Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  volicofmpt Structured version   Visualization version   GIF version

Theorem volicofmpt 46157
Description: ((vol ∘ [,)) ∘ 𝐹) expressed in maps-to notation. (Contributed by Glauco Siliprandi, 3-Mar-2021.)
Hypotheses
Ref Expression
volicofmpt.1 𝑥𝐹
volicofmpt.2 (𝜑𝐹:𝐴⟶(ℝ × ℝ*))
Assertion
Ref Expression
volicofmpt (𝜑 → ((vol ∘ [,)) ∘ 𝐹) = (𝑥𝐴 ↦ (vol‘((1st ‘(𝐹𝑥))[,)(2nd ‘(𝐹𝑥))))))
Distinct variable groups:   𝑥,𝐴   𝜑,𝑥
Allowed substitution hint:   𝐹(𝑥)

Proof of Theorem volicofmpt
StepHypRef Expression
1 nfcv 2895 . . 3 𝑥𝐴
2 nfcv 2895 . . . 4 𝑥(vol ∘ [,))
3 volicofmpt.1 . . . 4 𝑥𝐹
42, 3nfco 5811 . . 3 𝑥((vol ∘ [,)) ∘ 𝐹)
5 volicofmpt.2 . . . 4 (𝜑𝐹:𝐴⟶(ℝ × ℝ*))
65volicoff 46155 . . 3 (𝜑 → ((vol ∘ [,)) ∘ 𝐹):𝐴⟶(0[,]+∞))
71, 4, 6feqmptdf 6901 . 2 (𝜑 → ((vol ∘ [,)) ∘ 𝐹) = (𝑥𝐴 ↦ (((vol ∘ [,)) ∘ 𝐹)‘𝑥)))
8 ressxr 11167 . . . . . . . 8 ℝ ⊆ ℝ*
9 xpss1 5640 . . . . . . . 8 (ℝ ⊆ ℝ* → (ℝ × ℝ*) ⊆ (ℝ* × ℝ*))
108, 9ax-mp 5 . . . . . . 7 (ℝ × ℝ*) ⊆ (ℝ* × ℝ*)
1110a1i 11 . . . . . 6 (𝜑 → (ℝ × ℝ*) ⊆ (ℝ* × ℝ*))
125, 11fssd 6676 . . . . 5 (𝜑𝐹:𝐴⟶(ℝ* × ℝ*))
1312adantr 480 . . . 4 ((𝜑𝑥𝐴) → 𝐹:𝐴⟶(ℝ* × ℝ*))
14 simpr 484 . . . 4 ((𝜑𝑥𝐴) → 𝑥𝐴)
1513, 14fvvolicof 46151 . . 3 ((𝜑𝑥𝐴) → (((vol ∘ [,)) ∘ 𝐹)‘𝑥) = (vol‘((1st ‘(𝐹𝑥))[,)(2nd ‘(𝐹𝑥)))))
1615mpteq2dva 5188 . 2 (𝜑 → (𝑥𝐴 ↦ (((vol ∘ [,)) ∘ 𝐹)‘𝑥)) = (𝑥𝐴 ↦ (vol‘((1st ‘(𝐹𝑥))[,)(2nd ‘(𝐹𝑥))))))
177, 16eqtrd 2768 1 (𝜑 → ((vol ∘ [,)) ∘ 𝐹) = (𝑥𝐴 ↦ (vol‘((1st ‘(𝐹𝑥))[,)(2nd ‘(𝐹𝑥))))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2113  wnfc 2880  wss 3898  cmpt 5176   × cxp 5619  ccom 5625  wf 6485  cfv 6489  (class class class)co 7355  1st c1st 7928  2nd c2nd 7929  cr 11016  0cc0 11017  +∞cpnf 11154  *cxr 11156  [,)cico 13254  [,]cicc 13255  volcvol 25411
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7677  ax-inf2 9542  ax-cnex 11073  ax-resscn 11074  ax-1cn 11075  ax-icn 11076  ax-addcl 11077  ax-addrcl 11078  ax-mulcl 11079  ax-mulrcl 11080  ax-mulcom 11081  ax-addass 11082  ax-mulass 11083  ax-distr 11084  ax-i2m1 11085  ax-1ne0 11086  ax-1rid 11087  ax-rnegex 11088  ax-rrecex 11089  ax-cnre 11090  ax-pre-lttri 11091  ax-pre-lttrn 11092  ax-pre-ltadd 11093  ax-pre-mulgt0 11094  ax-pre-sup 11095
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-nel 3034  df-ral 3049  df-rex 3058  df-rmo 3347  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3918  df-nul 4283  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4861  df-int 4900  df-iun 4945  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5516  df-eprel 5521  df-po 5529  df-so 5530  df-fr 5574  df-se 5575  df-we 5576  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-res 5633  df-ima 5634  df-pred 6256  df-ord 6317  df-on 6318  df-lim 6319  df-suc 6320  df-iota 6445  df-fun 6491  df-fn 6492  df-f 6493  df-f1 6494  df-fo 6495  df-f1o 6496  df-fv 6497  df-isom 6498  df-riota 7312  df-ov 7358  df-oprab 7359  df-mpo 7360  df-of 7619  df-om 7806  df-1st 7930  df-2nd 7931  df-frecs 8220  df-wrecs 8251  df-recs 8300  df-rdg 8338  df-1o 8394  df-2o 8395  df-er 8631  df-map 8761  df-pm 8762  df-en 8880  df-dom 8881  df-sdom 8882  df-fin 8883  df-sup 9337  df-inf 9338  df-oi 9407  df-dju 9805  df-card 9843  df-pnf 11159  df-mnf 11160  df-xr 11161  df-ltxr 11162  df-le 11163  df-sub 11357  df-neg 11358  df-div 11786  df-nn 12137  df-2 12199  df-3 12200  df-n0 12393  df-z 12480  df-uz 12743  df-q 12853  df-rp 12897  df-xadd 13018  df-ioo 13256  df-ico 13258  df-icc 13259  df-fz 13415  df-fzo 13562  df-fl 13703  df-seq 13916  df-exp 13976  df-hash 14245  df-cj 15013  df-re 15014  df-im 15015  df-sqrt 15149  df-abs 15150  df-clim 15402  df-rlim 15403  df-sum 15601  df-xmet 21293  df-met 21294  df-ovol 25412  df-vol 25413
This theorem is referenced by:  ovolval5lem2  46813  ovnovollem1  46816  ovnovollem2  46817
  Copyright terms: Public domain W3C validator