| Step | Hyp | Ref
| Expression |
| 1 | | choicefi.a |
. . 3
⊢ (𝜑 → 𝐴 ∈ Fin) |
| 2 | | mptfi 9391 |
. . 3
⊢ (𝐴 ∈ Fin → (𝑥 ∈ 𝐴 ↦ 𝐵) ∈ Fin) |
| 3 | | rnfi 9380 |
. . 3
⊢ ((𝑥 ∈ 𝐴 ↦ 𝐵) ∈ Fin → ran (𝑥 ∈ 𝐴 ↦ 𝐵) ∈ Fin) |
| 4 | | fnchoice 45034 |
. . 3
⊢ (ran
(𝑥 ∈ 𝐴 ↦ 𝐵) ∈ Fin → ∃𝑔(𝑔 Fn ran (𝑥 ∈ 𝐴 ↦ 𝐵) ∧ ∀𝑦 ∈ ran (𝑥 ∈ 𝐴 ↦ 𝐵)(𝑦 ≠ ∅ → (𝑔‘𝑦) ∈ 𝑦))) |
| 5 | 1, 2, 3, 4 | 4syl 19 |
. 2
⊢ (𝜑 → ∃𝑔(𝑔 Fn ran (𝑥 ∈ 𝐴 ↦ 𝐵) ∧ ∀𝑦 ∈ ran (𝑥 ∈ 𝐴 ↦ 𝐵)(𝑦 ≠ ∅ → (𝑔‘𝑦) ∈ 𝑦))) |
| 6 | | simpl 482 |
. . . . 5
⊢ ((𝜑 ∧ (𝑔 Fn ran (𝑥 ∈ 𝐴 ↦ 𝐵) ∧ ∀𝑦 ∈ ran (𝑥 ∈ 𝐴 ↦ 𝐵)(𝑦 ≠ ∅ → (𝑔‘𝑦) ∈ 𝑦))) → 𝜑) |
| 7 | | simprl 771 |
. . . . 5
⊢ ((𝜑 ∧ (𝑔 Fn ran (𝑥 ∈ 𝐴 ↦ 𝐵) ∧ ∀𝑦 ∈ ran (𝑥 ∈ 𝐴 ↦ 𝐵)(𝑦 ≠ ∅ → (𝑔‘𝑦) ∈ 𝑦))) → 𝑔 Fn ran (𝑥 ∈ 𝐴 ↦ 𝐵)) |
| 8 | | nfv 1914 |
. . . . . . . 8
⊢
Ⅎ𝑦𝜑 |
| 9 | | nfra1 3284 |
. . . . . . . 8
⊢
Ⅎ𝑦∀𝑦 ∈ ran (𝑥 ∈ 𝐴 ↦ 𝐵)(𝑦 ≠ ∅ → (𝑔‘𝑦) ∈ 𝑦) |
| 10 | 8, 9 | nfan 1899 |
. . . . . . 7
⊢
Ⅎ𝑦(𝜑 ∧ ∀𝑦 ∈ ran (𝑥 ∈ 𝐴 ↦ 𝐵)(𝑦 ≠ ∅ → (𝑔‘𝑦) ∈ 𝑦)) |
| 11 | | rspa 3248 |
. . . . . . . . . . . 12
⊢
((∀𝑦 ∈
ran (𝑥 ∈ 𝐴 ↦ 𝐵)(𝑦 ≠ ∅ → (𝑔‘𝑦) ∈ 𝑦) ∧ 𝑦 ∈ ran (𝑥 ∈ 𝐴 ↦ 𝐵)) → (𝑦 ≠ ∅ → (𝑔‘𝑦) ∈ 𝑦)) |
| 12 | 11 | adantll 714 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ ∀𝑦 ∈ ran (𝑥 ∈ 𝐴 ↦ 𝐵)(𝑦 ≠ ∅ → (𝑔‘𝑦) ∈ 𝑦)) ∧ 𝑦 ∈ ran (𝑥 ∈ 𝐴 ↦ 𝐵)) → (𝑦 ≠ ∅ → (𝑔‘𝑦) ∈ 𝑦)) |
| 13 | | vex 3484 |
. . . . . . . . . . . . . . . 16
⊢ 𝑦 ∈ V |
| 14 | | eqid 2737 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑥 ∈ 𝐴 ↦ 𝐵) = (𝑥 ∈ 𝐴 ↦ 𝐵) |
| 15 | 14 | elrnmpt 5969 |
. . . . . . . . . . . . . . . 16
⊢ (𝑦 ∈ V → (𝑦 ∈ ran (𝑥 ∈ 𝐴 ↦ 𝐵) ↔ ∃𝑥 ∈ 𝐴 𝑦 = 𝐵)) |
| 16 | 13, 15 | ax-mp 5 |
. . . . . . . . . . . . . . 15
⊢ (𝑦 ∈ ran (𝑥 ∈ 𝐴 ↦ 𝐵) ↔ ∃𝑥 ∈ 𝐴 𝑦 = 𝐵) |
| 17 | 16 | biimpi 216 |
. . . . . . . . . . . . . 14
⊢ (𝑦 ∈ ran (𝑥 ∈ 𝐴 ↦ 𝐵) → ∃𝑥 ∈ 𝐴 𝑦 = 𝐵) |
| 18 | 17 | adantl 481 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑦 ∈ ran (𝑥 ∈ 𝐴 ↦ 𝐵)) → ∃𝑥 ∈ 𝐴 𝑦 = 𝐵) |
| 19 | | simp3 1139 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐵) → 𝑦 = 𝐵) |
| 20 | | choicefi.n |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ≠ ∅) |
| 21 | 20 | 3adant3 1133 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐵) → 𝐵 ≠ ∅) |
| 22 | 19, 21 | eqnetrd 3008 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐵) → 𝑦 ≠ ∅) |
| 23 | 22 | 3exp 1120 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → (𝑥 ∈ 𝐴 → (𝑦 = 𝐵 → 𝑦 ≠ ∅))) |
| 24 | 23 | rexlimdv 3153 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → (∃𝑥 ∈ 𝐴 𝑦 = 𝐵 → 𝑦 ≠ ∅)) |
| 25 | 24 | adantr 480 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑦 ∈ ran (𝑥 ∈ 𝐴 ↦ 𝐵)) → (∃𝑥 ∈ 𝐴 𝑦 = 𝐵 → 𝑦 ≠ ∅)) |
| 26 | 18, 25 | mpd 15 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑦 ∈ ran (𝑥 ∈ 𝐴 ↦ 𝐵)) → 𝑦 ≠ ∅) |
| 27 | 26 | adantlr 715 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ ∀𝑦 ∈ ran (𝑥 ∈ 𝐴 ↦ 𝐵)(𝑦 ≠ ∅ → (𝑔‘𝑦) ∈ 𝑦)) ∧ 𝑦 ∈ ran (𝑥 ∈ 𝐴 ↦ 𝐵)) → 𝑦 ≠ ∅) |
| 28 | | id 22 |
. . . . . . . . . . . 12
⊢ ((𝑦 ≠ ∅ → (𝑔‘𝑦) ∈ 𝑦) → (𝑦 ≠ ∅ → (𝑔‘𝑦) ∈ 𝑦)) |
| 29 | 28 | imp 406 |
. . . . . . . . . . 11
⊢ (((𝑦 ≠ ∅ → (𝑔‘𝑦) ∈ 𝑦) ∧ 𝑦 ≠ ∅) → (𝑔‘𝑦) ∈ 𝑦) |
| 30 | 12, 27, 29 | syl2anc 584 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ ∀𝑦 ∈ ran (𝑥 ∈ 𝐴 ↦ 𝐵)(𝑦 ≠ ∅ → (𝑔‘𝑦) ∈ 𝑦)) ∧ 𝑦 ∈ ran (𝑥 ∈ 𝐴 ↦ 𝐵)) → (𝑔‘𝑦) ∈ 𝑦) |
| 31 | 30 | ex 412 |
. . . . . . . . 9
⊢ ((𝜑 ∧ ∀𝑦 ∈ ran (𝑥 ∈ 𝐴 ↦ 𝐵)(𝑦 ≠ ∅ → (𝑔‘𝑦) ∈ 𝑦)) → (𝑦 ∈ ran (𝑥 ∈ 𝐴 ↦ 𝐵) → (𝑔‘𝑦) ∈ 𝑦)) |
| 32 | 10, 31 | ralrimi 3257 |
. . . . . . . 8
⊢ ((𝜑 ∧ ∀𝑦 ∈ ran (𝑥 ∈ 𝐴 ↦ 𝐵)(𝑦 ≠ ∅ → (𝑔‘𝑦) ∈ 𝑦)) → ∀𝑦 ∈ ran (𝑥 ∈ 𝐴 ↦ 𝐵)(𝑔‘𝑦) ∈ 𝑦) |
| 33 | | rsp 3247 |
. . . . . . . 8
⊢
(∀𝑦 ∈
ran (𝑥 ∈ 𝐴 ↦ 𝐵)(𝑔‘𝑦) ∈ 𝑦 → (𝑦 ∈ ran (𝑥 ∈ 𝐴 ↦ 𝐵) → (𝑔‘𝑦) ∈ 𝑦)) |
| 34 | 32, 33 | syl 17 |
. . . . . . 7
⊢ ((𝜑 ∧ ∀𝑦 ∈ ran (𝑥 ∈ 𝐴 ↦ 𝐵)(𝑦 ≠ ∅ → (𝑔‘𝑦) ∈ 𝑦)) → (𝑦 ∈ ran (𝑥 ∈ 𝐴 ↦ 𝐵) → (𝑔‘𝑦) ∈ 𝑦)) |
| 35 | 10, 34 | ralrimi 3257 |
. . . . . 6
⊢ ((𝜑 ∧ ∀𝑦 ∈ ran (𝑥 ∈ 𝐴 ↦ 𝐵)(𝑦 ≠ ∅ → (𝑔‘𝑦) ∈ 𝑦)) → ∀𝑦 ∈ ran (𝑥 ∈ 𝐴 ↦ 𝐵)(𝑔‘𝑦) ∈ 𝑦) |
| 36 | 35 | adantrl 716 |
. . . . 5
⊢ ((𝜑 ∧ (𝑔 Fn ran (𝑥 ∈ 𝐴 ↦ 𝐵) ∧ ∀𝑦 ∈ ran (𝑥 ∈ 𝐴 ↦ 𝐵)(𝑦 ≠ ∅ → (𝑔‘𝑦) ∈ 𝑦))) → ∀𝑦 ∈ ran (𝑥 ∈ 𝐴 ↦ 𝐵)(𝑔‘𝑦) ∈ 𝑦) |
| 37 | | vex 3484 |
. . . . . . . . 9
⊢ 𝑔 ∈ V |
| 38 | 37 | a1i 11 |
. . . . . . . 8
⊢ (𝜑 → 𝑔 ∈ V) |
| 39 | 1 | mptexd 7244 |
. . . . . . . 8
⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐵) ∈ V) |
| 40 | | coexg 7951 |
. . . . . . . 8
⊢ ((𝑔 ∈ V ∧ (𝑥 ∈ 𝐴 ↦ 𝐵) ∈ V) → (𝑔 ∘ (𝑥 ∈ 𝐴 ↦ 𝐵)) ∈ V) |
| 41 | 38, 39, 40 | syl2anc 584 |
. . . . . . 7
⊢ (𝜑 → (𝑔 ∘ (𝑥 ∈ 𝐴 ↦ 𝐵)) ∈ V) |
| 42 | 41 | 3ad2ant1 1134 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑔 Fn ran (𝑥 ∈ 𝐴 ↦ 𝐵) ∧ ∀𝑦 ∈ ran (𝑥 ∈ 𝐴 ↦ 𝐵)(𝑔‘𝑦) ∈ 𝑦) → (𝑔 ∘ (𝑥 ∈ 𝐴 ↦ 𝐵)) ∈ V) |
| 43 | | simpr 484 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑔 Fn ran (𝑥 ∈ 𝐴 ↦ 𝐵)) → 𝑔 Fn ran (𝑥 ∈ 𝐴 ↦ 𝐵)) |
| 44 | | choicefi.b |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ 𝑊) |
| 45 | 44 | ralrimiva 3146 |
. . . . . . . . . . 11
⊢ (𝜑 → ∀𝑥 ∈ 𝐴 𝐵 ∈ 𝑊) |
| 46 | 14 | fnmpt 6708 |
. . . . . . . . . . 11
⊢
(∀𝑥 ∈
𝐴 𝐵 ∈ 𝑊 → (𝑥 ∈ 𝐴 ↦ 𝐵) Fn 𝐴) |
| 47 | 45, 46 | syl 17 |
. . . . . . . . . 10
⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐵) Fn 𝐴) |
| 48 | 47 | adantr 480 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑔 Fn ran (𝑥 ∈ 𝐴 ↦ 𝐵)) → (𝑥 ∈ 𝐴 ↦ 𝐵) Fn 𝐴) |
| 49 | | ssidd 4007 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑔 Fn ran (𝑥 ∈ 𝐴 ↦ 𝐵)) → ran (𝑥 ∈ 𝐴 ↦ 𝐵) ⊆ ran (𝑥 ∈ 𝐴 ↦ 𝐵)) |
| 50 | | fnco 6686 |
. . . . . . . . 9
⊢ ((𝑔 Fn ran (𝑥 ∈ 𝐴 ↦ 𝐵) ∧ (𝑥 ∈ 𝐴 ↦ 𝐵) Fn 𝐴 ∧ ran (𝑥 ∈ 𝐴 ↦ 𝐵) ⊆ ran (𝑥 ∈ 𝐴 ↦ 𝐵)) → (𝑔 ∘ (𝑥 ∈ 𝐴 ↦ 𝐵)) Fn 𝐴) |
| 51 | 43, 48, 49, 50 | syl3anc 1373 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑔 Fn ran (𝑥 ∈ 𝐴 ↦ 𝐵)) → (𝑔 ∘ (𝑥 ∈ 𝐴 ↦ 𝐵)) Fn 𝐴) |
| 52 | 51 | 3adant3 1133 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑔 Fn ran (𝑥 ∈ 𝐴 ↦ 𝐵) ∧ ∀𝑦 ∈ ran (𝑥 ∈ 𝐴 ↦ 𝐵)(𝑔‘𝑦) ∈ 𝑦) → (𝑔 ∘ (𝑥 ∈ 𝐴 ↦ 𝐵)) Fn 𝐴) |
| 53 | | nfv 1914 |
. . . . . . . . 9
⊢
Ⅎ𝑥𝜑 |
| 54 | | nfcv 2905 |
. . . . . . . . . 10
⊢
Ⅎ𝑥𝑔 |
| 55 | | nfmpt1 5250 |
. . . . . . . . . . 11
⊢
Ⅎ𝑥(𝑥 ∈ 𝐴 ↦ 𝐵) |
| 56 | 55 | nfrn 5963 |
. . . . . . . . . 10
⊢
Ⅎ𝑥ran
(𝑥 ∈ 𝐴 ↦ 𝐵) |
| 57 | 54, 56 | nffn 6667 |
. . . . . . . . 9
⊢
Ⅎ𝑥 𝑔 Fn ran (𝑥 ∈ 𝐴 ↦ 𝐵) |
| 58 | | nfv 1914 |
. . . . . . . . . 10
⊢
Ⅎ𝑥(𝑔‘𝑦) ∈ 𝑦 |
| 59 | 56, 58 | nfralw 3311 |
. . . . . . . . 9
⊢
Ⅎ𝑥∀𝑦 ∈ ran (𝑥 ∈ 𝐴 ↦ 𝐵)(𝑔‘𝑦) ∈ 𝑦 |
| 60 | 53, 57, 59 | nf3an 1901 |
. . . . . . . 8
⊢
Ⅎ𝑥(𝜑 ∧ 𝑔 Fn ran (𝑥 ∈ 𝐴 ↦ 𝐵) ∧ ∀𝑦 ∈ ran (𝑥 ∈ 𝐴 ↦ 𝐵)(𝑔‘𝑦) ∈ 𝑦) |
| 61 | | funmpt 6604 |
. . . . . . . . . . . . . 14
⊢ Fun
(𝑥 ∈ 𝐴 ↦ 𝐵) |
| 62 | 61 | a1i 11 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → Fun (𝑥 ∈ 𝐴 ↦ 𝐵)) |
| 63 | | simpr 484 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝑥 ∈ 𝐴) |
| 64 | 14, 44 | dmmptd 6713 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → dom (𝑥 ∈ 𝐴 ↦ 𝐵) = 𝐴) |
| 65 | 64 | eqcomd 2743 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → 𝐴 = dom (𝑥 ∈ 𝐴 ↦ 𝐵)) |
| 66 | 65 | adantr 480 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐴 = dom (𝑥 ∈ 𝐴 ↦ 𝐵)) |
| 67 | 63, 66 | eleqtrd 2843 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝑥 ∈ dom (𝑥 ∈ 𝐴 ↦ 𝐵)) |
| 68 | | fvco 7007 |
. . . . . . . . . . . . 13
⊢ ((Fun
(𝑥 ∈ 𝐴 ↦ 𝐵) ∧ 𝑥 ∈ dom (𝑥 ∈ 𝐴 ↦ 𝐵)) → ((𝑔 ∘ (𝑥 ∈ 𝐴 ↦ 𝐵))‘𝑥) = (𝑔‘((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝑥))) |
| 69 | 62, 67, 68 | syl2anc 584 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → ((𝑔 ∘ (𝑥 ∈ 𝐴 ↦ 𝐵))‘𝑥) = (𝑔‘((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝑥))) |
| 70 | 14 | fvmpt2 7027 |
. . . . . . . . . . . . . 14
⊢ ((𝑥 ∈ 𝐴 ∧ 𝐵 ∈ 𝑊) → ((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝑥) = 𝐵) |
| 71 | 63, 44, 70 | syl2anc 584 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → ((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝑥) = 𝐵) |
| 72 | 71 | fveq2d 6910 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝑔‘((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝑥)) = (𝑔‘𝐵)) |
| 73 | 69, 72 | eqtrd 2777 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → ((𝑔 ∘ (𝑥 ∈ 𝐴 ↦ 𝐵))‘𝑥) = (𝑔‘𝐵)) |
| 74 | 73 | 3ad2antl1 1186 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑔 Fn ran (𝑥 ∈ 𝐴 ↦ 𝐵) ∧ ∀𝑦 ∈ ran (𝑥 ∈ 𝐴 ↦ 𝐵)(𝑔‘𝑦) ∈ 𝑦) ∧ 𝑥 ∈ 𝐴) → ((𝑔 ∘ (𝑥 ∈ 𝐴 ↦ 𝐵))‘𝑥) = (𝑔‘𝐵)) |
| 75 | 14 | elrnmpt1 5971 |
. . . . . . . . . . . . 13
⊢ ((𝑥 ∈ 𝐴 ∧ 𝐵 ∈ 𝑊) → 𝐵 ∈ ran (𝑥 ∈ 𝐴 ↦ 𝐵)) |
| 76 | 63, 44, 75 | syl2anc 584 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ ran (𝑥 ∈ 𝐴 ↦ 𝐵)) |
| 77 | 76 | 3ad2antl1 1186 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑔 Fn ran (𝑥 ∈ 𝐴 ↦ 𝐵) ∧ ∀𝑦 ∈ ran (𝑥 ∈ 𝐴 ↦ 𝐵)(𝑔‘𝑦) ∈ 𝑦) ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ ran (𝑥 ∈ 𝐴 ↦ 𝐵)) |
| 78 | | simpl3 1194 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑔 Fn ran (𝑥 ∈ 𝐴 ↦ 𝐵) ∧ ∀𝑦 ∈ ran (𝑥 ∈ 𝐴 ↦ 𝐵)(𝑔‘𝑦) ∈ 𝑦) ∧ 𝑥 ∈ 𝐴) → ∀𝑦 ∈ ran (𝑥 ∈ 𝐴 ↦ 𝐵)(𝑔‘𝑦) ∈ 𝑦) |
| 79 | | fveq2 6906 |
. . . . . . . . . . . . 13
⊢ (𝑦 = 𝐵 → (𝑔‘𝑦) = (𝑔‘𝐵)) |
| 80 | | id 22 |
. . . . . . . . . . . . 13
⊢ (𝑦 = 𝐵 → 𝑦 = 𝐵) |
| 81 | 79, 80 | eleq12d 2835 |
. . . . . . . . . . . 12
⊢ (𝑦 = 𝐵 → ((𝑔‘𝑦) ∈ 𝑦 ↔ (𝑔‘𝐵) ∈ 𝐵)) |
| 82 | 81 | rspcva 3620 |
. . . . . . . . . . 11
⊢ ((𝐵 ∈ ran (𝑥 ∈ 𝐴 ↦ 𝐵) ∧ ∀𝑦 ∈ ran (𝑥 ∈ 𝐴 ↦ 𝐵)(𝑔‘𝑦) ∈ 𝑦) → (𝑔‘𝐵) ∈ 𝐵) |
| 83 | 77, 78, 82 | syl2anc 584 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑔 Fn ran (𝑥 ∈ 𝐴 ↦ 𝐵) ∧ ∀𝑦 ∈ ran (𝑥 ∈ 𝐴 ↦ 𝐵)(𝑔‘𝑦) ∈ 𝑦) ∧ 𝑥 ∈ 𝐴) → (𝑔‘𝐵) ∈ 𝐵) |
| 84 | 74, 83 | eqeltrd 2841 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑔 Fn ran (𝑥 ∈ 𝐴 ↦ 𝐵) ∧ ∀𝑦 ∈ ran (𝑥 ∈ 𝐴 ↦ 𝐵)(𝑔‘𝑦) ∈ 𝑦) ∧ 𝑥 ∈ 𝐴) → ((𝑔 ∘ (𝑥 ∈ 𝐴 ↦ 𝐵))‘𝑥) ∈ 𝐵) |
| 85 | 84 | ex 412 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑔 Fn ran (𝑥 ∈ 𝐴 ↦ 𝐵) ∧ ∀𝑦 ∈ ran (𝑥 ∈ 𝐴 ↦ 𝐵)(𝑔‘𝑦) ∈ 𝑦) → (𝑥 ∈ 𝐴 → ((𝑔 ∘ (𝑥 ∈ 𝐴 ↦ 𝐵))‘𝑥) ∈ 𝐵)) |
| 86 | 60, 85 | ralrimi 3257 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑔 Fn ran (𝑥 ∈ 𝐴 ↦ 𝐵) ∧ ∀𝑦 ∈ ran (𝑥 ∈ 𝐴 ↦ 𝐵)(𝑔‘𝑦) ∈ 𝑦) → ∀𝑥 ∈ 𝐴 ((𝑔 ∘ (𝑥 ∈ 𝐴 ↦ 𝐵))‘𝑥) ∈ 𝐵) |
| 87 | 52, 86 | jca 511 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑔 Fn ran (𝑥 ∈ 𝐴 ↦ 𝐵) ∧ ∀𝑦 ∈ ran (𝑥 ∈ 𝐴 ↦ 𝐵)(𝑔‘𝑦) ∈ 𝑦) → ((𝑔 ∘ (𝑥 ∈ 𝐴 ↦ 𝐵)) Fn 𝐴 ∧ ∀𝑥 ∈ 𝐴 ((𝑔 ∘ (𝑥 ∈ 𝐴 ↦ 𝐵))‘𝑥) ∈ 𝐵)) |
| 88 | | fneq1 6659 |
. . . . . . . 8
⊢ (𝑓 = (𝑔 ∘ (𝑥 ∈ 𝐴 ↦ 𝐵)) → (𝑓 Fn 𝐴 ↔ (𝑔 ∘ (𝑥 ∈ 𝐴 ↦ 𝐵)) Fn 𝐴)) |
| 89 | | nfcv 2905 |
. . . . . . . . . 10
⊢
Ⅎ𝑥𝑓 |
| 90 | 54, 55 | nfco 5876 |
. . . . . . . . . 10
⊢
Ⅎ𝑥(𝑔 ∘ (𝑥 ∈ 𝐴 ↦ 𝐵)) |
| 91 | 89, 90 | nfeq 2919 |
. . . . . . . . 9
⊢
Ⅎ𝑥 𝑓 = (𝑔 ∘ (𝑥 ∈ 𝐴 ↦ 𝐵)) |
| 92 | | fveq1 6905 |
. . . . . . . . . 10
⊢ (𝑓 = (𝑔 ∘ (𝑥 ∈ 𝐴 ↦ 𝐵)) → (𝑓‘𝑥) = ((𝑔 ∘ (𝑥 ∈ 𝐴 ↦ 𝐵))‘𝑥)) |
| 93 | 92 | eleq1d 2826 |
. . . . . . . . 9
⊢ (𝑓 = (𝑔 ∘ (𝑥 ∈ 𝐴 ↦ 𝐵)) → ((𝑓‘𝑥) ∈ 𝐵 ↔ ((𝑔 ∘ (𝑥 ∈ 𝐴 ↦ 𝐵))‘𝑥) ∈ 𝐵)) |
| 94 | 91, 93 | ralbid 3273 |
. . . . . . . 8
⊢ (𝑓 = (𝑔 ∘ (𝑥 ∈ 𝐴 ↦ 𝐵)) → (∀𝑥 ∈ 𝐴 (𝑓‘𝑥) ∈ 𝐵 ↔ ∀𝑥 ∈ 𝐴 ((𝑔 ∘ (𝑥 ∈ 𝐴 ↦ 𝐵))‘𝑥) ∈ 𝐵)) |
| 95 | 88, 94 | anbi12d 632 |
. . . . . . 7
⊢ (𝑓 = (𝑔 ∘ (𝑥 ∈ 𝐴 ↦ 𝐵)) → ((𝑓 Fn 𝐴 ∧ ∀𝑥 ∈ 𝐴 (𝑓‘𝑥) ∈ 𝐵) ↔ ((𝑔 ∘ (𝑥 ∈ 𝐴 ↦ 𝐵)) Fn 𝐴 ∧ ∀𝑥 ∈ 𝐴 ((𝑔 ∘ (𝑥 ∈ 𝐴 ↦ 𝐵))‘𝑥) ∈ 𝐵))) |
| 96 | 95 | spcegv 3597 |
. . . . . 6
⊢ ((𝑔 ∘ (𝑥 ∈ 𝐴 ↦ 𝐵)) ∈ V → (((𝑔 ∘ (𝑥 ∈ 𝐴 ↦ 𝐵)) Fn 𝐴 ∧ ∀𝑥 ∈ 𝐴 ((𝑔 ∘ (𝑥 ∈ 𝐴 ↦ 𝐵))‘𝑥) ∈ 𝐵) → ∃𝑓(𝑓 Fn 𝐴 ∧ ∀𝑥 ∈ 𝐴 (𝑓‘𝑥) ∈ 𝐵))) |
| 97 | 42, 87, 96 | sylc 65 |
. . . . 5
⊢ ((𝜑 ∧ 𝑔 Fn ran (𝑥 ∈ 𝐴 ↦ 𝐵) ∧ ∀𝑦 ∈ ran (𝑥 ∈ 𝐴 ↦ 𝐵)(𝑔‘𝑦) ∈ 𝑦) → ∃𝑓(𝑓 Fn 𝐴 ∧ ∀𝑥 ∈ 𝐴 (𝑓‘𝑥) ∈ 𝐵)) |
| 98 | 6, 7, 36, 97 | syl3anc 1373 |
. . . 4
⊢ ((𝜑 ∧ (𝑔 Fn ran (𝑥 ∈ 𝐴 ↦ 𝐵) ∧ ∀𝑦 ∈ ran (𝑥 ∈ 𝐴 ↦ 𝐵)(𝑦 ≠ ∅ → (𝑔‘𝑦) ∈ 𝑦))) → ∃𝑓(𝑓 Fn 𝐴 ∧ ∀𝑥 ∈ 𝐴 (𝑓‘𝑥) ∈ 𝐵)) |
| 99 | 98 | ex 412 |
. . 3
⊢ (𝜑 → ((𝑔 Fn ran (𝑥 ∈ 𝐴 ↦ 𝐵) ∧ ∀𝑦 ∈ ran (𝑥 ∈ 𝐴 ↦ 𝐵)(𝑦 ≠ ∅ → (𝑔‘𝑦) ∈ 𝑦)) → ∃𝑓(𝑓 Fn 𝐴 ∧ ∀𝑥 ∈ 𝐴 (𝑓‘𝑥) ∈ 𝐵))) |
| 100 | 99 | exlimdv 1933 |
. 2
⊢ (𝜑 → (∃𝑔(𝑔 Fn ran (𝑥 ∈ 𝐴 ↦ 𝐵) ∧ ∀𝑦 ∈ ran (𝑥 ∈ 𝐴 ↦ 𝐵)(𝑦 ≠ ∅ → (𝑔‘𝑦) ∈ 𝑦)) → ∃𝑓(𝑓 Fn 𝐴 ∧ ∀𝑥 ∈ 𝐴 (𝑓‘𝑥) ∈ 𝐵))) |
| 101 | 5, 100 | mpd 15 |
1
⊢ (𝜑 → ∃𝑓(𝑓 Fn 𝐴 ∧ ∀𝑥 ∈ 𝐴 (𝑓‘𝑥) ∈ 𝐵)) |