Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  choicefi Structured version   Visualization version   GIF version

Theorem choicefi 42262
Description: For a finite set, a choice function exists, without using the axiom of choice. (Contributed by Glauco Siliprandi, 24-Dec-2020.)
Hypotheses
Ref Expression
choicefi.a (𝜑𝐴 ∈ Fin)
choicefi.b ((𝜑𝑥𝐴) → 𝐵𝑊)
choicefi.n ((𝜑𝑥𝐴) → 𝐵 ≠ ∅)
Assertion
Ref Expression
choicefi (𝜑 → ∃𝑓(𝑓 Fn 𝐴 ∧ ∀𝑥𝐴 (𝑓𝑥) ∈ 𝐵))
Distinct variable groups:   𝐴,𝑓,𝑥   𝐵,𝑓   𝜑,𝑥
Allowed substitution hints:   𝜑(𝑓)   𝐵(𝑥)   𝑊(𝑥,𝑓)

Proof of Theorem choicefi
Dummy variables 𝑔 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 choicefi.a . . . . 5 (𝜑𝐴 ∈ Fin)
2 mptfi 8889 . . . . 5 (𝐴 ∈ Fin → (𝑥𝐴𝐵) ∈ Fin)
31, 2syl 17 . . . 4 (𝜑 → (𝑥𝐴𝐵) ∈ Fin)
4 rnfi 8873 . . . 4 ((𝑥𝐴𝐵) ∈ Fin → ran (𝑥𝐴𝐵) ∈ Fin)
53, 4syl 17 . . 3 (𝜑 → ran (𝑥𝐴𝐵) ∈ Fin)
6 fnchoice 42094 . . 3 (ran (𝑥𝐴𝐵) ∈ Fin → ∃𝑔(𝑔 Fn ran (𝑥𝐴𝐵) ∧ ∀𝑦 ∈ ran (𝑥𝐴𝐵)(𝑦 ≠ ∅ → (𝑔𝑦) ∈ 𝑦)))
75, 6syl 17 . 2 (𝜑 → ∃𝑔(𝑔 Fn ran (𝑥𝐴𝐵) ∧ ∀𝑦 ∈ ran (𝑥𝐴𝐵)(𝑦 ≠ ∅ → (𝑔𝑦) ∈ 𝑦)))
8 simpl 486 . . . . 5 ((𝜑 ∧ (𝑔 Fn ran (𝑥𝐴𝐵) ∧ ∀𝑦 ∈ ran (𝑥𝐴𝐵)(𝑦 ≠ ∅ → (𝑔𝑦) ∈ 𝑦))) → 𝜑)
9 simprl 771 . . . . 5 ((𝜑 ∧ (𝑔 Fn ran (𝑥𝐴𝐵) ∧ ∀𝑦 ∈ ran (𝑥𝐴𝐵)(𝑦 ≠ ∅ → (𝑔𝑦) ∈ 𝑦))) → 𝑔 Fn ran (𝑥𝐴𝐵))
10 nfv 1920 . . . . . . . 8 𝑦𝜑
11 nfra1 3130 . . . . . . . 8 𝑦𝑦 ∈ ran (𝑥𝐴𝐵)(𝑦 ≠ ∅ → (𝑔𝑦) ∈ 𝑦)
1210, 11nfan 1905 . . . . . . 7 𝑦(𝜑 ∧ ∀𝑦 ∈ ran (𝑥𝐴𝐵)(𝑦 ≠ ∅ → (𝑔𝑦) ∈ 𝑦))
13 rspa 3118 . . . . . . . . . . . 12 ((∀𝑦 ∈ ran (𝑥𝐴𝐵)(𝑦 ≠ ∅ → (𝑔𝑦) ∈ 𝑦) ∧ 𝑦 ∈ ran (𝑥𝐴𝐵)) → (𝑦 ≠ ∅ → (𝑔𝑦) ∈ 𝑦))
1413adantll 714 . . . . . . . . . . 11 (((𝜑 ∧ ∀𝑦 ∈ ran (𝑥𝐴𝐵)(𝑦 ≠ ∅ → (𝑔𝑦) ∈ 𝑦)) ∧ 𝑦 ∈ ran (𝑥𝐴𝐵)) → (𝑦 ≠ ∅ → (𝑔𝑦) ∈ 𝑦))
15 vex 3401 . . . . . . . . . . . . . . . 16 𝑦 ∈ V
16 eqid 2738 . . . . . . . . . . . . . . . . 17 (𝑥𝐴𝐵) = (𝑥𝐴𝐵)
1716elrnmpt 5793 . . . . . . . . . . . . . . . 16 (𝑦 ∈ V → (𝑦 ∈ ran (𝑥𝐴𝐵) ↔ ∃𝑥𝐴 𝑦 = 𝐵))
1815, 17ax-mp 5 . . . . . . . . . . . . . . 15 (𝑦 ∈ ran (𝑥𝐴𝐵) ↔ ∃𝑥𝐴 𝑦 = 𝐵)
1918biimpi 219 . . . . . . . . . . . . . 14 (𝑦 ∈ ran (𝑥𝐴𝐵) → ∃𝑥𝐴 𝑦 = 𝐵)
2019adantl 485 . . . . . . . . . . . . 13 ((𝜑𝑦 ∈ ran (𝑥𝐴𝐵)) → ∃𝑥𝐴 𝑦 = 𝐵)
21 simp3 1139 . . . . . . . . . . . . . . . . 17 ((𝜑𝑥𝐴𝑦 = 𝐵) → 𝑦 = 𝐵)
22 choicefi.n . . . . . . . . . . . . . . . . . 18 ((𝜑𝑥𝐴) → 𝐵 ≠ ∅)
23223adant3 1133 . . . . . . . . . . . . . . . . 17 ((𝜑𝑥𝐴𝑦 = 𝐵) → 𝐵 ≠ ∅)
2421, 23eqnetrd 3001 . . . . . . . . . . . . . . . 16 ((𝜑𝑥𝐴𝑦 = 𝐵) → 𝑦 ≠ ∅)
25243exp 1120 . . . . . . . . . . . . . . 15 (𝜑 → (𝑥𝐴 → (𝑦 = 𝐵𝑦 ≠ ∅)))
2625rexlimdv 3192 . . . . . . . . . . . . . 14 (𝜑 → (∃𝑥𝐴 𝑦 = 𝐵𝑦 ≠ ∅))
2726adantr 484 . . . . . . . . . . . . 13 ((𝜑𝑦 ∈ ran (𝑥𝐴𝐵)) → (∃𝑥𝐴 𝑦 = 𝐵𝑦 ≠ ∅))
2820, 27mpd 15 . . . . . . . . . . . 12 ((𝜑𝑦 ∈ ran (𝑥𝐴𝐵)) → 𝑦 ≠ ∅)
2928adantlr 715 . . . . . . . . . . 11 (((𝜑 ∧ ∀𝑦 ∈ ran (𝑥𝐴𝐵)(𝑦 ≠ ∅ → (𝑔𝑦) ∈ 𝑦)) ∧ 𝑦 ∈ ran (𝑥𝐴𝐵)) → 𝑦 ≠ ∅)
30 id 22 . . . . . . . . . . . 12 ((𝑦 ≠ ∅ → (𝑔𝑦) ∈ 𝑦) → (𝑦 ≠ ∅ → (𝑔𝑦) ∈ 𝑦))
3130imp 410 . . . . . . . . . . 11 (((𝑦 ≠ ∅ → (𝑔𝑦) ∈ 𝑦) ∧ 𝑦 ≠ ∅) → (𝑔𝑦) ∈ 𝑦)
3214, 29, 31syl2anc 587 . . . . . . . . . 10 (((𝜑 ∧ ∀𝑦 ∈ ran (𝑥𝐴𝐵)(𝑦 ≠ ∅ → (𝑔𝑦) ∈ 𝑦)) ∧ 𝑦 ∈ ran (𝑥𝐴𝐵)) → (𝑔𝑦) ∈ 𝑦)
3332ex 416 . . . . . . . . 9 ((𝜑 ∧ ∀𝑦 ∈ ran (𝑥𝐴𝐵)(𝑦 ≠ ∅ → (𝑔𝑦) ∈ 𝑦)) → (𝑦 ∈ ran (𝑥𝐴𝐵) → (𝑔𝑦) ∈ 𝑦))
3412, 33ralrimi 3127 . . . . . . . 8 ((𝜑 ∧ ∀𝑦 ∈ ran (𝑥𝐴𝐵)(𝑦 ≠ ∅ → (𝑔𝑦) ∈ 𝑦)) → ∀𝑦 ∈ ran (𝑥𝐴𝐵)(𝑔𝑦) ∈ 𝑦)
35 rsp 3117 . . . . . . . 8 (∀𝑦 ∈ ran (𝑥𝐴𝐵)(𝑔𝑦) ∈ 𝑦 → (𝑦 ∈ ran (𝑥𝐴𝐵) → (𝑔𝑦) ∈ 𝑦))
3634, 35syl 17 . . . . . . 7 ((𝜑 ∧ ∀𝑦 ∈ ran (𝑥𝐴𝐵)(𝑦 ≠ ∅ → (𝑔𝑦) ∈ 𝑦)) → (𝑦 ∈ ran (𝑥𝐴𝐵) → (𝑔𝑦) ∈ 𝑦))
3712, 36ralrimi 3127 . . . . . 6 ((𝜑 ∧ ∀𝑦 ∈ ran (𝑥𝐴𝐵)(𝑦 ≠ ∅ → (𝑔𝑦) ∈ 𝑦)) → ∀𝑦 ∈ ran (𝑥𝐴𝐵)(𝑔𝑦) ∈ 𝑦)
3837adantrl 716 . . . . 5 ((𝜑 ∧ (𝑔 Fn ran (𝑥𝐴𝐵) ∧ ∀𝑦 ∈ ran (𝑥𝐴𝐵)(𝑦 ≠ ∅ → (𝑔𝑦) ∈ 𝑦))) → ∀𝑦 ∈ ran (𝑥𝐴𝐵)(𝑔𝑦) ∈ 𝑦)
39 vex 3401 . . . . . . . . 9 𝑔 ∈ V
4039a1i 11 . . . . . . . 8 (𝜑𝑔 ∈ V)
411mptexd 6991 . . . . . . . 8 (𝜑 → (𝑥𝐴𝐵) ∈ V)
42 coexg 7653 . . . . . . . 8 ((𝑔 ∈ V ∧ (𝑥𝐴𝐵) ∈ V) → (𝑔 ∘ (𝑥𝐴𝐵)) ∈ V)
4340, 41, 42syl2anc 587 . . . . . . 7 (𝜑 → (𝑔 ∘ (𝑥𝐴𝐵)) ∈ V)
44433ad2ant1 1134 . . . . . 6 ((𝜑𝑔 Fn ran (𝑥𝐴𝐵) ∧ ∀𝑦 ∈ ran (𝑥𝐴𝐵)(𝑔𝑦) ∈ 𝑦) → (𝑔 ∘ (𝑥𝐴𝐵)) ∈ V)
45 simpr 488 . . . . . . . . 9 ((𝜑𝑔 Fn ran (𝑥𝐴𝐵)) → 𝑔 Fn ran (𝑥𝐴𝐵))
46 choicefi.b . . . . . . . . . . . 12 ((𝜑𝑥𝐴) → 𝐵𝑊)
4746ralrimiva 3096 . . . . . . . . . . 11 (𝜑 → ∀𝑥𝐴 𝐵𝑊)
4816fnmpt 6471 . . . . . . . . . . 11 (∀𝑥𝐴 𝐵𝑊 → (𝑥𝐴𝐵) Fn 𝐴)
4947, 48syl 17 . . . . . . . . . 10 (𝜑 → (𝑥𝐴𝐵) Fn 𝐴)
5049adantr 484 . . . . . . . . 9 ((𝜑𝑔 Fn ran (𝑥𝐴𝐵)) → (𝑥𝐴𝐵) Fn 𝐴)
51 ssidd 3898 . . . . . . . . 9 ((𝜑𝑔 Fn ran (𝑥𝐴𝐵)) → ran (𝑥𝐴𝐵) ⊆ ran (𝑥𝐴𝐵))
52 fnco 6447 . . . . . . . . 9 ((𝑔 Fn ran (𝑥𝐴𝐵) ∧ (𝑥𝐴𝐵) Fn 𝐴 ∧ ran (𝑥𝐴𝐵) ⊆ ran (𝑥𝐴𝐵)) → (𝑔 ∘ (𝑥𝐴𝐵)) Fn 𝐴)
5345, 50, 51, 52syl3anc 1372 . . . . . . . 8 ((𝜑𝑔 Fn ran (𝑥𝐴𝐵)) → (𝑔 ∘ (𝑥𝐴𝐵)) Fn 𝐴)
54533adant3 1133 . . . . . . 7 ((𝜑𝑔 Fn ran (𝑥𝐴𝐵) ∧ ∀𝑦 ∈ ran (𝑥𝐴𝐵)(𝑔𝑦) ∈ 𝑦) → (𝑔 ∘ (𝑥𝐴𝐵)) Fn 𝐴)
55 nfv 1920 . . . . . . . . 9 𝑥𝜑
56 nfcv 2899 . . . . . . . . . 10 𝑥𝑔
57 nfmpt1 5125 . . . . . . . . . . 11 𝑥(𝑥𝐴𝐵)
5857nfrn 5789 . . . . . . . . . 10 𝑥ran (𝑥𝐴𝐵)
5956, 58nffn 6431 . . . . . . . . 9 𝑥 𝑔 Fn ran (𝑥𝐴𝐵)
60 nfv 1920 . . . . . . . . . 10 𝑥(𝑔𝑦) ∈ 𝑦
6158, 60nfralw 3137 . . . . . . . . 9 𝑥𝑦 ∈ ran (𝑥𝐴𝐵)(𝑔𝑦) ∈ 𝑦
6255, 59, 61nf3an 1907 . . . . . . . 8 𝑥(𝜑𝑔 Fn ran (𝑥𝐴𝐵) ∧ ∀𝑦 ∈ ran (𝑥𝐴𝐵)(𝑔𝑦) ∈ 𝑦)
63 funmpt 6371 . . . . . . . . . . . . . 14 Fun (𝑥𝐴𝐵)
6463a1i 11 . . . . . . . . . . . . 13 ((𝜑𝑥𝐴) → Fun (𝑥𝐴𝐵))
65 simpr 488 . . . . . . . . . . . . . 14 ((𝜑𝑥𝐴) → 𝑥𝐴)
6616, 46dmmptd 6476 . . . . . . . . . . . . . . . 16 (𝜑 → dom (𝑥𝐴𝐵) = 𝐴)
6766eqcomd 2744 . . . . . . . . . . . . . . 15 (𝜑𝐴 = dom (𝑥𝐴𝐵))
6867adantr 484 . . . . . . . . . . . . . 14 ((𝜑𝑥𝐴) → 𝐴 = dom (𝑥𝐴𝐵))
6965, 68eleqtrd 2835 . . . . . . . . . . . . 13 ((𝜑𝑥𝐴) → 𝑥 ∈ dom (𝑥𝐴𝐵))
70 fvco 6760 . . . . . . . . . . . . 13 ((Fun (𝑥𝐴𝐵) ∧ 𝑥 ∈ dom (𝑥𝐴𝐵)) → ((𝑔 ∘ (𝑥𝐴𝐵))‘𝑥) = (𝑔‘((𝑥𝐴𝐵)‘𝑥)))
7164, 69, 70syl2anc 587 . . . . . . . . . . . 12 ((𝜑𝑥𝐴) → ((𝑔 ∘ (𝑥𝐴𝐵))‘𝑥) = (𝑔‘((𝑥𝐴𝐵)‘𝑥)))
7216fvmpt2 6780 . . . . . . . . . . . . . 14 ((𝑥𝐴𝐵𝑊) → ((𝑥𝐴𝐵)‘𝑥) = 𝐵)
7365, 46, 72syl2anc 587 . . . . . . . . . . . . 13 ((𝜑𝑥𝐴) → ((𝑥𝐴𝐵)‘𝑥) = 𝐵)
7473fveq2d 6672 . . . . . . . . . . . 12 ((𝜑𝑥𝐴) → (𝑔‘((𝑥𝐴𝐵)‘𝑥)) = (𝑔𝐵))
7571, 74eqtrd 2773 . . . . . . . . . . 11 ((𝜑𝑥𝐴) → ((𝑔 ∘ (𝑥𝐴𝐵))‘𝑥) = (𝑔𝐵))
76753ad2antl1 1186 . . . . . . . . . 10 (((𝜑𝑔 Fn ran (𝑥𝐴𝐵) ∧ ∀𝑦 ∈ ran (𝑥𝐴𝐵)(𝑔𝑦) ∈ 𝑦) ∧ 𝑥𝐴) → ((𝑔 ∘ (𝑥𝐴𝐵))‘𝑥) = (𝑔𝐵))
7716elrnmpt1 5795 . . . . . . . . . . . . 13 ((𝑥𝐴𝐵𝑊) → 𝐵 ∈ ran (𝑥𝐴𝐵))
7865, 46, 77syl2anc 587 . . . . . . . . . . . 12 ((𝜑𝑥𝐴) → 𝐵 ∈ ran (𝑥𝐴𝐵))
79783ad2antl1 1186 . . . . . . . . . . 11 (((𝜑𝑔 Fn ran (𝑥𝐴𝐵) ∧ ∀𝑦 ∈ ran (𝑥𝐴𝐵)(𝑔𝑦) ∈ 𝑦) ∧ 𝑥𝐴) → 𝐵 ∈ ran (𝑥𝐴𝐵))
80 simpl3 1194 . . . . . . . . . . 11 (((𝜑𝑔 Fn ran (𝑥𝐴𝐵) ∧ ∀𝑦 ∈ ran (𝑥𝐴𝐵)(𝑔𝑦) ∈ 𝑦) ∧ 𝑥𝐴) → ∀𝑦 ∈ ran (𝑥𝐴𝐵)(𝑔𝑦) ∈ 𝑦)
81 fveq2 6668 . . . . . . . . . . . . 13 (𝑦 = 𝐵 → (𝑔𝑦) = (𝑔𝐵))
82 id 22 . . . . . . . . . . . . 13 (𝑦 = 𝐵𝑦 = 𝐵)
8381, 82eleq12d 2827 . . . . . . . . . . . 12 (𝑦 = 𝐵 → ((𝑔𝑦) ∈ 𝑦 ↔ (𝑔𝐵) ∈ 𝐵))
8483rspcva 3522 . . . . . . . . . . 11 ((𝐵 ∈ ran (𝑥𝐴𝐵) ∧ ∀𝑦 ∈ ran (𝑥𝐴𝐵)(𝑔𝑦) ∈ 𝑦) → (𝑔𝐵) ∈ 𝐵)
8579, 80, 84syl2anc 587 . . . . . . . . . 10 (((𝜑𝑔 Fn ran (𝑥𝐴𝐵) ∧ ∀𝑦 ∈ ran (𝑥𝐴𝐵)(𝑔𝑦) ∈ 𝑦) ∧ 𝑥𝐴) → (𝑔𝐵) ∈ 𝐵)
8676, 85eqeltrd 2833 . . . . . . . . 9 (((𝜑𝑔 Fn ran (𝑥𝐴𝐵) ∧ ∀𝑦 ∈ ran (𝑥𝐴𝐵)(𝑔𝑦) ∈ 𝑦) ∧ 𝑥𝐴) → ((𝑔 ∘ (𝑥𝐴𝐵))‘𝑥) ∈ 𝐵)
8786ex 416 . . . . . . . 8 ((𝜑𝑔 Fn ran (𝑥𝐴𝐵) ∧ ∀𝑦 ∈ ran (𝑥𝐴𝐵)(𝑔𝑦) ∈ 𝑦) → (𝑥𝐴 → ((𝑔 ∘ (𝑥𝐴𝐵))‘𝑥) ∈ 𝐵))
8862, 87ralrimi 3127 . . . . . . 7 ((𝜑𝑔 Fn ran (𝑥𝐴𝐵) ∧ ∀𝑦 ∈ ran (𝑥𝐴𝐵)(𝑔𝑦) ∈ 𝑦) → ∀𝑥𝐴 ((𝑔 ∘ (𝑥𝐴𝐵))‘𝑥) ∈ 𝐵)
8954, 88jca 515 . . . . . 6 ((𝜑𝑔 Fn ran (𝑥𝐴𝐵) ∧ ∀𝑦 ∈ ran (𝑥𝐴𝐵)(𝑔𝑦) ∈ 𝑦) → ((𝑔 ∘ (𝑥𝐴𝐵)) Fn 𝐴 ∧ ∀𝑥𝐴 ((𝑔 ∘ (𝑥𝐴𝐵))‘𝑥) ∈ 𝐵))
90 fneq1 6423 . . . . . . . 8 (𝑓 = (𝑔 ∘ (𝑥𝐴𝐵)) → (𝑓 Fn 𝐴 ↔ (𝑔 ∘ (𝑥𝐴𝐵)) Fn 𝐴))
91 nfcv 2899 . . . . . . . . . 10 𝑥𝑓
9256, 57nfco 5702 . . . . . . . . . 10 𝑥(𝑔 ∘ (𝑥𝐴𝐵))
9391, 92nfeq 2912 . . . . . . . . 9 𝑥 𝑓 = (𝑔 ∘ (𝑥𝐴𝐵))
94 fveq1 6667 . . . . . . . . . 10 (𝑓 = (𝑔 ∘ (𝑥𝐴𝐵)) → (𝑓𝑥) = ((𝑔 ∘ (𝑥𝐴𝐵))‘𝑥))
9594eleq1d 2817 . . . . . . . . 9 (𝑓 = (𝑔 ∘ (𝑥𝐴𝐵)) → ((𝑓𝑥) ∈ 𝐵 ↔ ((𝑔 ∘ (𝑥𝐴𝐵))‘𝑥) ∈ 𝐵))
9693, 95ralbid 3144 . . . . . . . 8 (𝑓 = (𝑔 ∘ (𝑥𝐴𝐵)) → (∀𝑥𝐴 (𝑓𝑥) ∈ 𝐵 ↔ ∀𝑥𝐴 ((𝑔 ∘ (𝑥𝐴𝐵))‘𝑥) ∈ 𝐵))
9790, 96anbi12d 634 . . . . . . 7 (𝑓 = (𝑔 ∘ (𝑥𝐴𝐵)) → ((𝑓 Fn 𝐴 ∧ ∀𝑥𝐴 (𝑓𝑥) ∈ 𝐵) ↔ ((𝑔 ∘ (𝑥𝐴𝐵)) Fn 𝐴 ∧ ∀𝑥𝐴 ((𝑔 ∘ (𝑥𝐴𝐵))‘𝑥) ∈ 𝐵)))
9897spcegv 3499 . . . . . 6 ((𝑔 ∘ (𝑥𝐴𝐵)) ∈ V → (((𝑔 ∘ (𝑥𝐴𝐵)) Fn 𝐴 ∧ ∀𝑥𝐴 ((𝑔 ∘ (𝑥𝐴𝐵))‘𝑥) ∈ 𝐵) → ∃𝑓(𝑓 Fn 𝐴 ∧ ∀𝑥𝐴 (𝑓𝑥) ∈ 𝐵)))
9944, 89, 98sylc 65 . . . . 5 ((𝜑𝑔 Fn ran (𝑥𝐴𝐵) ∧ ∀𝑦 ∈ ran (𝑥𝐴𝐵)(𝑔𝑦) ∈ 𝑦) → ∃𝑓(𝑓 Fn 𝐴 ∧ ∀𝑥𝐴 (𝑓𝑥) ∈ 𝐵))
1008, 9, 38, 99syl3anc 1372 . . . 4 ((𝜑 ∧ (𝑔 Fn ran (𝑥𝐴𝐵) ∧ ∀𝑦 ∈ ran (𝑥𝐴𝐵)(𝑦 ≠ ∅ → (𝑔𝑦) ∈ 𝑦))) → ∃𝑓(𝑓 Fn 𝐴 ∧ ∀𝑥𝐴 (𝑓𝑥) ∈ 𝐵))
101100ex 416 . . 3 (𝜑 → ((𝑔 Fn ran (𝑥𝐴𝐵) ∧ ∀𝑦 ∈ ran (𝑥𝐴𝐵)(𝑦 ≠ ∅ → (𝑔𝑦) ∈ 𝑦)) → ∃𝑓(𝑓 Fn 𝐴 ∧ ∀𝑥𝐴 (𝑓𝑥) ∈ 𝐵)))
102101exlimdv 1939 . 2 (𝜑 → (∃𝑔(𝑔 Fn ran (𝑥𝐴𝐵) ∧ ∀𝑦 ∈ ran (𝑥𝐴𝐵)(𝑦 ≠ ∅ → (𝑔𝑦) ∈ 𝑦)) → ∃𝑓(𝑓 Fn 𝐴 ∧ ∀𝑥𝐴 (𝑓𝑥) ∈ 𝐵)))
1037, 102mpd 15 1 (𝜑 → ∃𝑓(𝑓 Fn 𝐴 ∧ ∀𝑥𝐴 (𝑓𝑥) ∈ 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399  w3a 1088   = wceq 1542  wex 1786  wcel 2113  wne 2934  wral 3053  wrex 3054  Vcvv 3397  wss 3841  c0 4209  cmpt 5107  dom cdm 5519  ran crn 5520  ccom 5523  Fun wfun 6327   Fn wfn 6328  cfv 6333  Fincfn 8548
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1916  ax-6 1974  ax-7 2019  ax-8 2115  ax-9 2123  ax-10 2144  ax-11 2161  ax-12 2178  ax-ext 2710  ax-rep 5151  ax-sep 5164  ax-nul 5171  ax-pow 5229  ax-pr 5293  ax-un 7473
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2074  df-mo 2540  df-eu 2570  df-clab 2717  df-cleq 2730  df-clel 2811  df-nfc 2881  df-ne 2935  df-ral 3058  df-rex 3059  df-reu 3060  df-rab 3062  df-v 3399  df-sbc 3680  df-csb 3789  df-dif 3844  df-un 3846  df-in 3848  df-ss 3858  df-pss 3860  df-nul 4210  df-if 4412  df-pw 4487  df-sn 4514  df-pr 4516  df-tp 4518  df-op 4520  df-uni 4794  df-iun 4880  df-br 5028  df-opab 5090  df-mpt 5108  df-tr 5134  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-ord 6169  df-on 6170  df-lim 6171  df-suc 6172  df-iota 6291  df-fun 6335  df-fn 6336  df-f 6337  df-f1 6338  df-fo 6339  df-f1o 6340  df-fv 6341  df-om 7594  df-1st 7707  df-2nd 7708  df-1o 8124  df-er 8313  df-en 8549  df-dom 8550  df-fin 8552
This theorem is referenced by:  axccdom  42284  axccd2  42291  qndenserrnbllem  43361  hoiqssbllem3  43688
  Copyright terms: Public domain W3C validator