Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  choicefi Structured version   Visualization version   GIF version

Theorem choicefi 41461
Description: For a finite set, a choice function exists, without using the axiom of choice. (Contributed by Glauco Siliprandi, 24-Dec-2020.)
Hypotheses
Ref Expression
choicefi.a (𝜑𝐴 ∈ Fin)
choicefi.b ((𝜑𝑥𝐴) → 𝐵𝑊)
choicefi.n ((𝜑𝑥𝐴) → 𝐵 ≠ ∅)
Assertion
Ref Expression
choicefi (𝜑 → ∃𝑓(𝑓 Fn 𝐴 ∧ ∀𝑥𝐴 (𝑓𝑥) ∈ 𝐵))
Distinct variable groups:   𝐴,𝑓,𝑥   𝐵,𝑓   𝜑,𝑥
Allowed substitution hints:   𝜑(𝑓)   𝐵(𝑥)   𝑊(𝑥,𝑓)

Proof of Theorem choicefi
Dummy variables 𝑔 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 choicefi.a . . . . 5 (𝜑𝐴 ∈ Fin)
2 mptfi 8822 . . . . 5 (𝐴 ∈ Fin → (𝑥𝐴𝐵) ∈ Fin)
31, 2syl 17 . . . 4 (𝜑 → (𝑥𝐴𝐵) ∈ Fin)
4 rnfi 8806 . . . 4 ((𝑥𝐴𝐵) ∈ Fin → ran (𝑥𝐴𝐵) ∈ Fin)
53, 4syl 17 . . 3 (𝜑 → ran (𝑥𝐴𝐵) ∈ Fin)
6 fnchoice 41284 . . 3 (ran (𝑥𝐴𝐵) ∈ Fin → ∃𝑔(𝑔 Fn ran (𝑥𝐴𝐵) ∧ ∀𝑦 ∈ ran (𝑥𝐴𝐵)(𝑦 ≠ ∅ → (𝑔𝑦) ∈ 𝑦)))
75, 6syl 17 . 2 (𝜑 → ∃𝑔(𝑔 Fn ran (𝑥𝐴𝐵) ∧ ∀𝑦 ∈ ran (𝑥𝐴𝐵)(𝑦 ≠ ∅ → (𝑔𝑦) ∈ 𝑦)))
8 simpl 485 . . . . 5 ((𝜑 ∧ (𝑔 Fn ran (𝑥𝐴𝐵) ∧ ∀𝑦 ∈ ran (𝑥𝐴𝐵)(𝑦 ≠ ∅ → (𝑔𝑦) ∈ 𝑦))) → 𝜑)
9 simprl 769 . . . . 5 ((𝜑 ∧ (𝑔 Fn ran (𝑥𝐴𝐵) ∧ ∀𝑦 ∈ ran (𝑥𝐴𝐵)(𝑦 ≠ ∅ → (𝑔𝑦) ∈ 𝑦))) → 𝑔 Fn ran (𝑥𝐴𝐵))
10 nfv 1911 . . . . . . . 8 𝑦𝜑
11 nfra1 3219 . . . . . . . 8 𝑦𝑦 ∈ ran (𝑥𝐴𝐵)(𝑦 ≠ ∅ → (𝑔𝑦) ∈ 𝑦)
1210, 11nfan 1896 . . . . . . 7 𝑦(𝜑 ∧ ∀𝑦 ∈ ran (𝑥𝐴𝐵)(𝑦 ≠ ∅ → (𝑔𝑦) ∈ 𝑦))
13 rspa 3206 . . . . . . . . . . . 12 ((∀𝑦 ∈ ran (𝑥𝐴𝐵)(𝑦 ≠ ∅ → (𝑔𝑦) ∈ 𝑦) ∧ 𝑦 ∈ ran (𝑥𝐴𝐵)) → (𝑦 ≠ ∅ → (𝑔𝑦) ∈ 𝑦))
1413adantll 712 . . . . . . . . . . 11 (((𝜑 ∧ ∀𝑦 ∈ ran (𝑥𝐴𝐵)(𝑦 ≠ ∅ → (𝑔𝑦) ∈ 𝑦)) ∧ 𝑦 ∈ ran (𝑥𝐴𝐵)) → (𝑦 ≠ ∅ → (𝑔𝑦) ∈ 𝑦))
15 vex 3497 . . . . . . . . . . . . . . . 16 𝑦 ∈ V
16 eqid 2821 . . . . . . . . . . . . . . . . 17 (𝑥𝐴𝐵) = (𝑥𝐴𝐵)
1716elrnmpt 5827 . . . . . . . . . . . . . . . 16 (𝑦 ∈ V → (𝑦 ∈ ran (𝑥𝐴𝐵) ↔ ∃𝑥𝐴 𝑦 = 𝐵))
1815, 17ax-mp 5 . . . . . . . . . . . . . . 15 (𝑦 ∈ ran (𝑥𝐴𝐵) ↔ ∃𝑥𝐴 𝑦 = 𝐵)
1918biimpi 218 . . . . . . . . . . . . . 14 (𝑦 ∈ ran (𝑥𝐴𝐵) → ∃𝑥𝐴 𝑦 = 𝐵)
2019adantl 484 . . . . . . . . . . . . 13 ((𝜑𝑦 ∈ ran (𝑥𝐴𝐵)) → ∃𝑥𝐴 𝑦 = 𝐵)
21 simp3 1134 . . . . . . . . . . . . . . . . 17 ((𝜑𝑥𝐴𝑦 = 𝐵) → 𝑦 = 𝐵)
22 choicefi.n . . . . . . . . . . . . . . . . . 18 ((𝜑𝑥𝐴) → 𝐵 ≠ ∅)
23223adant3 1128 . . . . . . . . . . . . . . . . 17 ((𝜑𝑥𝐴𝑦 = 𝐵) → 𝐵 ≠ ∅)
2421, 23eqnetrd 3083 . . . . . . . . . . . . . . . 16 ((𝜑𝑥𝐴𝑦 = 𝐵) → 𝑦 ≠ ∅)
25243exp 1115 . . . . . . . . . . . . . . 15 (𝜑 → (𝑥𝐴 → (𝑦 = 𝐵𝑦 ≠ ∅)))
2625rexlimdv 3283 . . . . . . . . . . . . . 14 (𝜑 → (∃𝑥𝐴 𝑦 = 𝐵𝑦 ≠ ∅))
2726adantr 483 . . . . . . . . . . . . 13 ((𝜑𝑦 ∈ ran (𝑥𝐴𝐵)) → (∃𝑥𝐴 𝑦 = 𝐵𝑦 ≠ ∅))
2820, 27mpd 15 . . . . . . . . . . . 12 ((𝜑𝑦 ∈ ran (𝑥𝐴𝐵)) → 𝑦 ≠ ∅)
2928adantlr 713 . . . . . . . . . . 11 (((𝜑 ∧ ∀𝑦 ∈ ran (𝑥𝐴𝐵)(𝑦 ≠ ∅ → (𝑔𝑦) ∈ 𝑦)) ∧ 𝑦 ∈ ran (𝑥𝐴𝐵)) → 𝑦 ≠ ∅)
30 id 22 . . . . . . . . . . . 12 ((𝑦 ≠ ∅ → (𝑔𝑦) ∈ 𝑦) → (𝑦 ≠ ∅ → (𝑔𝑦) ∈ 𝑦))
3130imp 409 . . . . . . . . . . 11 (((𝑦 ≠ ∅ → (𝑔𝑦) ∈ 𝑦) ∧ 𝑦 ≠ ∅) → (𝑔𝑦) ∈ 𝑦)
3214, 29, 31syl2anc 586 . . . . . . . . . 10 (((𝜑 ∧ ∀𝑦 ∈ ran (𝑥𝐴𝐵)(𝑦 ≠ ∅ → (𝑔𝑦) ∈ 𝑦)) ∧ 𝑦 ∈ ran (𝑥𝐴𝐵)) → (𝑔𝑦) ∈ 𝑦)
3332ex 415 . . . . . . . . 9 ((𝜑 ∧ ∀𝑦 ∈ ran (𝑥𝐴𝐵)(𝑦 ≠ ∅ → (𝑔𝑦) ∈ 𝑦)) → (𝑦 ∈ ran (𝑥𝐴𝐵) → (𝑔𝑦) ∈ 𝑦))
3412, 33ralrimi 3216 . . . . . . . 8 ((𝜑 ∧ ∀𝑦 ∈ ran (𝑥𝐴𝐵)(𝑦 ≠ ∅ → (𝑔𝑦) ∈ 𝑦)) → ∀𝑦 ∈ ran (𝑥𝐴𝐵)(𝑔𝑦) ∈ 𝑦)
35 rsp 3205 . . . . . . . 8 (∀𝑦 ∈ ran (𝑥𝐴𝐵)(𝑔𝑦) ∈ 𝑦 → (𝑦 ∈ ran (𝑥𝐴𝐵) → (𝑔𝑦) ∈ 𝑦))
3634, 35syl 17 . . . . . . 7 ((𝜑 ∧ ∀𝑦 ∈ ran (𝑥𝐴𝐵)(𝑦 ≠ ∅ → (𝑔𝑦) ∈ 𝑦)) → (𝑦 ∈ ran (𝑥𝐴𝐵) → (𝑔𝑦) ∈ 𝑦))
3712, 36ralrimi 3216 . . . . . 6 ((𝜑 ∧ ∀𝑦 ∈ ran (𝑥𝐴𝐵)(𝑦 ≠ ∅ → (𝑔𝑦) ∈ 𝑦)) → ∀𝑦 ∈ ran (𝑥𝐴𝐵)(𝑔𝑦) ∈ 𝑦)
3837adantrl 714 . . . . 5 ((𝜑 ∧ (𝑔 Fn ran (𝑥𝐴𝐵) ∧ ∀𝑦 ∈ ran (𝑥𝐴𝐵)(𝑦 ≠ ∅ → (𝑔𝑦) ∈ 𝑦))) → ∀𝑦 ∈ ran (𝑥𝐴𝐵)(𝑔𝑦) ∈ 𝑦)
39 vex 3497 . . . . . . . . 9 𝑔 ∈ V
4039a1i 11 . . . . . . . 8 (𝜑𝑔 ∈ V)
411mptexd 6986 . . . . . . . 8 (𝜑 → (𝑥𝐴𝐵) ∈ V)
42 coexg 7633 . . . . . . . 8 ((𝑔 ∈ V ∧ (𝑥𝐴𝐵) ∈ V) → (𝑔 ∘ (𝑥𝐴𝐵)) ∈ V)
4340, 41, 42syl2anc 586 . . . . . . 7 (𝜑 → (𝑔 ∘ (𝑥𝐴𝐵)) ∈ V)
44433ad2ant1 1129 . . . . . 6 ((𝜑𝑔 Fn ran (𝑥𝐴𝐵) ∧ ∀𝑦 ∈ ran (𝑥𝐴𝐵)(𝑔𝑦) ∈ 𝑦) → (𝑔 ∘ (𝑥𝐴𝐵)) ∈ V)
45 simpr 487 . . . . . . . . 9 ((𝜑𝑔 Fn ran (𝑥𝐴𝐵)) → 𝑔 Fn ran (𝑥𝐴𝐵))
46 choicefi.b . . . . . . . . . . . 12 ((𝜑𝑥𝐴) → 𝐵𝑊)
4746ralrimiva 3182 . . . . . . . . . . 11 (𝜑 → ∀𝑥𝐴 𝐵𝑊)
4816fnmpt 6487 . . . . . . . . . . 11 (∀𝑥𝐴 𝐵𝑊 → (𝑥𝐴𝐵) Fn 𝐴)
4947, 48syl 17 . . . . . . . . . 10 (𝜑 → (𝑥𝐴𝐵) Fn 𝐴)
5049adantr 483 . . . . . . . . 9 ((𝜑𝑔 Fn ran (𝑥𝐴𝐵)) → (𝑥𝐴𝐵) Fn 𝐴)
51 ssidd 3989 . . . . . . . . 9 ((𝜑𝑔 Fn ran (𝑥𝐴𝐵)) → ran (𝑥𝐴𝐵) ⊆ ran (𝑥𝐴𝐵))
52 fnco 6464 . . . . . . . . 9 ((𝑔 Fn ran (𝑥𝐴𝐵) ∧ (𝑥𝐴𝐵) Fn 𝐴 ∧ ran (𝑥𝐴𝐵) ⊆ ran (𝑥𝐴𝐵)) → (𝑔 ∘ (𝑥𝐴𝐵)) Fn 𝐴)
5345, 50, 51, 52syl3anc 1367 . . . . . . . 8 ((𝜑𝑔 Fn ran (𝑥𝐴𝐵)) → (𝑔 ∘ (𝑥𝐴𝐵)) Fn 𝐴)
54533adant3 1128 . . . . . . 7 ((𝜑𝑔 Fn ran (𝑥𝐴𝐵) ∧ ∀𝑦 ∈ ran (𝑥𝐴𝐵)(𝑔𝑦) ∈ 𝑦) → (𝑔 ∘ (𝑥𝐴𝐵)) Fn 𝐴)
55 nfv 1911 . . . . . . . . 9 𝑥𝜑
56 nfcv 2977 . . . . . . . . . 10 𝑥𝑔
57 nfmpt1 5163 . . . . . . . . . . 11 𝑥(𝑥𝐴𝐵)
5857nfrn 5823 . . . . . . . . . 10 𝑥ran (𝑥𝐴𝐵)
5956, 58nffn 6451 . . . . . . . . 9 𝑥 𝑔 Fn ran (𝑥𝐴𝐵)
60 nfv 1911 . . . . . . . . . 10 𝑥(𝑔𝑦) ∈ 𝑦
6158, 60nfralw 3225 . . . . . . . . 9 𝑥𝑦 ∈ ran (𝑥𝐴𝐵)(𝑔𝑦) ∈ 𝑦
6255, 59, 61nf3an 1898 . . . . . . . 8 𝑥(𝜑𝑔 Fn ran (𝑥𝐴𝐵) ∧ ∀𝑦 ∈ ran (𝑥𝐴𝐵)(𝑔𝑦) ∈ 𝑦)
63 funmpt 6392 . . . . . . . . . . . . . 14 Fun (𝑥𝐴𝐵)
6463a1i 11 . . . . . . . . . . . . 13 ((𝜑𝑥𝐴) → Fun (𝑥𝐴𝐵))
65 simpr 487 . . . . . . . . . . . . . 14 ((𝜑𝑥𝐴) → 𝑥𝐴)
6616, 46dmmptd 6492 . . . . . . . . . . . . . . . 16 (𝜑 → dom (𝑥𝐴𝐵) = 𝐴)
6766eqcomd 2827 . . . . . . . . . . . . . . 15 (𝜑𝐴 = dom (𝑥𝐴𝐵))
6867adantr 483 . . . . . . . . . . . . . 14 ((𝜑𝑥𝐴) → 𝐴 = dom (𝑥𝐴𝐵))
6965, 68eleqtrd 2915 . . . . . . . . . . . . 13 ((𝜑𝑥𝐴) → 𝑥 ∈ dom (𝑥𝐴𝐵))
70 fvco 6758 . . . . . . . . . . . . 13 ((Fun (𝑥𝐴𝐵) ∧ 𝑥 ∈ dom (𝑥𝐴𝐵)) → ((𝑔 ∘ (𝑥𝐴𝐵))‘𝑥) = (𝑔‘((𝑥𝐴𝐵)‘𝑥)))
7164, 69, 70syl2anc 586 . . . . . . . . . . . 12 ((𝜑𝑥𝐴) → ((𝑔 ∘ (𝑥𝐴𝐵))‘𝑥) = (𝑔‘((𝑥𝐴𝐵)‘𝑥)))
7216fvmpt2 6778 . . . . . . . . . . . . . 14 ((𝑥𝐴𝐵𝑊) → ((𝑥𝐴𝐵)‘𝑥) = 𝐵)
7365, 46, 72syl2anc 586 . . . . . . . . . . . . 13 ((𝜑𝑥𝐴) → ((𝑥𝐴𝐵)‘𝑥) = 𝐵)
7473fveq2d 6673 . . . . . . . . . . . 12 ((𝜑𝑥𝐴) → (𝑔‘((𝑥𝐴𝐵)‘𝑥)) = (𝑔𝐵))
7571, 74eqtrd 2856 . . . . . . . . . . 11 ((𝜑𝑥𝐴) → ((𝑔 ∘ (𝑥𝐴𝐵))‘𝑥) = (𝑔𝐵))
76753ad2antl1 1181 . . . . . . . . . 10 (((𝜑𝑔 Fn ran (𝑥𝐴𝐵) ∧ ∀𝑦 ∈ ran (𝑥𝐴𝐵)(𝑔𝑦) ∈ 𝑦) ∧ 𝑥𝐴) → ((𝑔 ∘ (𝑥𝐴𝐵))‘𝑥) = (𝑔𝐵))
7716elrnmpt1 5829 . . . . . . . . . . . . 13 ((𝑥𝐴𝐵𝑊) → 𝐵 ∈ ran (𝑥𝐴𝐵))
7865, 46, 77syl2anc 586 . . . . . . . . . . . 12 ((𝜑𝑥𝐴) → 𝐵 ∈ ran (𝑥𝐴𝐵))
79783ad2antl1 1181 . . . . . . . . . . 11 (((𝜑𝑔 Fn ran (𝑥𝐴𝐵) ∧ ∀𝑦 ∈ ran (𝑥𝐴𝐵)(𝑔𝑦) ∈ 𝑦) ∧ 𝑥𝐴) → 𝐵 ∈ ran (𝑥𝐴𝐵))
80 simpl3 1189 . . . . . . . . . . 11 (((𝜑𝑔 Fn ran (𝑥𝐴𝐵) ∧ ∀𝑦 ∈ ran (𝑥𝐴𝐵)(𝑔𝑦) ∈ 𝑦) ∧ 𝑥𝐴) → ∀𝑦 ∈ ran (𝑥𝐴𝐵)(𝑔𝑦) ∈ 𝑦)
81 fveq2 6669 . . . . . . . . . . . . 13 (𝑦 = 𝐵 → (𝑔𝑦) = (𝑔𝐵))
82 id 22 . . . . . . . . . . . . 13 (𝑦 = 𝐵𝑦 = 𝐵)
8381, 82eleq12d 2907 . . . . . . . . . . . 12 (𝑦 = 𝐵 → ((𝑔𝑦) ∈ 𝑦 ↔ (𝑔𝐵) ∈ 𝐵))
8483rspcva 3620 . . . . . . . . . . 11 ((𝐵 ∈ ran (𝑥𝐴𝐵) ∧ ∀𝑦 ∈ ran (𝑥𝐴𝐵)(𝑔𝑦) ∈ 𝑦) → (𝑔𝐵) ∈ 𝐵)
8579, 80, 84syl2anc 586 . . . . . . . . . 10 (((𝜑𝑔 Fn ran (𝑥𝐴𝐵) ∧ ∀𝑦 ∈ ran (𝑥𝐴𝐵)(𝑔𝑦) ∈ 𝑦) ∧ 𝑥𝐴) → (𝑔𝐵) ∈ 𝐵)
8676, 85eqeltrd 2913 . . . . . . . . 9 (((𝜑𝑔 Fn ran (𝑥𝐴𝐵) ∧ ∀𝑦 ∈ ran (𝑥𝐴𝐵)(𝑔𝑦) ∈ 𝑦) ∧ 𝑥𝐴) → ((𝑔 ∘ (𝑥𝐴𝐵))‘𝑥) ∈ 𝐵)
8786ex 415 . . . . . . . 8 ((𝜑𝑔 Fn ran (𝑥𝐴𝐵) ∧ ∀𝑦 ∈ ran (𝑥𝐴𝐵)(𝑔𝑦) ∈ 𝑦) → (𝑥𝐴 → ((𝑔 ∘ (𝑥𝐴𝐵))‘𝑥) ∈ 𝐵))
8862, 87ralrimi 3216 . . . . . . 7 ((𝜑𝑔 Fn ran (𝑥𝐴𝐵) ∧ ∀𝑦 ∈ ran (𝑥𝐴𝐵)(𝑔𝑦) ∈ 𝑦) → ∀𝑥𝐴 ((𝑔 ∘ (𝑥𝐴𝐵))‘𝑥) ∈ 𝐵)
8954, 88jca 514 . . . . . 6 ((𝜑𝑔 Fn ran (𝑥𝐴𝐵) ∧ ∀𝑦 ∈ ran (𝑥𝐴𝐵)(𝑔𝑦) ∈ 𝑦) → ((𝑔 ∘ (𝑥𝐴𝐵)) Fn 𝐴 ∧ ∀𝑥𝐴 ((𝑔 ∘ (𝑥𝐴𝐵))‘𝑥) ∈ 𝐵))
90 fneq1 6443 . . . . . . . 8 (𝑓 = (𝑔 ∘ (𝑥𝐴𝐵)) → (𝑓 Fn 𝐴 ↔ (𝑔 ∘ (𝑥𝐴𝐵)) Fn 𝐴))
91 nfcv 2977 . . . . . . . . . 10 𝑥𝑓
9256, 57nfco 5735 . . . . . . . . . 10 𝑥(𝑔 ∘ (𝑥𝐴𝐵))
9391, 92nfeq 2991 . . . . . . . . 9 𝑥 𝑓 = (𝑔 ∘ (𝑥𝐴𝐵))
94 fveq1 6668 . . . . . . . . . 10 (𝑓 = (𝑔 ∘ (𝑥𝐴𝐵)) → (𝑓𝑥) = ((𝑔 ∘ (𝑥𝐴𝐵))‘𝑥))
9594eleq1d 2897 . . . . . . . . 9 (𝑓 = (𝑔 ∘ (𝑥𝐴𝐵)) → ((𝑓𝑥) ∈ 𝐵 ↔ ((𝑔 ∘ (𝑥𝐴𝐵))‘𝑥) ∈ 𝐵))
9693, 95ralbid 3231 . . . . . . . 8 (𝑓 = (𝑔 ∘ (𝑥𝐴𝐵)) → (∀𝑥𝐴 (𝑓𝑥) ∈ 𝐵 ↔ ∀𝑥𝐴 ((𝑔 ∘ (𝑥𝐴𝐵))‘𝑥) ∈ 𝐵))
9790, 96anbi12d 632 . . . . . . 7 (𝑓 = (𝑔 ∘ (𝑥𝐴𝐵)) → ((𝑓 Fn 𝐴 ∧ ∀𝑥𝐴 (𝑓𝑥) ∈ 𝐵) ↔ ((𝑔 ∘ (𝑥𝐴𝐵)) Fn 𝐴 ∧ ∀𝑥𝐴 ((𝑔 ∘ (𝑥𝐴𝐵))‘𝑥) ∈ 𝐵)))
9897spcegv 3596 . . . . . 6 ((𝑔 ∘ (𝑥𝐴𝐵)) ∈ V → (((𝑔 ∘ (𝑥𝐴𝐵)) Fn 𝐴 ∧ ∀𝑥𝐴 ((𝑔 ∘ (𝑥𝐴𝐵))‘𝑥) ∈ 𝐵) → ∃𝑓(𝑓 Fn 𝐴 ∧ ∀𝑥𝐴 (𝑓𝑥) ∈ 𝐵)))
9944, 89, 98sylc 65 . . . . 5 ((𝜑𝑔 Fn ran (𝑥𝐴𝐵) ∧ ∀𝑦 ∈ ran (𝑥𝐴𝐵)(𝑔𝑦) ∈ 𝑦) → ∃𝑓(𝑓 Fn 𝐴 ∧ ∀𝑥𝐴 (𝑓𝑥) ∈ 𝐵))
1008, 9, 38, 99syl3anc 1367 . . . 4 ((𝜑 ∧ (𝑔 Fn ran (𝑥𝐴𝐵) ∧ ∀𝑦 ∈ ran (𝑥𝐴𝐵)(𝑦 ≠ ∅ → (𝑔𝑦) ∈ 𝑦))) → ∃𝑓(𝑓 Fn 𝐴 ∧ ∀𝑥𝐴 (𝑓𝑥) ∈ 𝐵))
101100ex 415 . . 3 (𝜑 → ((𝑔 Fn ran (𝑥𝐴𝐵) ∧ ∀𝑦 ∈ ran (𝑥𝐴𝐵)(𝑦 ≠ ∅ → (𝑔𝑦) ∈ 𝑦)) → ∃𝑓(𝑓 Fn 𝐴 ∧ ∀𝑥𝐴 (𝑓𝑥) ∈ 𝐵)))
102101exlimdv 1930 . 2 (𝜑 → (∃𝑔(𝑔 Fn ran (𝑥𝐴𝐵) ∧ ∀𝑦 ∈ ran (𝑥𝐴𝐵)(𝑦 ≠ ∅ → (𝑔𝑦) ∈ 𝑦)) → ∃𝑓(𝑓 Fn 𝐴 ∧ ∀𝑥𝐴 (𝑓𝑥) ∈ 𝐵)))
1037, 102mpd 15 1 (𝜑 → ∃𝑓(𝑓 Fn 𝐴 ∧ ∀𝑥𝐴 (𝑓𝑥) ∈ 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398  w3a 1083   = wceq 1533  wex 1776  wcel 2110  wne 3016  wral 3138  wrex 3139  Vcvv 3494  wss 3935  c0 4290  cmpt 5145  dom cdm 5554  ran crn 5555  ccom 5558  Fun wfun 6348   Fn wfn 6349  cfv 6354  Fincfn 8508
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793  ax-rep 5189  ax-sep 5202  ax-nul 5209  ax-pow 5265  ax-pr 5329  ax-un 7460
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-ral 3143  df-rex 3144  df-reu 3145  df-rab 3147  df-v 3496  df-sbc 3772  df-csb 3883  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-pss 3953  df-nul 4291  df-if 4467  df-pw 4540  df-sn 4567  df-pr 4569  df-tp 4571  df-op 4573  df-uni 4838  df-int 4876  df-iun 4920  df-br 5066  df-opab 5128  df-mpt 5146  df-tr 5172  df-id 5459  df-eprel 5464  df-po 5473  df-so 5474  df-fr 5513  df-we 5515  df-xp 5560  df-rel 5561  df-cnv 5562  df-co 5563  df-dm 5564  df-rn 5565  df-res 5566  df-ima 5567  df-pred 6147  df-ord 6193  df-on 6194  df-lim 6195  df-suc 6196  df-iota 6313  df-fun 6356  df-fn 6357  df-f 6358  df-f1 6359  df-fo 6360  df-f1o 6361  df-fv 6362  df-ov 7158  df-oprab 7159  df-mpo 7160  df-om 7580  df-1st 7688  df-2nd 7689  df-wrecs 7946  df-recs 8007  df-rdg 8045  df-1o 8101  df-oadd 8105  df-er 8288  df-en 8509  df-dom 8510  df-fin 8512
This theorem is referenced by:  axccdom  41485  axccd2  41494  qndenserrnbllem  42578  hoiqssbllem3  42905
  Copyright terms: Public domain W3C validator