Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  choicefi Structured version   Visualization version   GIF version

Theorem choicefi 41829
Description: For a finite set, a choice function exists, without using the axiom of choice. (Contributed by Glauco Siliprandi, 24-Dec-2020.)
Hypotheses
Ref Expression
choicefi.a (𝜑𝐴 ∈ Fin)
choicefi.b ((𝜑𝑥𝐴) → 𝐵𝑊)
choicefi.n ((𝜑𝑥𝐴) → 𝐵 ≠ ∅)
Assertion
Ref Expression
choicefi (𝜑 → ∃𝑓(𝑓 Fn 𝐴 ∧ ∀𝑥𝐴 (𝑓𝑥) ∈ 𝐵))
Distinct variable groups:   𝐴,𝑓,𝑥   𝐵,𝑓   𝜑,𝑥
Allowed substitution hints:   𝜑(𝑓)   𝐵(𝑥)   𝑊(𝑥,𝑓)

Proof of Theorem choicefi
Dummy variables 𝑔 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 choicefi.a . . . . 5 (𝜑𝐴 ∈ Fin)
2 mptfi 8807 . . . . 5 (𝐴 ∈ Fin → (𝑥𝐴𝐵) ∈ Fin)
31, 2syl 17 . . . 4 (𝜑 → (𝑥𝐴𝐵) ∈ Fin)
4 rnfi 8791 . . . 4 ((𝑥𝐴𝐵) ∈ Fin → ran (𝑥𝐴𝐵) ∈ Fin)
53, 4syl 17 . . 3 (𝜑 → ran (𝑥𝐴𝐵) ∈ Fin)
6 fnchoice 41658 . . 3 (ran (𝑥𝐴𝐵) ∈ Fin → ∃𝑔(𝑔 Fn ran (𝑥𝐴𝐵) ∧ ∀𝑦 ∈ ran (𝑥𝐴𝐵)(𝑦 ≠ ∅ → (𝑔𝑦) ∈ 𝑦)))
75, 6syl 17 . 2 (𝜑 → ∃𝑔(𝑔 Fn ran (𝑥𝐴𝐵) ∧ ∀𝑦 ∈ ran (𝑥𝐴𝐵)(𝑦 ≠ ∅ → (𝑔𝑦) ∈ 𝑦)))
8 simpl 486 . . . . 5 ((𝜑 ∧ (𝑔 Fn ran (𝑥𝐴𝐵) ∧ ∀𝑦 ∈ ran (𝑥𝐴𝐵)(𝑦 ≠ ∅ → (𝑔𝑦) ∈ 𝑦))) → 𝜑)
9 simprl 770 . . . . 5 ((𝜑 ∧ (𝑔 Fn ran (𝑥𝐴𝐵) ∧ ∀𝑦 ∈ ran (𝑥𝐴𝐵)(𝑦 ≠ ∅ → (𝑔𝑦) ∈ 𝑦))) → 𝑔 Fn ran (𝑥𝐴𝐵))
10 nfv 1915 . . . . . . . 8 𝑦𝜑
11 nfra1 3183 . . . . . . . 8 𝑦𝑦 ∈ ran (𝑥𝐴𝐵)(𝑦 ≠ ∅ → (𝑔𝑦) ∈ 𝑦)
1210, 11nfan 1900 . . . . . . 7 𝑦(𝜑 ∧ ∀𝑦 ∈ ran (𝑥𝐴𝐵)(𝑦 ≠ ∅ → (𝑔𝑦) ∈ 𝑦))
13 rspa 3171 . . . . . . . . . . . 12 ((∀𝑦 ∈ ran (𝑥𝐴𝐵)(𝑦 ≠ ∅ → (𝑔𝑦) ∈ 𝑦) ∧ 𝑦 ∈ ran (𝑥𝐴𝐵)) → (𝑦 ≠ ∅ → (𝑔𝑦) ∈ 𝑦))
1413adantll 713 . . . . . . . . . . 11 (((𝜑 ∧ ∀𝑦 ∈ ran (𝑥𝐴𝐵)(𝑦 ≠ ∅ → (𝑔𝑦) ∈ 𝑦)) ∧ 𝑦 ∈ ran (𝑥𝐴𝐵)) → (𝑦 ≠ ∅ → (𝑔𝑦) ∈ 𝑦))
15 vex 3444 . . . . . . . . . . . . . . . 16 𝑦 ∈ V
16 eqid 2798 . . . . . . . . . . . . . . . . 17 (𝑥𝐴𝐵) = (𝑥𝐴𝐵)
1716elrnmpt 5792 . . . . . . . . . . . . . . . 16 (𝑦 ∈ V → (𝑦 ∈ ran (𝑥𝐴𝐵) ↔ ∃𝑥𝐴 𝑦 = 𝐵))
1815, 17ax-mp 5 . . . . . . . . . . . . . . 15 (𝑦 ∈ ran (𝑥𝐴𝐵) ↔ ∃𝑥𝐴 𝑦 = 𝐵)
1918biimpi 219 . . . . . . . . . . . . . 14 (𝑦 ∈ ran (𝑥𝐴𝐵) → ∃𝑥𝐴 𝑦 = 𝐵)
2019adantl 485 . . . . . . . . . . . . 13 ((𝜑𝑦 ∈ ran (𝑥𝐴𝐵)) → ∃𝑥𝐴 𝑦 = 𝐵)
21 simp3 1135 . . . . . . . . . . . . . . . . 17 ((𝜑𝑥𝐴𝑦 = 𝐵) → 𝑦 = 𝐵)
22 choicefi.n . . . . . . . . . . . . . . . . . 18 ((𝜑𝑥𝐴) → 𝐵 ≠ ∅)
23223adant3 1129 . . . . . . . . . . . . . . . . 17 ((𝜑𝑥𝐴𝑦 = 𝐵) → 𝐵 ≠ ∅)
2421, 23eqnetrd 3054 . . . . . . . . . . . . . . . 16 ((𝜑𝑥𝐴𝑦 = 𝐵) → 𝑦 ≠ ∅)
25243exp 1116 . . . . . . . . . . . . . . 15 (𝜑 → (𝑥𝐴 → (𝑦 = 𝐵𝑦 ≠ ∅)))
2625rexlimdv 3242 . . . . . . . . . . . . . 14 (𝜑 → (∃𝑥𝐴 𝑦 = 𝐵𝑦 ≠ ∅))
2726adantr 484 . . . . . . . . . . . . 13 ((𝜑𝑦 ∈ ran (𝑥𝐴𝐵)) → (∃𝑥𝐴 𝑦 = 𝐵𝑦 ≠ ∅))
2820, 27mpd 15 . . . . . . . . . . . 12 ((𝜑𝑦 ∈ ran (𝑥𝐴𝐵)) → 𝑦 ≠ ∅)
2928adantlr 714 . . . . . . . . . . 11 (((𝜑 ∧ ∀𝑦 ∈ ran (𝑥𝐴𝐵)(𝑦 ≠ ∅ → (𝑔𝑦) ∈ 𝑦)) ∧ 𝑦 ∈ ran (𝑥𝐴𝐵)) → 𝑦 ≠ ∅)
30 id 22 . . . . . . . . . . . 12 ((𝑦 ≠ ∅ → (𝑔𝑦) ∈ 𝑦) → (𝑦 ≠ ∅ → (𝑔𝑦) ∈ 𝑦))
3130imp 410 . . . . . . . . . . 11 (((𝑦 ≠ ∅ → (𝑔𝑦) ∈ 𝑦) ∧ 𝑦 ≠ ∅) → (𝑔𝑦) ∈ 𝑦)
3214, 29, 31syl2anc 587 . . . . . . . . . 10 (((𝜑 ∧ ∀𝑦 ∈ ran (𝑥𝐴𝐵)(𝑦 ≠ ∅ → (𝑔𝑦) ∈ 𝑦)) ∧ 𝑦 ∈ ran (𝑥𝐴𝐵)) → (𝑔𝑦) ∈ 𝑦)
3332ex 416 . . . . . . . . 9 ((𝜑 ∧ ∀𝑦 ∈ ran (𝑥𝐴𝐵)(𝑦 ≠ ∅ → (𝑔𝑦) ∈ 𝑦)) → (𝑦 ∈ ran (𝑥𝐴𝐵) → (𝑔𝑦) ∈ 𝑦))
3412, 33ralrimi 3180 . . . . . . . 8 ((𝜑 ∧ ∀𝑦 ∈ ran (𝑥𝐴𝐵)(𝑦 ≠ ∅ → (𝑔𝑦) ∈ 𝑦)) → ∀𝑦 ∈ ran (𝑥𝐴𝐵)(𝑔𝑦) ∈ 𝑦)
35 rsp 3170 . . . . . . . 8 (∀𝑦 ∈ ran (𝑥𝐴𝐵)(𝑔𝑦) ∈ 𝑦 → (𝑦 ∈ ran (𝑥𝐴𝐵) → (𝑔𝑦) ∈ 𝑦))
3634, 35syl 17 . . . . . . 7 ((𝜑 ∧ ∀𝑦 ∈ ran (𝑥𝐴𝐵)(𝑦 ≠ ∅ → (𝑔𝑦) ∈ 𝑦)) → (𝑦 ∈ ran (𝑥𝐴𝐵) → (𝑔𝑦) ∈ 𝑦))
3712, 36ralrimi 3180 . . . . . 6 ((𝜑 ∧ ∀𝑦 ∈ ran (𝑥𝐴𝐵)(𝑦 ≠ ∅ → (𝑔𝑦) ∈ 𝑦)) → ∀𝑦 ∈ ran (𝑥𝐴𝐵)(𝑔𝑦) ∈ 𝑦)
3837adantrl 715 . . . . 5 ((𝜑 ∧ (𝑔 Fn ran (𝑥𝐴𝐵) ∧ ∀𝑦 ∈ ran (𝑥𝐴𝐵)(𝑦 ≠ ∅ → (𝑔𝑦) ∈ 𝑦))) → ∀𝑦 ∈ ran (𝑥𝐴𝐵)(𝑔𝑦) ∈ 𝑦)
39 vex 3444 . . . . . . . . 9 𝑔 ∈ V
4039a1i 11 . . . . . . . 8 (𝜑𝑔 ∈ V)
411mptexd 6964 . . . . . . . 8 (𝜑 → (𝑥𝐴𝐵) ∈ V)
42 coexg 7616 . . . . . . . 8 ((𝑔 ∈ V ∧ (𝑥𝐴𝐵) ∈ V) → (𝑔 ∘ (𝑥𝐴𝐵)) ∈ V)
4340, 41, 42syl2anc 587 . . . . . . 7 (𝜑 → (𝑔 ∘ (𝑥𝐴𝐵)) ∈ V)
44433ad2ant1 1130 . . . . . 6 ((𝜑𝑔 Fn ran (𝑥𝐴𝐵) ∧ ∀𝑦 ∈ ran (𝑥𝐴𝐵)(𝑔𝑦) ∈ 𝑦) → (𝑔 ∘ (𝑥𝐴𝐵)) ∈ V)
45 simpr 488 . . . . . . . . 9 ((𝜑𝑔 Fn ran (𝑥𝐴𝐵)) → 𝑔 Fn ran (𝑥𝐴𝐵))
46 choicefi.b . . . . . . . . . . . 12 ((𝜑𝑥𝐴) → 𝐵𝑊)
4746ralrimiva 3149 . . . . . . . . . . 11 (𝜑 → ∀𝑥𝐴 𝐵𝑊)
4816fnmpt 6460 . . . . . . . . . . 11 (∀𝑥𝐴 𝐵𝑊 → (𝑥𝐴𝐵) Fn 𝐴)
4947, 48syl 17 . . . . . . . . . 10 (𝜑 → (𝑥𝐴𝐵) Fn 𝐴)
5049adantr 484 . . . . . . . . 9 ((𝜑𝑔 Fn ran (𝑥𝐴𝐵)) → (𝑥𝐴𝐵) Fn 𝐴)
51 ssidd 3938 . . . . . . . . 9 ((𝜑𝑔 Fn ran (𝑥𝐴𝐵)) → ran (𝑥𝐴𝐵) ⊆ ran (𝑥𝐴𝐵))
52 fnco 6437 . . . . . . . . 9 ((𝑔 Fn ran (𝑥𝐴𝐵) ∧ (𝑥𝐴𝐵) Fn 𝐴 ∧ ran (𝑥𝐴𝐵) ⊆ ran (𝑥𝐴𝐵)) → (𝑔 ∘ (𝑥𝐴𝐵)) Fn 𝐴)
5345, 50, 51, 52syl3anc 1368 . . . . . . . 8 ((𝜑𝑔 Fn ran (𝑥𝐴𝐵)) → (𝑔 ∘ (𝑥𝐴𝐵)) Fn 𝐴)
54533adant3 1129 . . . . . . 7 ((𝜑𝑔 Fn ran (𝑥𝐴𝐵) ∧ ∀𝑦 ∈ ran (𝑥𝐴𝐵)(𝑔𝑦) ∈ 𝑦) → (𝑔 ∘ (𝑥𝐴𝐵)) Fn 𝐴)
55 nfv 1915 . . . . . . . . 9 𝑥𝜑
56 nfcv 2955 . . . . . . . . . 10 𝑥𝑔
57 nfmpt1 5128 . . . . . . . . . . 11 𝑥(𝑥𝐴𝐵)
5857nfrn 5788 . . . . . . . . . 10 𝑥ran (𝑥𝐴𝐵)
5956, 58nffn 6422 . . . . . . . . 9 𝑥 𝑔 Fn ran (𝑥𝐴𝐵)
60 nfv 1915 . . . . . . . . . 10 𝑥(𝑔𝑦) ∈ 𝑦
6158, 60nfralw 3189 . . . . . . . . 9 𝑥𝑦 ∈ ran (𝑥𝐴𝐵)(𝑔𝑦) ∈ 𝑦
6255, 59, 61nf3an 1902 . . . . . . . 8 𝑥(𝜑𝑔 Fn ran (𝑥𝐴𝐵) ∧ ∀𝑦 ∈ ran (𝑥𝐴𝐵)(𝑔𝑦) ∈ 𝑦)
63 funmpt 6362 . . . . . . . . . . . . . 14 Fun (𝑥𝐴𝐵)
6463a1i 11 . . . . . . . . . . . . 13 ((𝜑𝑥𝐴) → Fun (𝑥𝐴𝐵))
65 simpr 488 . . . . . . . . . . . . . 14 ((𝜑𝑥𝐴) → 𝑥𝐴)
6616, 46dmmptd 6465 . . . . . . . . . . . . . . . 16 (𝜑 → dom (𝑥𝐴𝐵) = 𝐴)
6766eqcomd 2804 . . . . . . . . . . . . . . 15 (𝜑𝐴 = dom (𝑥𝐴𝐵))
6867adantr 484 . . . . . . . . . . . . . 14 ((𝜑𝑥𝐴) → 𝐴 = dom (𝑥𝐴𝐵))
6965, 68eleqtrd 2892 . . . . . . . . . . . . 13 ((𝜑𝑥𝐴) → 𝑥 ∈ dom (𝑥𝐴𝐵))
70 fvco 6736 . . . . . . . . . . . . 13 ((Fun (𝑥𝐴𝐵) ∧ 𝑥 ∈ dom (𝑥𝐴𝐵)) → ((𝑔 ∘ (𝑥𝐴𝐵))‘𝑥) = (𝑔‘((𝑥𝐴𝐵)‘𝑥)))
7164, 69, 70syl2anc 587 . . . . . . . . . . . 12 ((𝜑𝑥𝐴) → ((𝑔 ∘ (𝑥𝐴𝐵))‘𝑥) = (𝑔‘((𝑥𝐴𝐵)‘𝑥)))
7216fvmpt2 6756 . . . . . . . . . . . . . 14 ((𝑥𝐴𝐵𝑊) → ((𝑥𝐴𝐵)‘𝑥) = 𝐵)
7365, 46, 72syl2anc 587 . . . . . . . . . . . . 13 ((𝜑𝑥𝐴) → ((𝑥𝐴𝐵)‘𝑥) = 𝐵)
7473fveq2d 6649 . . . . . . . . . . . 12 ((𝜑𝑥𝐴) → (𝑔‘((𝑥𝐴𝐵)‘𝑥)) = (𝑔𝐵))
7571, 74eqtrd 2833 . . . . . . . . . . 11 ((𝜑𝑥𝐴) → ((𝑔 ∘ (𝑥𝐴𝐵))‘𝑥) = (𝑔𝐵))
76753ad2antl1 1182 . . . . . . . . . 10 (((𝜑𝑔 Fn ran (𝑥𝐴𝐵) ∧ ∀𝑦 ∈ ran (𝑥𝐴𝐵)(𝑔𝑦) ∈ 𝑦) ∧ 𝑥𝐴) → ((𝑔 ∘ (𝑥𝐴𝐵))‘𝑥) = (𝑔𝐵))
7716elrnmpt1 5794 . . . . . . . . . . . . 13 ((𝑥𝐴𝐵𝑊) → 𝐵 ∈ ran (𝑥𝐴𝐵))
7865, 46, 77syl2anc 587 . . . . . . . . . . . 12 ((𝜑𝑥𝐴) → 𝐵 ∈ ran (𝑥𝐴𝐵))
79783ad2antl1 1182 . . . . . . . . . . 11 (((𝜑𝑔 Fn ran (𝑥𝐴𝐵) ∧ ∀𝑦 ∈ ran (𝑥𝐴𝐵)(𝑔𝑦) ∈ 𝑦) ∧ 𝑥𝐴) → 𝐵 ∈ ran (𝑥𝐴𝐵))
80 simpl3 1190 . . . . . . . . . . 11 (((𝜑𝑔 Fn ran (𝑥𝐴𝐵) ∧ ∀𝑦 ∈ ran (𝑥𝐴𝐵)(𝑔𝑦) ∈ 𝑦) ∧ 𝑥𝐴) → ∀𝑦 ∈ ran (𝑥𝐴𝐵)(𝑔𝑦) ∈ 𝑦)
81 fveq2 6645 . . . . . . . . . . . . 13 (𝑦 = 𝐵 → (𝑔𝑦) = (𝑔𝐵))
82 id 22 . . . . . . . . . . . . 13 (𝑦 = 𝐵𝑦 = 𝐵)
8381, 82eleq12d 2884 . . . . . . . . . . . 12 (𝑦 = 𝐵 → ((𝑔𝑦) ∈ 𝑦 ↔ (𝑔𝐵) ∈ 𝐵))
8483rspcva 3569 . . . . . . . . . . 11 ((𝐵 ∈ ran (𝑥𝐴𝐵) ∧ ∀𝑦 ∈ ran (𝑥𝐴𝐵)(𝑔𝑦) ∈ 𝑦) → (𝑔𝐵) ∈ 𝐵)
8579, 80, 84syl2anc 587 . . . . . . . . . 10 (((𝜑𝑔 Fn ran (𝑥𝐴𝐵) ∧ ∀𝑦 ∈ ran (𝑥𝐴𝐵)(𝑔𝑦) ∈ 𝑦) ∧ 𝑥𝐴) → (𝑔𝐵) ∈ 𝐵)
8676, 85eqeltrd 2890 . . . . . . . . 9 (((𝜑𝑔 Fn ran (𝑥𝐴𝐵) ∧ ∀𝑦 ∈ ran (𝑥𝐴𝐵)(𝑔𝑦) ∈ 𝑦) ∧ 𝑥𝐴) → ((𝑔 ∘ (𝑥𝐴𝐵))‘𝑥) ∈ 𝐵)
8786ex 416 . . . . . . . 8 ((𝜑𝑔 Fn ran (𝑥𝐴𝐵) ∧ ∀𝑦 ∈ ran (𝑥𝐴𝐵)(𝑔𝑦) ∈ 𝑦) → (𝑥𝐴 → ((𝑔 ∘ (𝑥𝐴𝐵))‘𝑥) ∈ 𝐵))
8862, 87ralrimi 3180 . . . . . . 7 ((𝜑𝑔 Fn ran (𝑥𝐴𝐵) ∧ ∀𝑦 ∈ ran (𝑥𝐴𝐵)(𝑔𝑦) ∈ 𝑦) → ∀𝑥𝐴 ((𝑔 ∘ (𝑥𝐴𝐵))‘𝑥) ∈ 𝐵)
8954, 88jca 515 . . . . . 6 ((𝜑𝑔 Fn ran (𝑥𝐴𝐵) ∧ ∀𝑦 ∈ ran (𝑥𝐴𝐵)(𝑔𝑦) ∈ 𝑦) → ((𝑔 ∘ (𝑥𝐴𝐵)) Fn 𝐴 ∧ ∀𝑥𝐴 ((𝑔 ∘ (𝑥𝐴𝐵))‘𝑥) ∈ 𝐵))
90 fneq1 6414 . . . . . . . 8 (𝑓 = (𝑔 ∘ (𝑥𝐴𝐵)) → (𝑓 Fn 𝐴 ↔ (𝑔 ∘ (𝑥𝐴𝐵)) Fn 𝐴))
91 nfcv 2955 . . . . . . . . . 10 𝑥𝑓
9256, 57nfco 5700 . . . . . . . . . 10 𝑥(𝑔 ∘ (𝑥𝐴𝐵))
9391, 92nfeq 2968 . . . . . . . . 9 𝑥 𝑓 = (𝑔 ∘ (𝑥𝐴𝐵))
94 fveq1 6644 . . . . . . . . . 10 (𝑓 = (𝑔 ∘ (𝑥𝐴𝐵)) → (𝑓𝑥) = ((𝑔 ∘ (𝑥𝐴𝐵))‘𝑥))
9594eleq1d 2874 . . . . . . . . 9 (𝑓 = (𝑔 ∘ (𝑥𝐴𝐵)) → ((𝑓𝑥) ∈ 𝐵 ↔ ((𝑔 ∘ (𝑥𝐴𝐵))‘𝑥) ∈ 𝐵))
9693, 95ralbid 3195 . . . . . . . 8 (𝑓 = (𝑔 ∘ (𝑥𝐴𝐵)) → (∀𝑥𝐴 (𝑓𝑥) ∈ 𝐵 ↔ ∀𝑥𝐴 ((𝑔 ∘ (𝑥𝐴𝐵))‘𝑥) ∈ 𝐵))
9790, 96anbi12d 633 . . . . . . 7 (𝑓 = (𝑔 ∘ (𝑥𝐴𝐵)) → ((𝑓 Fn 𝐴 ∧ ∀𝑥𝐴 (𝑓𝑥) ∈ 𝐵) ↔ ((𝑔 ∘ (𝑥𝐴𝐵)) Fn 𝐴 ∧ ∀𝑥𝐴 ((𝑔 ∘ (𝑥𝐴𝐵))‘𝑥) ∈ 𝐵)))
9897spcegv 3545 . . . . . 6 ((𝑔 ∘ (𝑥𝐴𝐵)) ∈ V → (((𝑔 ∘ (𝑥𝐴𝐵)) Fn 𝐴 ∧ ∀𝑥𝐴 ((𝑔 ∘ (𝑥𝐴𝐵))‘𝑥) ∈ 𝐵) → ∃𝑓(𝑓 Fn 𝐴 ∧ ∀𝑥𝐴 (𝑓𝑥) ∈ 𝐵)))
9944, 89, 98sylc 65 . . . . 5 ((𝜑𝑔 Fn ran (𝑥𝐴𝐵) ∧ ∀𝑦 ∈ ran (𝑥𝐴𝐵)(𝑔𝑦) ∈ 𝑦) → ∃𝑓(𝑓 Fn 𝐴 ∧ ∀𝑥𝐴 (𝑓𝑥) ∈ 𝐵))
1008, 9, 38, 99syl3anc 1368 . . . 4 ((𝜑 ∧ (𝑔 Fn ran (𝑥𝐴𝐵) ∧ ∀𝑦 ∈ ran (𝑥𝐴𝐵)(𝑦 ≠ ∅ → (𝑔𝑦) ∈ 𝑦))) → ∃𝑓(𝑓 Fn 𝐴 ∧ ∀𝑥𝐴 (𝑓𝑥) ∈ 𝐵))
101100ex 416 . . 3 (𝜑 → ((𝑔 Fn ran (𝑥𝐴𝐵) ∧ ∀𝑦 ∈ ran (𝑥𝐴𝐵)(𝑦 ≠ ∅ → (𝑔𝑦) ∈ 𝑦)) → ∃𝑓(𝑓 Fn 𝐴 ∧ ∀𝑥𝐴 (𝑓𝑥) ∈ 𝐵)))
102101exlimdv 1934 . 2 (𝜑 → (∃𝑔(𝑔 Fn ran (𝑥𝐴𝐵) ∧ ∀𝑦 ∈ ran (𝑥𝐴𝐵)(𝑦 ≠ ∅ → (𝑔𝑦) ∈ 𝑦)) → ∃𝑓(𝑓 Fn 𝐴 ∧ ∀𝑥𝐴 (𝑓𝑥) ∈ 𝐵)))
1037, 102mpd 15 1 (𝜑 → ∃𝑓(𝑓 Fn 𝐴 ∧ ∀𝑥𝐴 (𝑓𝑥) ∈ 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399  w3a 1084   = wceq 1538  wex 1781  wcel 2111  wne 2987  wral 3106  wrex 3107  Vcvv 3441  wss 3881  c0 4243  cmpt 5110  dom cdm 5519  ran crn 5520  ccom 5523  Fun wfun 6318   Fn wfn 6319  cfv 6324  Fincfn 8492
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-ral 3111  df-rex 3112  df-reu 3113  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-int 4839  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-ov 7138  df-oprab 7139  df-mpo 7140  df-om 7561  df-1st 7671  df-2nd 7672  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-1o 8085  df-oadd 8089  df-er 8272  df-en 8493  df-dom 8494  df-fin 8496
This theorem is referenced by:  axccdom  41853  axccd2  41862  qndenserrnbllem  42936  hoiqssbllem3  43263
  Copyright terms: Public domain W3C validator