Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > volicofmpt | Structured version Visualization version GIF version |
Description: ((vol ∘ [,)) ∘ 𝐹) expressed in maps-to notation. (Contributed by Glauco Siliprandi, 3-Mar-2021.) |
Ref | Expression |
---|---|
volicofmpt.1 | ⊢ Ⅎ𝑥𝐹 |
volicofmpt.2 | ⊢ (𝜑 → 𝐹:𝐴⟶(ℝ × ℝ*)) |
Ref | Expression |
---|---|
volicofmpt | ⊢ (𝜑 → ((vol ∘ [,)) ∘ 𝐹) = (𝑥 ∈ 𝐴 ↦ (vol‘((1st ‘(𝐹‘𝑥))[,)(2nd ‘(𝐹‘𝑥)))))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfcv 2906 | . . 3 ⊢ Ⅎ𝑥𝐴 | |
2 | nfcv 2906 | . . . 4 ⊢ Ⅎ𝑥(vol ∘ [,)) | |
3 | volicofmpt.1 | . . . 4 ⊢ Ⅎ𝑥𝐹 | |
4 | 2, 3 | nfco 5763 | . . 3 ⊢ Ⅎ𝑥((vol ∘ [,)) ∘ 𝐹) |
5 | volicofmpt.2 | . . . 4 ⊢ (𝜑 → 𝐹:𝐴⟶(ℝ × ℝ*)) | |
6 | 5 | volicoff 43426 | . . 3 ⊢ (𝜑 → ((vol ∘ [,)) ∘ 𝐹):𝐴⟶(0[,]+∞)) |
7 | 1, 4, 6 | feqmptdf 6821 | . 2 ⊢ (𝜑 → ((vol ∘ [,)) ∘ 𝐹) = (𝑥 ∈ 𝐴 ↦ (((vol ∘ [,)) ∘ 𝐹)‘𝑥))) |
8 | ressxr 10950 | . . . . . . . 8 ⊢ ℝ ⊆ ℝ* | |
9 | xpss1 5599 | . . . . . . . 8 ⊢ (ℝ ⊆ ℝ* → (ℝ × ℝ*) ⊆ (ℝ* × ℝ*)) | |
10 | 8, 9 | ax-mp 5 | . . . . . . 7 ⊢ (ℝ × ℝ*) ⊆ (ℝ* × ℝ*) |
11 | 10 | a1i 11 | . . . . . 6 ⊢ (𝜑 → (ℝ × ℝ*) ⊆ (ℝ* × ℝ*)) |
12 | 5, 11 | fssd 6602 | . . . . 5 ⊢ (𝜑 → 𝐹:𝐴⟶(ℝ* × ℝ*)) |
13 | 12 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐹:𝐴⟶(ℝ* × ℝ*)) |
14 | simpr 484 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝑥 ∈ 𝐴) | |
15 | 13, 14 | fvvolicof 43422 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (((vol ∘ [,)) ∘ 𝐹)‘𝑥) = (vol‘((1st ‘(𝐹‘𝑥))[,)(2nd ‘(𝐹‘𝑥))))) |
16 | 15 | mpteq2dva 5170 | . 2 ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ (((vol ∘ [,)) ∘ 𝐹)‘𝑥)) = (𝑥 ∈ 𝐴 ↦ (vol‘((1st ‘(𝐹‘𝑥))[,)(2nd ‘(𝐹‘𝑥)))))) |
17 | 7, 16 | eqtrd 2778 | 1 ⊢ (𝜑 → ((vol ∘ [,)) ∘ 𝐹) = (𝑥 ∈ 𝐴 ↦ (vol‘((1st ‘(𝐹‘𝑥))[,)(2nd ‘(𝐹‘𝑥)))))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2108 Ⅎwnfc 2886 ⊆ wss 3883 ↦ cmpt 5153 × cxp 5578 ∘ ccom 5584 ⟶wf 6414 ‘cfv 6418 (class class class)co 7255 1st c1st 7802 2nd c2nd 7803 ℝcr 10801 0cc0 10802 +∞cpnf 10937 ℝ*cxr 10939 [,)cico 13010 [,]cicc 13011 volcvol 24532 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-inf2 9329 ax-cnex 10858 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-addrcl 10863 ax-mulcl 10864 ax-mulrcl 10865 ax-mulcom 10866 ax-addass 10867 ax-mulass 10868 ax-distr 10869 ax-i2m1 10870 ax-1ne0 10871 ax-1rid 10872 ax-rnegex 10873 ax-rrecex 10874 ax-cnre 10875 ax-pre-lttri 10876 ax-pre-lttrn 10877 ax-pre-ltadd 10878 ax-pre-mulgt0 10879 ax-pre-sup 10880 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rmo 3071 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-int 4877 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-se 5536 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-isom 6427 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-of 7511 df-om 7688 df-1st 7804 df-2nd 7805 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-1o 8267 df-2o 8268 df-er 8456 df-map 8575 df-pm 8576 df-en 8692 df-dom 8693 df-sdom 8694 df-fin 8695 df-sup 9131 df-inf 9132 df-oi 9199 df-dju 9590 df-card 9628 df-pnf 10942 df-mnf 10943 df-xr 10944 df-ltxr 10945 df-le 10946 df-sub 11137 df-neg 11138 df-div 11563 df-nn 11904 df-2 11966 df-3 11967 df-n0 12164 df-z 12250 df-uz 12512 df-q 12618 df-rp 12660 df-xadd 12778 df-ioo 13012 df-ico 13014 df-icc 13015 df-fz 13169 df-fzo 13312 df-fl 13440 df-seq 13650 df-exp 13711 df-hash 13973 df-cj 14738 df-re 14739 df-im 14740 df-sqrt 14874 df-abs 14875 df-clim 15125 df-rlim 15126 df-sum 15326 df-xmet 20503 df-met 20504 df-ovol 24533 df-vol 24534 |
This theorem is referenced by: ovolval5lem2 44081 ovnovollem1 44084 ovnovollem2 44085 |
Copyright terms: Public domain | W3C validator |