Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  choicefi Structured version   Visualization version   GIF version

Theorem choicefi 45201
Description: For a finite set, a choice function exists, without using the axiom of choice. (Contributed by Glauco Siliprandi, 24-Dec-2020.)
Hypotheses
Ref Expression
choicefi.a (𝜑𝐴 ∈ Fin)
choicefi.b ((𝜑𝑥𝐴) → 𝐵𝑊)
choicefi.n ((𝜑𝑥𝐴) → 𝐵 ≠ ∅)
Assertion
Ref Expression
choicefi (𝜑 → ∃𝑓(𝑓 Fn 𝐴 ∧ ∀𝑥𝐴 (𝑓𝑥) ∈ 𝐵))
Distinct variable groups:   𝐴,𝑓,𝑥   𝐵,𝑓   𝜑,𝑥
Allowed substitution hints:   𝜑(𝑓)   𝐵(𝑥)   𝑊(𝑥,𝑓)

Proof of Theorem choicefi
Dummy variables 𝑔 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 choicefi.a . . 3 (𝜑𝐴 ∈ Fin)
2 mptfi 9309 . . 3 (𝐴 ∈ Fin → (𝑥𝐴𝐵) ∈ Fin)
3 rnfi 9298 . . 3 ((𝑥𝐴𝐵) ∈ Fin → ran (𝑥𝐴𝐵) ∈ Fin)
4 fnchoice 45030 . . 3 (ran (𝑥𝐴𝐵) ∈ Fin → ∃𝑔(𝑔 Fn ran (𝑥𝐴𝐵) ∧ ∀𝑦 ∈ ran (𝑥𝐴𝐵)(𝑦 ≠ ∅ → (𝑔𝑦) ∈ 𝑦)))
51, 2, 3, 44syl 19 . 2 (𝜑 → ∃𝑔(𝑔 Fn ran (𝑥𝐴𝐵) ∧ ∀𝑦 ∈ ran (𝑥𝐴𝐵)(𝑦 ≠ ∅ → (𝑔𝑦) ∈ 𝑦)))
6 simpl 482 . . . . 5 ((𝜑 ∧ (𝑔 Fn ran (𝑥𝐴𝐵) ∧ ∀𝑦 ∈ ran (𝑥𝐴𝐵)(𝑦 ≠ ∅ → (𝑔𝑦) ∈ 𝑦))) → 𝜑)
7 simprl 770 . . . . 5 ((𝜑 ∧ (𝑔 Fn ran (𝑥𝐴𝐵) ∧ ∀𝑦 ∈ ran (𝑥𝐴𝐵)(𝑦 ≠ ∅ → (𝑔𝑦) ∈ 𝑦))) → 𝑔 Fn ran (𝑥𝐴𝐵))
8 nfv 1914 . . . . . . . 8 𝑦𝜑
9 nfra1 3262 . . . . . . . 8 𝑦𝑦 ∈ ran (𝑥𝐴𝐵)(𝑦 ≠ ∅ → (𝑔𝑦) ∈ 𝑦)
108, 9nfan 1899 . . . . . . 7 𝑦(𝜑 ∧ ∀𝑦 ∈ ran (𝑥𝐴𝐵)(𝑦 ≠ ∅ → (𝑔𝑦) ∈ 𝑦))
11 rspa 3227 . . . . . . . . . . . 12 ((∀𝑦 ∈ ran (𝑥𝐴𝐵)(𝑦 ≠ ∅ → (𝑔𝑦) ∈ 𝑦) ∧ 𝑦 ∈ ran (𝑥𝐴𝐵)) → (𝑦 ≠ ∅ → (𝑔𝑦) ∈ 𝑦))
1211adantll 714 . . . . . . . . . . 11 (((𝜑 ∧ ∀𝑦 ∈ ran (𝑥𝐴𝐵)(𝑦 ≠ ∅ → (𝑔𝑦) ∈ 𝑦)) ∧ 𝑦 ∈ ran (𝑥𝐴𝐵)) → (𝑦 ≠ ∅ → (𝑔𝑦) ∈ 𝑦))
13 vex 3454 . . . . . . . . . . . . . . . 16 𝑦 ∈ V
14 eqid 2730 . . . . . . . . . . . . . . . . 17 (𝑥𝐴𝐵) = (𝑥𝐴𝐵)
1514elrnmpt 5925 . . . . . . . . . . . . . . . 16 (𝑦 ∈ V → (𝑦 ∈ ran (𝑥𝐴𝐵) ↔ ∃𝑥𝐴 𝑦 = 𝐵))
1613, 15ax-mp 5 . . . . . . . . . . . . . . 15 (𝑦 ∈ ran (𝑥𝐴𝐵) ↔ ∃𝑥𝐴 𝑦 = 𝐵)
1716biimpi 216 . . . . . . . . . . . . . 14 (𝑦 ∈ ran (𝑥𝐴𝐵) → ∃𝑥𝐴 𝑦 = 𝐵)
1817adantl 481 . . . . . . . . . . . . 13 ((𝜑𝑦 ∈ ran (𝑥𝐴𝐵)) → ∃𝑥𝐴 𝑦 = 𝐵)
19 simp3 1138 . . . . . . . . . . . . . . . . 17 ((𝜑𝑥𝐴𝑦 = 𝐵) → 𝑦 = 𝐵)
20 choicefi.n . . . . . . . . . . . . . . . . . 18 ((𝜑𝑥𝐴) → 𝐵 ≠ ∅)
21203adant3 1132 . . . . . . . . . . . . . . . . 17 ((𝜑𝑥𝐴𝑦 = 𝐵) → 𝐵 ≠ ∅)
2219, 21eqnetrd 2993 . . . . . . . . . . . . . . . 16 ((𝜑𝑥𝐴𝑦 = 𝐵) → 𝑦 ≠ ∅)
23223exp 1119 . . . . . . . . . . . . . . 15 (𝜑 → (𝑥𝐴 → (𝑦 = 𝐵𝑦 ≠ ∅)))
2423rexlimdv 3133 . . . . . . . . . . . . . 14 (𝜑 → (∃𝑥𝐴 𝑦 = 𝐵𝑦 ≠ ∅))
2524adantr 480 . . . . . . . . . . . . 13 ((𝜑𝑦 ∈ ran (𝑥𝐴𝐵)) → (∃𝑥𝐴 𝑦 = 𝐵𝑦 ≠ ∅))
2618, 25mpd 15 . . . . . . . . . . . 12 ((𝜑𝑦 ∈ ran (𝑥𝐴𝐵)) → 𝑦 ≠ ∅)
2726adantlr 715 . . . . . . . . . . 11 (((𝜑 ∧ ∀𝑦 ∈ ran (𝑥𝐴𝐵)(𝑦 ≠ ∅ → (𝑔𝑦) ∈ 𝑦)) ∧ 𝑦 ∈ ran (𝑥𝐴𝐵)) → 𝑦 ≠ ∅)
28 id 22 . . . . . . . . . . . 12 ((𝑦 ≠ ∅ → (𝑔𝑦) ∈ 𝑦) → (𝑦 ≠ ∅ → (𝑔𝑦) ∈ 𝑦))
2928imp 406 . . . . . . . . . . 11 (((𝑦 ≠ ∅ → (𝑔𝑦) ∈ 𝑦) ∧ 𝑦 ≠ ∅) → (𝑔𝑦) ∈ 𝑦)
3012, 27, 29syl2anc 584 . . . . . . . . . 10 (((𝜑 ∧ ∀𝑦 ∈ ran (𝑥𝐴𝐵)(𝑦 ≠ ∅ → (𝑔𝑦) ∈ 𝑦)) ∧ 𝑦 ∈ ran (𝑥𝐴𝐵)) → (𝑔𝑦) ∈ 𝑦)
3130ex 412 . . . . . . . . 9 ((𝜑 ∧ ∀𝑦 ∈ ran (𝑥𝐴𝐵)(𝑦 ≠ ∅ → (𝑔𝑦) ∈ 𝑦)) → (𝑦 ∈ ran (𝑥𝐴𝐵) → (𝑔𝑦) ∈ 𝑦))
3210, 31ralrimi 3236 . . . . . . . 8 ((𝜑 ∧ ∀𝑦 ∈ ran (𝑥𝐴𝐵)(𝑦 ≠ ∅ → (𝑔𝑦) ∈ 𝑦)) → ∀𝑦 ∈ ran (𝑥𝐴𝐵)(𝑔𝑦) ∈ 𝑦)
33 rsp 3226 . . . . . . . 8 (∀𝑦 ∈ ran (𝑥𝐴𝐵)(𝑔𝑦) ∈ 𝑦 → (𝑦 ∈ ran (𝑥𝐴𝐵) → (𝑔𝑦) ∈ 𝑦))
3432, 33syl 17 . . . . . . 7 ((𝜑 ∧ ∀𝑦 ∈ ran (𝑥𝐴𝐵)(𝑦 ≠ ∅ → (𝑔𝑦) ∈ 𝑦)) → (𝑦 ∈ ran (𝑥𝐴𝐵) → (𝑔𝑦) ∈ 𝑦))
3510, 34ralrimi 3236 . . . . . 6 ((𝜑 ∧ ∀𝑦 ∈ ran (𝑥𝐴𝐵)(𝑦 ≠ ∅ → (𝑔𝑦) ∈ 𝑦)) → ∀𝑦 ∈ ran (𝑥𝐴𝐵)(𝑔𝑦) ∈ 𝑦)
3635adantrl 716 . . . . 5 ((𝜑 ∧ (𝑔 Fn ran (𝑥𝐴𝐵) ∧ ∀𝑦 ∈ ran (𝑥𝐴𝐵)(𝑦 ≠ ∅ → (𝑔𝑦) ∈ 𝑦))) → ∀𝑦 ∈ ran (𝑥𝐴𝐵)(𝑔𝑦) ∈ 𝑦)
37 vex 3454 . . . . . . . . 9 𝑔 ∈ V
3837a1i 11 . . . . . . . 8 (𝜑𝑔 ∈ V)
391mptexd 7201 . . . . . . . 8 (𝜑 → (𝑥𝐴𝐵) ∈ V)
40 coexg 7908 . . . . . . . 8 ((𝑔 ∈ V ∧ (𝑥𝐴𝐵) ∈ V) → (𝑔 ∘ (𝑥𝐴𝐵)) ∈ V)
4138, 39, 40syl2anc 584 . . . . . . 7 (𝜑 → (𝑔 ∘ (𝑥𝐴𝐵)) ∈ V)
42413ad2ant1 1133 . . . . . 6 ((𝜑𝑔 Fn ran (𝑥𝐴𝐵) ∧ ∀𝑦 ∈ ran (𝑥𝐴𝐵)(𝑔𝑦) ∈ 𝑦) → (𝑔 ∘ (𝑥𝐴𝐵)) ∈ V)
43 simpr 484 . . . . . . . . 9 ((𝜑𝑔 Fn ran (𝑥𝐴𝐵)) → 𝑔 Fn ran (𝑥𝐴𝐵))
44 choicefi.b . . . . . . . . . . . 12 ((𝜑𝑥𝐴) → 𝐵𝑊)
4544ralrimiva 3126 . . . . . . . . . . 11 (𝜑 → ∀𝑥𝐴 𝐵𝑊)
4614fnmpt 6661 . . . . . . . . . . 11 (∀𝑥𝐴 𝐵𝑊 → (𝑥𝐴𝐵) Fn 𝐴)
4745, 46syl 17 . . . . . . . . . 10 (𝜑 → (𝑥𝐴𝐵) Fn 𝐴)
4847adantr 480 . . . . . . . . 9 ((𝜑𝑔 Fn ran (𝑥𝐴𝐵)) → (𝑥𝐴𝐵) Fn 𝐴)
49 ssidd 3973 . . . . . . . . 9 ((𝜑𝑔 Fn ran (𝑥𝐴𝐵)) → ran (𝑥𝐴𝐵) ⊆ ran (𝑥𝐴𝐵))
50 fnco 6639 . . . . . . . . 9 ((𝑔 Fn ran (𝑥𝐴𝐵) ∧ (𝑥𝐴𝐵) Fn 𝐴 ∧ ran (𝑥𝐴𝐵) ⊆ ran (𝑥𝐴𝐵)) → (𝑔 ∘ (𝑥𝐴𝐵)) Fn 𝐴)
5143, 48, 49, 50syl3anc 1373 . . . . . . . 8 ((𝜑𝑔 Fn ran (𝑥𝐴𝐵)) → (𝑔 ∘ (𝑥𝐴𝐵)) Fn 𝐴)
52513adant3 1132 . . . . . . 7 ((𝜑𝑔 Fn ran (𝑥𝐴𝐵) ∧ ∀𝑦 ∈ ran (𝑥𝐴𝐵)(𝑔𝑦) ∈ 𝑦) → (𝑔 ∘ (𝑥𝐴𝐵)) Fn 𝐴)
53 nfv 1914 . . . . . . . . 9 𝑥𝜑
54 nfcv 2892 . . . . . . . . . 10 𝑥𝑔
55 nfmpt1 5209 . . . . . . . . . . 11 𝑥(𝑥𝐴𝐵)
5655nfrn 5919 . . . . . . . . . 10 𝑥ran (𝑥𝐴𝐵)
5754, 56nffn 6620 . . . . . . . . 9 𝑥 𝑔 Fn ran (𝑥𝐴𝐵)
58 nfv 1914 . . . . . . . . . 10 𝑥(𝑔𝑦) ∈ 𝑦
5956, 58nfralw 3287 . . . . . . . . 9 𝑥𝑦 ∈ ran (𝑥𝐴𝐵)(𝑔𝑦) ∈ 𝑦
6053, 57, 59nf3an 1901 . . . . . . . 8 𝑥(𝜑𝑔 Fn ran (𝑥𝐴𝐵) ∧ ∀𝑦 ∈ ran (𝑥𝐴𝐵)(𝑔𝑦) ∈ 𝑦)
61 funmpt 6557 . . . . . . . . . . . . . 14 Fun (𝑥𝐴𝐵)
6261a1i 11 . . . . . . . . . . . . 13 ((𝜑𝑥𝐴) → Fun (𝑥𝐴𝐵))
63 simpr 484 . . . . . . . . . . . . . 14 ((𝜑𝑥𝐴) → 𝑥𝐴)
6414, 44dmmptd 6666 . . . . . . . . . . . . . . . 16 (𝜑 → dom (𝑥𝐴𝐵) = 𝐴)
6564eqcomd 2736 . . . . . . . . . . . . . . 15 (𝜑𝐴 = dom (𝑥𝐴𝐵))
6665adantr 480 . . . . . . . . . . . . . 14 ((𝜑𝑥𝐴) → 𝐴 = dom (𝑥𝐴𝐵))
6763, 66eleqtrd 2831 . . . . . . . . . . . . 13 ((𝜑𝑥𝐴) → 𝑥 ∈ dom (𝑥𝐴𝐵))
68 fvco 6962 . . . . . . . . . . . . 13 ((Fun (𝑥𝐴𝐵) ∧ 𝑥 ∈ dom (𝑥𝐴𝐵)) → ((𝑔 ∘ (𝑥𝐴𝐵))‘𝑥) = (𝑔‘((𝑥𝐴𝐵)‘𝑥)))
6962, 67, 68syl2anc 584 . . . . . . . . . . . 12 ((𝜑𝑥𝐴) → ((𝑔 ∘ (𝑥𝐴𝐵))‘𝑥) = (𝑔‘((𝑥𝐴𝐵)‘𝑥)))
7014fvmpt2 6982 . . . . . . . . . . . . . 14 ((𝑥𝐴𝐵𝑊) → ((𝑥𝐴𝐵)‘𝑥) = 𝐵)
7163, 44, 70syl2anc 584 . . . . . . . . . . . . 13 ((𝜑𝑥𝐴) → ((𝑥𝐴𝐵)‘𝑥) = 𝐵)
7271fveq2d 6865 . . . . . . . . . . . 12 ((𝜑𝑥𝐴) → (𝑔‘((𝑥𝐴𝐵)‘𝑥)) = (𝑔𝐵))
7369, 72eqtrd 2765 . . . . . . . . . . 11 ((𝜑𝑥𝐴) → ((𝑔 ∘ (𝑥𝐴𝐵))‘𝑥) = (𝑔𝐵))
74733ad2antl1 1186 . . . . . . . . . 10 (((𝜑𝑔 Fn ran (𝑥𝐴𝐵) ∧ ∀𝑦 ∈ ran (𝑥𝐴𝐵)(𝑔𝑦) ∈ 𝑦) ∧ 𝑥𝐴) → ((𝑔 ∘ (𝑥𝐴𝐵))‘𝑥) = (𝑔𝐵))
7514elrnmpt1 5927 . . . . . . . . . . . . 13 ((𝑥𝐴𝐵𝑊) → 𝐵 ∈ ran (𝑥𝐴𝐵))
7663, 44, 75syl2anc 584 . . . . . . . . . . . 12 ((𝜑𝑥𝐴) → 𝐵 ∈ ran (𝑥𝐴𝐵))
77763ad2antl1 1186 . . . . . . . . . . 11 (((𝜑𝑔 Fn ran (𝑥𝐴𝐵) ∧ ∀𝑦 ∈ ran (𝑥𝐴𝐵)(𝑔𝑦) ∈ 𝑦) ∧ 𝑥𝐴) → 𝐵 ∈ ran (𝑥𝐴𝐵))
78 simpl3 1194 . . . . . . . . . . 11 (((𝜑𝑔 Fn ran (𝑥𝐴𝐵) ∧ ∀𝑦 ∈ ran (𝑥𝐴𝐵)(𝑔𝑦) ∈ 𝑦) ∧ 𝑥𝐴) → ∀𝑦 ∈ ran (𝑥𝐴𝐵)(𝑔𝑦) ∈ 𝑦)
79 fveq2 6861 . . . . . . . . . . . . 13 (𝑦 = 𝐵 → (𝑔𝑦) = (𝑔𝐵))
80 id 22 . . . . . . . . . . . . 13 (𝑦 = 𝐵𝑦 = 𝐵)
8179, 80eleq12d 2823 . . . . . . . . . . . 12 (𝑦 = 𝐵 → ((𝑔𝑦) ∈ 𝑦 ↔ (𝑔𝐵) ∈ 𝐵))
8281rspcva 3589 . . . . . . . . . . 11 ((𝐵 ∈ ran (𝑥𝐴𝐵) ∧ ∀𝑦 ∈ ran (𝑥𝐴𝐵)(𝑔𝑦) ∈ 𝑦) → (𝑔𝐵) ∈ 𝐵)
8377, 78, 82syl2anc 584 . . . . . . . . . 10 (((𝜑𝑔 Fn ran (𝑥𝐴𝐵) ∧ ∀𝑦 ∈ ran (𝑥𝐴𝐵)(𝑔𝑦) ∈ 𝑦) ∧ 𝑥𝐴) → (𝑔𝐵) ∈ 𝐵)
8474, 83eqeltrd 2829 . . . . . . . . 9 (((𝜑𝑔 Fn ran (𝑥𝐴𝐵) ∧ ∀𝑦 ∈ ran (𝑥𝐴𝐵)(𝑔𝑦) ∈ 𝑦) ∧ 𝑥𝐴) → ((𝑔 ∘ (𝑥𝐴𝐵))‘𝑥) ∈ 𝐵)
8584ex 412 . . . . . . . 8 ((𝜑𝑔 Fn ran (𝑥𝐴𝐵) ∧ ∀𝑦 ∈ ran (𝑥𝐴𝐵)(𝑔𝑦) ∈ 𝑦) → (𝑥𝐴 → ((𝑔 ∘ (𝑥𝐴𝐵))‘𝑥) ∈ 𝐵))
8660, 85ralrimi 3236 . . . . . . 7 ((𝜑𝑔 Fn ran (𝑥𝐴𝐵) ∧ ∀𝑦 ∈ ran (𝑥𝐴𝐵)(𝑔𝑦) ∈ 𝑦) → ∀𝑥𝐴 ((𝑔 ∘ (𝑥𝐴𝐵))‘𝑥) ∈ 𝐵)
8752, 86jca 511 . . . . . 6 ((𝜑𝑔 Fn ran (𝑥𝐴𝐵) ∧ ∀𝑦 ∈ ran (𝑥𝐴𝐵)(𝑔𝑦) ∈ 𝑦) → ((𝑔 ∘ (𝑥𝐴𝐵)) Fn 𝐴 ∧ ∀𝑥𝐴 ((𝑔 ∘ (𝑥𝐴𝐵))‘𝑥) ∈ 𝐵))
88 fneq1 6612 . . . . . . . 8 (𝑓 = (𝑔 ∘ (𝑥𝐴𝐵)) → (𝑓 Fn 𝐴 ↔ (𝑔 ∘ (𝑥𝐴𝐵)) Fn 𝐴))
89 nfcv 2892 . . . . . . . . . 10 𝑥𝑓
9054, 55nfco 5832 . . . . . . . . . 10 𝑥(𝑔 ∘ (𝑥𝐴𝐵))
9189, 90nfeq 2906 . . . . . . . . 9 𝑥 𝑓 = (𝑔 ∘ (𝑥𝐴𝐵))
92 fveq1 6860 . . . . . . . . . 10 (𝑓 = (𝑔 ∘ (𝑥𝐴𝐵)) → (𝑓𝑥) = ((𝑔 ∘ (𝑥𝐴𝐵))‘𝑥))
9392eleq1d 2814 . . . . . . . . 9 (𝑓 = (𝑔 ∘ (𝑥𝐴𝐵)) → ((𝑓𝑥) ∈ 𝐵 ↔ ((𝑔 ∘ (𝑥𝐴𝐵))‘𝑥) ∈ 𝐵))
9491, 93ralbid 3251 . . . . . . . 8 (𝑓 = (𝑔 ∘ (𝑥𝐴𝐵)) → (∀𝑥𝐴 (𝑓𝑥) ∈ 𝐵 ↔ ∀𝑥𝐴 ((𝑔 ∘ (𝑥𝐴𝐵))‘𝑥) ∈ 𝐵))
9588, 94anbi12d 632 . . . . . . 7 (𝑓 = (𝑔 ∘ (𝑥𝐴𝐵)) → ((𝑓 Fn 𝐴 ∧ ∀𝑥𝐴 (𝑓𝑥) ∈ 𝐵) ↔ ((𝑔 ∘ (𝑥𝐴𝐵)) Fn 𝐴 ∧ ∀𝑥𝐴 ((𝑔 ∘ (𝑥𝐴𝐵))‘𝑥) ∈ 𝐵)))
9695spcegv 3566 . . . . . 6 ((𝑔 ∘ (𝑥𝐴𝐵)) ∈ V → (((𝑔 ∘ (𝑥𝐴𝐵)) Fn 𝐴 ∧ ∀𝑥𝐴 ((𝑔 ∘ (𝑥𝐴𝐵))‘𝑥) ∈ 𝐵) → ∃𝑓(𝑓 Fn 𝐴 ∧ ∀𝑥𝐴 (𝑓𝑥) ∈ 𝐵)))
9742, 87, 96sylc 65 . . . . 5 ((𝜑𝑔 Fn ran (𝑥𝐴𝐵) ∧ ∀𝑦 ∈ ran (𝑥𝐴𝐵)(𝑔𝑦) ∈ 𝑦) → ∃𝑓(𝑓 Fn 𝐴 ∧ ∀𝑥𝐴 (𝑓𝑥) ∈ 𝐵))
986, 7, 36, 97syl3anc 1373 . . . 4 ((𝜑 ∧ (𝑔 Fn ran (𝑥𝐴𝐵) ∧ ∀𝑦 ∈ ran (𝑥𝐴𝐵)(𝑦 ≠ ∅ → (𝑔𝑦) ∈ 𝑦))) → ∃𝑓(𝑓 Fn 𝐴 ∧ ∀𝑥𝐴 (𝑓𝑥) ∈ 𝐵))
9998ex 412 . . 3 (𝜑 → ((𝑔 Fn ran (𝑥𝐴𝐵) ∧ ∀𝑦 ∈ ran (𝑥𝐴𝐵)(𝑦 ≠ ∅ → (𝑔𝑦) ∈ 𝑦)) → ∃𝑓(𝑓 Fn 𝐴 ∧ ∀𝑥𝐴 (𝑓𝑥) ∈ 𝐵)))
10099exlimdv 1933 . 2 (𝜑 → (∃𝑔(𝑔 Fn ran (𝑥𝐴𝐵) ∧ ∀𝑦 ∈ ran (𝑥𝐴𝐵)(𝑦 ≠ ∅ → (𝑔𝑦) ∈ 𝑦)) → ∃𝑓(𝑓 Fn 𝐴 ∧ ∀𝑥𝐴 (𝑓𝑥) ∈ 𝐵)))
1015, 100mpd 15 1 (𝜑 → ∃𝑓(𝑓 Fn 𝐴 ∧ ∀𝑥𝐴 (𝑓𝑥) ∈ 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wex 1779  wcel 2109  wne 2926  wral 3045  wrex 3054  Vcvv 3450  wss 3917  c0 4299  cmpt 5191  dom cdm 5641  ran crn 5642  ccom 5645  Fun wfun 6508   Fn wfn 6509  cfv 6514  Fincfn 8921
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-om 7846  df-1st 7971  df-2nd 7972  df-1o 8437  df-en 8922  df-dom 8923  df-fin 8925
This theorem is referenced by:  axccdom  45223  axccd2  45231  qndenserrnbllem  46299  hoiqssbllem3  46629
  Copyright terms: Public domain W3C validator