𝑥)))))) |
| 17 | 7, 16 | eqtrd 2764 | 1 ⊢ (𝜑 → ((vol ∘ [,)) ∘ 𝐹) = (𝑥 ∈ 𝐴 ↦ (vol‘((1st ‘(𝐹‘𝑥))[,)(2nd ‘(𝐹‘𝑥)))))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 Ⅎwnfc 2876 ⊆ wss 3905 ↦ cmpt 5176 × cxp 5621 ∘ ccom 5627 ⟶wf 6482 ‘cfv 6486 (class class class)co 7353 1st c1st 7929 2nd c2nd 7930 ℝcr 11027 0cc0 11028 +∞cpnf 11165 ℝ*cxr 11167 [,)cico 13269 [,]cicc 13270 volcvol 25381 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7675 ax-inf2 9556 ax-cnex 11084 ax-resscn 11085 ax-1cn 11086 ax-icn 11087 ax-addcl 11088 ax-addrcl 11089 ax-mulcl 11090 ax-mulrcl 11091 ax-mulcom 11092 ax-addass 11093 ax-mulass 11094 ax-distr 11095 ax-i2m1 11096 ax-1ne0 11097 ax-1rid 11098 ax-rnegex 11099 ax-rrecex 11100 ax-cnre 11101 ax-pre-lttri 11102 ax-pre-lttrn 11103 ax-pre-ltadd 11104 ax-pre-mulgt0 11105 ax-pre-sup 11106 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3345 df-reu 3346 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-pss 3925 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-int 4900 df-iun 4946 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5518 df-eprel 5523 df-po 5531 df-so 5532 df-fr 5576 df-se 5577 df-we 5578 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-pred 6253 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-isom 6495 df-riota 7310 df-ov 7356 df-oprab 7357 df-mpo 7358 df-of 7617 df-om 7807 df-1st 7931 df-2nd 7932 df-frecs 8221 df-wrecs 8252 df-recs 8301 df-rdg 8339 df-1o 8395 df-2o 8396 df-er 8632 df-map 8762 df-pm 8763 df-en 8880 df-dom 8881 df-sdom 8882 df-fin 8883 df-sup 9351 df-inf 9352 df-oi 9421 df-dju 9816 df-card 9854 df-pnf 11170 df-mnf 11171 df-xr 11172 df-ltxr 11173 df-le 11174 df-sub 11368 df-neg 11369 df-div 11797 df-nn 12148 df-2 12210 df-3 12211 df-n0 12404 df-z 12491 df-uz 12755 df-q 12869 df-rp 12913 df-xadd 13034 df-ioo 13271 df-ico 13273 df-icc 13274 df-fz 13430 df-fzo 13577 df-fl 13715 df-seq 13928 df-exp 13988 df-hash 14257 df-cj 15025 df-re 15026 df-im 15027 df-sqrt 15161 df-abs 15162 df-clim 15414 df-rlim 15415 df-sum 15613 df-xmet 21273 df-met 21274 df-ovol 25382 df-vol 25383 |
| This theorem is referenced by: ovolval5lem2 46654 ovnovollem1 46657 ovnovollem2 46658 |
| Copyright terms: Public domain | W3C validator |