Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  choicefi Structured version   Visualization version   GIF version

Theorem choicefi 40193
Description: For a finite set, a choice function exists, without using the axiom of choice. (Contributed by Glauco Siliprandi, 24-Dec-2020.)
Hypotheses
Ref Expression
choicefi.a (𝜑𝐴 ∈ Fin)
choicefi.b ((𝜑𝑥𝐴) → 𝐵𝑊)
choicefi.n ((𝜑𝑥𝐴) → 𝐵 ≠ ∅)
Assertion
Ref Expression
choicefi (𝜑 → ∃𝑓(𝑓 Fn 𝐴 ∧ ∀𝑥𝐴 (𝑓𝑥) ∈ 𝐵))
Distinct variable groups:   𝐴,𝑓,𝑥   𝐵,𝑓   𝜑,𝑥
Allowed substitution hints:   𝜑(𝑓)   𝐵(𝑥)   𝑊(𝑥,𝑓)

Proof of Theorem choicefi
Dummy variables 𝑔 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 choicefi.a . . . . 5 (𝜑𝐴 ∈ Fin)
2 mptfi 8540 . . . . 5 (𝐴 ∈ Fin → (𝑥𝐴𝐵) ∈ Fin)
31, 2syl 17 . . . 4 (𝜑 → (𝑥𝐴𝐵) ∈ Fin)
4 rnfi 8524 . . . 4 ((𝑥𝐴𝐵) ∈ Fin → ran (𝑥𝐴𝐵) ∈ Fin)
53, 4syl 17 . . 3 (𝜑 → ran (𝑥𝐴𝐵) ∈ Fin)
6 fnchoice 40001 . . 3 (ran (𝑥𝐴𝐵) ∈ Fin → ∃𝑔(𝑔 Fn ran (𝑥𝐴𝐵) ∧ ∀𝑦 ∈ ran (𝑥𝐴𝐵)(𝑦 ≠ ∅ → (𝑔𝑦) ∈ 𝑦)))
75, 6syl 17 . 2 (𝜑 → ∃𝑔(𝑔 Fn ran (𝑥𝐴𝐵) ∧ ∀𝑦 ∈ ran (𝑥𝐴𝐵)(𝑦 ≠ ∅ → (𝑔𝑦) ∈ 𝑦)))
8 simpl 476 . . . . 5 ((𝜑 ∧ (𝑔 Fn ran (𝑥𝐴𝐵) ∧ ∀𝑦 ∈ ran (𝑥𝐴𝐵)(𝑦 ≠ ∅ → (𝑔𝑦) ∈ 𝑦))) → 𝜑)
9 simprl 787 . . . . 5 ((𝜑 ∧ (𝑔 Fn ran (𝑥𝐴𝐵) ∧ ∀𝑦 ∈ ran (𝑥𝐴𝐵)(𝑦 ≠ ∅ → (𝑔𝑦) ∈ 𝑦))) → 𝑔 Fn ran (𝑥𝐴𝐵))
10 nfv 2013 . . . . . . . 8 𝑦𝜑
11 nfra1 3150 . . . . . . . 8 𝑦𝑦 ∈ ran (𝑥𝐴𝐵)(𝑦 ≠ ∅ → (𝑔𝑦) ∈ 𝑦)
1210, 11nfan 2002 . . . . . . 7 𝑦(𝜑 ∧ ∀𝑦 ∈ ran (𝑥𝐴𝐵)(𝑦 ≠ ∅ → (𝑔𝑦) ∈ 𝑦))
13 rspa 3139 . . . . . . . . . . . 12 ((∀𝑦 ∈ ran (𝑥𝐴𝐵)(𝑦 ≠ ∅ → (𝑔𝑦) ∈ 𝑦) ∧ 𝑦 ∈ ran (𝑥𝐴𝐵)) → (𝑦 ≠ ∅ → (𝑔𝑦) ∈ 𝑦))
1413adantll 705 . . . . . . . . . . 11 (((𝜑 ∧ ∀𝑦 ∈ ran (𝑥𝐴𝐵)(𝑦 ≠ ∅ → (𝑔𝑦) ∈ 𝑦)) ∧ 𝑦 ∈ ran (𝑥𝐴𝐵)) → (𝑦 ≠ ∅ → (𝑔𝑦) ∈ 𝑦))
15 vex 3417 . . . . . . . . . . . . . . . 16 𝑦 ∈ V
16 eqid 2825 . . . . . . . . . . . . . . . . 17 (𝑥𝐴𝐵) = (𝑥𝐴𝐵)
1716elrnmpt 5609 . . . . . . . . . . . . . . . 16 (𝑦 ∈ V → (𝑦 ∈ ran (𝑥𝐴𝐵) ↔ ∃𝑥𝐴 𝑦 = 𝐵))
1815, 17ax-mp 5 . . . . . . . . . . . . . . 15 (𝑦 ∈ ran (𝑥𝐴𝐵) ↔ ∃𝑥𝐴 𝑦 = 𝐵)
1918biimpi 208 . . . . . . . . . . . . . 14 (𝑦 ∈ ran (𝑥𝐴𝐵) → ∃𝑥𝐴 𝑦 = 𝐵)
2019adantl 475 . . . . . . . . . . . . 13 ((𝜑𝑦 ∈ ran (𝑥𝐴𝐵)) → ∃𝑥𝐴 𝑦 = 𝐵)
21 simp3 1172 . . . . . . . . . . . . . . . . 17 ((𝜑𝑥𝐴𝑦 = 𝐵) → 𝑦 = 𝐵)
22 choicefi.n . . . . . . . . . . . . . . . . . 18 ((𝜑𝑥𝐴) → 𝐵 ≠ ∅)
23223adant3 1166 . . . . . . . . . . . . . . . . 17 ((𝜑𝑥𝐴𝑦 = 𝐵) → 𝐵 ≠ ∅)
2421, 23eqnetrd 3066 . . . . . . . . . . . . . . . 16 ((𝜑𝑥𝐴𝑦 = 𝐵) → 𝑦 ≠ ∅)
25243exp 1152 . . . . . . . . . . . . . . 15 (𝜑 → (𝑥𝐴 → (𝑦 = 𝐵𝑦 ≠ ∅)))
2625rexlimdv 3239 . . . . . . . . . . . . . 14 (𝜑 → (∃𝑥𝐴 𝑦 = 𝐵𝑦 ≠ ∅))
2726adantr 474 . . . . . . . . . . . . 13 ((𝜑𝑦 ∈ ran (𝑥𝐴𝐵)) → (∃𝑥𝐴 𝑦 = 𝐵𝑦 ≠ ∅))
2820, 27mpd 15 . . . . . . . . . . . 12 ((𝜑𝑦 ∈ ran (𝑥𝐴𝐵)) → 𝑦 ≠ ∅)
2928adantlr 706 . . . . . . . . . . 11 (((𝜑 ∧ ∀𝑦 ∈ ran (𝑥𝐴𝐵)(𝑦 ≠ ∅ → (𝑔𝑦) ∈ 𝑦)) ∧ 𝑦 ∈ ran (𝑥𝐴𝐵)) → 𝑦 ≠ ∅)
30 id 22 . . . . . . . . . . . 12 ((𝑦 ≠ ∅ → (𝑔𝑦) ∈ 𝑦) → (𝑦 ≠ ∅ → (𝑔𝑦) ∈ 𝑦))
3130imp 397 . . . . . . . . . . 11 (((𝑦 ≠ ∅ → (𝑔𝑦) ∈ 𝑦) ∧ 𝑦 ≠ ∅) → (𝑔𝑦) ∈ 𝑦)
3214, 29, 31syl2anc 579 . . . . . . . . . 10 (((𝜑 ∧ ∀𝑦 ∈ ran (𝑥𝐴𝐵)(𝑦 ≠ ∅ → (𝑔𝑦) ∈ 𝑦)) ∧ 𝑦 ∈ ran (𝑥𝐴𝐵)) → (𝑔𝑦) ∈ 𝑦)
3332ex 403 . . . . . . . . 9 ((𝜑 ∧ ∀𝑦 ∈ ran (𝑥𝐴𝐵)(𝑦 ≠ ∅ → (𝑔𝑦) ∈ 𝑦)) → (𝑦 ∈ ran (𝑥𝐴𝐵) → (𝑔𝑦) ∈ 𝑦))
3412, 33ralrimi 3166 . . . . . . . 8 ((𝜑 ∧ ∀𝑦 ∈ ran (𝑥𝐴𝐵)(𝑦 ≠ ∅ → (𝑔𝑦) ∈ 𝑦)) → ∀𝑦 ∈ ran (𝑥𝐴𝐵)(𝑔𝑦) ∈ 𝑦)
35 rsp 3138 . . . . . . . 8 (∀𝑦 ∈ ran (𝑥𝐴𝐵)(𝑔𝑦) ∈ 𝑦 → (𝑦 ∈ ran (𝑥𝐴𝐵) → (𝑔𝑦) ∈ 𝑦))
3634, 35syl 17 . . . . . . 7 ((𝜑 ∧ ∀𝑦 ∈ ran (𝑥𝐴𝐵)(𝑦 ≠ ∅ → (𝑔𝑦) ∈ 𝑦)) → (𝑦 ∈ ran (𝑥𝐴𝐵) → (𝑔𝑦) ∈ 𝑦))
3712, 36ralrimi 3166 . . . . . 6 ((𝜑 ∧ ∀𝑦 ∈ ran (𝑥𝐴𝐵)(𝑦 ≠ ∅ → (𝑔𝑦) ∈ 𝑦)) → ∀𝑦 ∈ ran (𝑥𝐴𝐵)(𝑔𝑦) ∈ 𝑦)
3837adantrl 707 . . . . 5 ((𝜑 ∧ (𝑔 Fn ran (𝑥𝐴𝐵) ∧ ∀𝑦 ∈ ran (𝑥𝐴𝐵)(𝑦 ≠ ∅ → (𝑔𝑦) ∈ 𝑦))) → ∀𝑦 ∈ ran (𝑥𝐴𝐵)(𝑔𝑦) ∈ 𝑦)
39 vex 3417 . . . . . . . . 9 𝑔 ∈ V
4039a1i 11 . . . . . . . 8 (𝜑𝑔 ∈ V)
411mptexd 6748 . . . . . . . 8 (𝜑 → (𝑥𝐴𝐵) ∈ V)
42 coexg 7384 . . . . . . . 8 ((𝑔 ∈ V ∧ (𝑥𝐴𝐵) ∈ V) → (𝑔 ∘ (𝑥𝐴𝐵)) ∈ V)
4340, 41, 42syl2anc 579 . . . . . . 7 (𝜑 → (𝑔 ∘ (𝑥𝐴𝐵)) ∈ V)
44433ad2ant1 1167 . . . . . 6 ((𝜑𝑔 Fn ran (𝑥𝐴𝐵) ∧ ∀𝑦 ∈ ran (𝑥𝐴𝐵)(𝑔𝑦) ∈ 𝑦) → (𝑔 ∘ (𝑥𝐴𝐵)) ∈ V)
45 simpr 479 . . . . . . . . 9 ((𝜑𝑔 Fn ran (𝑥𝐴𝐵)) → 𝑔 Fn ran (𝑥𝐴𝐵))
46 choicefi.b . . . . . . . . . . . 12 ((𝜑𝑥𝐴) → 𝐵𝑊)
4746ralrimiva 3175 . . . . . . . . . . 11 (𝜑 → ∀𝑥𝐴 𝐵𝑊)
4816fnmpt 6257 . . . . . . . . . . 11 (∀𝑥𝐴 𝐵𝑊 → (𝑥𝐴𝐵) Fn 𝐴)
4947, 48syl 17 . . . . . . . . . 10 (𝜑 → (𝑥𝐴𝐵) Fn 𝐴)
5049adantr 474 . . . . . . . . 9 ((𝜑𝑔 Fn ran (𝑥𝐴𝐵)) → (𝑥𝐴𝐵) Fn 𝐴)
51 ssidd 3849 . . . . . . . . 9 ((𝜑𝑔 Fn ran (𝑥𝐴𝐵)) → ran (𝑥𝐴𝐵) ⊆ ran (𝑥𝐴𝐵))
52 fnco 6236 . . . . . . . . 9 ((𝑔 Fn ran (𝑥𝐴𝐵) ∧ (𝑥𝐴𝐵) Fn 𝐴 ∧ ran (𝑥𝐴𝐵) ⊆ ran (𝑥𝐴𝐵)) → (𝑔 ∘ (𝑥𝐴𝐵)) Fn 𝐴)
5345, 50, 51, 52syl3anc 1494 . . . . . . . 8 ((𝜑𝑔 Fn ran (𝑥𝐴𝐵)) → (𝑔 ∘ (𝑥𝐴𝐵)) Fn 𝐴)
54533adant3 1166 . . . . . . 7 ((𝜑𝑔 Fn ran (𝑥𝐴𝐵) ∧ ∀𝑦 ∈ ran (𝑥𝐴𝐵)(𝑔𝑦) ∈ 𝑦) → (𝑔 ∘ (𝑥𝐴𝐵)) Fn 𝐴)
55 nfv 2013 . . . . . . . . 9 𝑥𝜑
56 nfcv 2969 . . . . . . . . . 10 𝑥𝑔
57 nfmpt1 4972 . . . . . . . . . . 11 𝑥(𝑥𝐴𝐵)
5857nfrn 5605 . . . . . . . . . 10 𝑥ran (𝑥𝐴𝐵)
5956, 58nffn 6224 . . . . . . . . 9 𝑥 𝑔 Fn ran (𝑥𝐴𝐵)
60 nfv 2013 . . . . . . . . . 10 𝑥(𝑔𝑦) ∈ 𝑦
6158, 60nfral 3154 . . . . . . . . 9 𝑥𝑦 ∈ ran (𝑥𝐴𝐵)(𝑔𝑦) ∈ 𝑦
6255, 59, 61nf3an 2004 . . . . . . . 8 𝑥(𝜑𝑔 Fn ran (𝑥𝐴𝐵) ∧ ∀𝑦 ∈ ran (𝑥𝐴𝐵)(𝑔𝑦) ∈ 𝑦)
63 funmpt 6165 . . . . . . . . . . . . . 14 Fun (𝑥𝐴𝐵)
6463a1i 11 . . . . . . . . . . . . 13 ((𝜑𝑥𝐴) → Fun (𝑥𝐴𝐵))
65 simpr 479 . . . . . . . . . . . . . 14 ((𝜑𝑥𝐴) → 𝑥𝐴)
6616, 46dmmptd 6261 . . . . . . . . . . . . . . . 16 (𝜑 → dom (𝑥𝐴𝐵) = 𝐴)
6766eqcomd 2831 . . . . . . . . . . . . . . 15 (𝜑𝐴 = dom (𝑥𝐴𝐵))
6867adantr 474 . . . . . . . . . . . . . 14 ((𝜑𝑥𝐴) → 𝐴 = dom (𝑥𝐴𝐵))
6965, 68eleqtrd 2908 . . . . . . . . . . . . 13 ((𝜑𝑥𝐴) → 𝑥 ∈ dom (𝑥𝐴𝐵))
70 fvco 6525 . . . . . . . . . . . . 13 ((Fun (𝑥𝐴𝐵) ∧ 𝑥 ∈ dom (𝑥𝐴𝐵)) → ((𝑔 ∘ (𝑥𝐴𝐵))‘𝑥) = (𝑔‘((𝑥𝐴𝐵)‘𝑥)))
7164, 69, 70syl2anc 579 . . . . . . . . . . . 12 ((𝜑𝑥𝐴) → ((𝑔 ∘ (𝑥𝐴𝐵))‘𝑥) = (𝑔‘((𝑥𝐴𝐵)‘𝑥)))
7216fvmpt2 6543 . . . . . . . . . . . . . 14 ((𝑥𝐴𝐵𝑊) → ((𝑥𝐴𝐵)‘𝑥) = 𝐵)
7365, 46, 72syl2anc 579 . . . . . . . . . . . . 13 ((𝜑𝑥𝐴) → ((𝑥𝐴𝐵)‘𝑥) = 𝐵)
7473fveq2d 6441 . . . . . . . . . . . 12 ((𝜑𝑥𝐴) → (𝑔‘((𝑥𝐴𝐵)‘𝑥)) = (𝑔𝐵))
7571, 74eqtrd 2861 . . . . . . . . . . 11 ((𝜑𝑥𝐴) → ((𝑔 ∘ (𝑥𝐴𝐵))‘𝑥) = (𝑔𝐵))
76753ad2antl1 1240 . . . . . . . . . 10 (((𝜑𝑔 Fn ran (𝑥𝐴𝐵) ∧ ∀𝑦 ∈ ran (𝑥𝐴𝐵)(𝑔𝑦) ∈ 𝑦) ∧ 𝑥𝐴) → ((𝑔 ∘ (𝑥𝐴𝐵))‘𝑥) = (𝑔𝐵))
7716elrnmpt1 5611 . . . . . . . . . . . . 13 ((𝑥𝐴𝐵𝑊) → 𝐵 ∈ ran (𝑥𝐴𝐵))
7865, 46, 77syl2anc 579 . . . . . . . . . . . 12 ((𝜑𝑥𝐴) → 𝐵 ∈ ran (𝑥𝐴𝐵))
79783ad2antl1 1240 . . . . . . . . . . 11 (((𝜑𝑔 Fn ran (𝑥𝐴𝐵) ∧ ∀𝑦 ∈ ran (𝑥𝐴𝐵)(𝑔𝑦) ∈ 𝑦) ∧ 𝑥𝐴) → 𝐵 ∈ ran (𝑥𝐴𝐵))
80 simpl3 1250 . . . . . . . . . . 11 (((𝜑𝑔 Fn ran (𝑥𝐴𝐵) ∧ ∀𝑦 ∈ ran (𝑥𝐴𝐵)(𝑔𝑦) ∈ 𝑦) ∧ 𝑥𝐴) → ∀𝑦 ∈ ran (𝑥𝐴𝐵)(𝑔𝑦) ∈ 𝑦)
81 fveq2 6437 . . . . . . . . . . . . 13 (𝑦 = 𝐵 → (𝑔𝑦) = (𝑔𝐵))
82 id 22 . . . . . . . . . . . . 13 (𝑦 = 𝐵𝑦 = 𝐵)
8381, 82eleq12d 2900 . . . . . . . . . . . 12 (𝑦 = 𝐵 → ((𝑔𝑦) ∈ 𝑦 ↔ (𝑔𝐵) ∈ 𝐵))
8483rspcva 3524 . . . . . . . . . . 11 ((𝐵 ∈ ran (𝑥𝐴𝐵) ∧ ∀𝑦 ∈ ran (𝑥𝐴𝐵)(𝑔𝑦) ∈ 𝑦) → (𝑔𝐵) ∈ 𝐵)
8579, 80, 84syl2anc 579 . . . . . . . . . 10 (((𝜑𝑔 Fn ran (𝑥𝐴𝐵) ∧ ∀𝑦 ∈ ran (𝑥𝐴𝐵)(𝑔𝑦) ∈ 𝑦) ∧ 𝑥𝐴) → (𝑔𝐵) ∈ 𝐵)
8676, 85eqeltrd 2906 . . . . . . . . 9 (((𝜑𝑔 Fn ran (𝑥𝐴𝐵) ∧ ∀𝑦 ∈ ran (𝑥𝐴𝐵)(𝑔𝑦) ∈ 𝑦) ∧ 𝑥𝐴) → ((𝑔 ∘ (𝑥𝐴𝐵))‘𝑥) ∈ 𝐵)
8786ex 403 . . . . . . . 8 ((𝜑𝑔 Fn ran (𝑥𝐴𝐵) ∧ ∀𝑦 ∈ ran (𝑥𝐴𝐵)(𝑔𝑦) ∈ 𝑦) → (𝑥𝐴 → ((𝑔 ∘ (𝑥𝐴𝐵))‘𝑥) ∈ 𝐵))
8862, 87ralrimi 3166 . . . . . . 7 ((𝜑𝑔 Fn ran (𝑥𝐴𝐵) ∧ ∀𝑦 ∈ ran (𝑥𝐴𝐵)(𝑔𝑦) ∈ 𝑦) → ∀𝑥𝐴 ((𝑔 ∘ (𝑥𝐴𝐵))‘𝑥) ∈ 𝐵)
8954, 88jca 507 . . . . . 6 ((𝜑𝑔 Fn ran (𝑥𝐴𝐵) ∧ ∀𝑦 ∈ ran (𝑥𝐴𝐵)(𝑔𝑦) ∈ 𝑦) → ((𝑔 ∘ (𝑥𝐴𝐵)) Fn 𝐴 ∧ ∀𝑥𝐴 ((𝑔 ∘ (𝑥𝐴𝐵))‘𝑥) ∈ 𝐵))
90 fneq1 6216 . . . . . . . 8 (𝑓 = (𝑔 ∘ (𝑥𝐴𝐵)) → (𝑓 Fn 𝐴 ↔ (𝑔 ∘ (𝑥𝐴𝐵)) Fn 𝐴))
91 nfcv 2969 . . . . . . . . . 10 𝑥𝑓
9256, 57nfco 5524 . . . . . . . . . 10 𝑥(𝑔 ∘ (𝑥𝐴𝐵))
9391, 92nfeq 2981 . . . . . . . . 9 𝑥 𝑓 = (𝑔 ∘ (𝑥𝐴𝐵))
94 fveq1 6436 . . . . . . . . . 10 (𝑓 = (𝑔 ∘ (𝑥𝐴𝐵)) → (𝑓𝑥) = ((𝑔 ∘ (𝑥𝐴𝐵))‘𝑥))
9594eleq1d 2891 . . . . . . . . 9 (𝑓 = (𝑔 ∘ (𝑥𝐴𝐵)) → ((𝑓𝑥) ∈ 𝐵 ↔ ((𝑔 ∘ (𝑥𝐴𝐵))‘𝑥) ∈ 𝐵))
9693, 95ralbid 3192 . . . . . . . 8 (𝑓 = (𝑔 ∘ (𝑥𝐴𝐵)) → (∀𝑥𝐴 (𝑓𝑥) ∈ 𝐵 ↔ ∀𝑥𝐴 ((𝑔 ∘ (𝑥𝐴𝐵))‘𝑥) ∈ 𝐵))
9790, 96anbi12d 624 . . . . . . 7 (𝑓 = (𝑔 ∘ (𝑥𝐴𝐵)) → ((𝑓 Fn 𝐴 ∧ ∀𝑥𝐴 (𝑓𝑥) ∈ 𝐵) ↔ ((𝑔 ∘ (𝑥𝐴𝐵)) Fn 𝐴 ∧ ∀𝑥𝐴 ((𝑔 ∘ (𝑥𝐴𝐵))‘𝑥) ∈ 𝐵)))
9897spcegv 3511 . . . . . 6 ((𝑔 ∘ (𝑥𝐴𝐵)) ∈ V → (((𝑔 ∘ (𝑥𝐴𝐵)) Fn 𝐴 ∧ ∀𝑥𝐴 ((𝑔 ∘ (𝑥𝐴𝐵))‘𝑥) ∈ 𝐵) → ∃𝑓(𝑓 Fn 𝐴 ∧ ∀𝑥𝐴 (𝑓𝑥) ∈ 𝐵)))
9944, 89, 98sylc 65 . . . . 5 ((𝜑𝑔 Fn ran (𝑥𝐴𝐵) ∧ ∀𝑦 ∈ ran (𝑥𝐴𝐵)(𝑔𝑦) ∈ 𝑦) → ∃𝑓(𝑓 Fn 𝐴 ∧ ∀𝑥𝐴 (𝑓𝑥) ∈ 𝐵))
1008, 9, 38, 99syl3anc 1494 . . . 4 ((𝜑 ∧ (𝑔 Fn ran (𝑥𝐴𝐵) ∧ ∀𝑦 ∈ ran (𝑥𝐴𝐵)(𝑦 ≠ ∅ → (𝑔𝑦) ∈ 𝑦))) → ∃𝑓(𝑓 Fn 𝐴 ∧ ∀𝑥𝐴 (𝑓𝑥) ∈ 𝐵))
101100ex 403 . . 3 (𝜑 → ((𝑔 Fn ran (𝑥𝐴𝐵) ∧ ∀𝑦 ∈ ran (𝑥𝐴𝐵)(𝑦 ≠ ∅ → (𝑔𝑦) ∈ 𝑦)) → ∃𝑓(𝑓 Fn 𝐴 ∧ ∀𝑥𝐴 (𝑓𝑥) ∈ 𝐵)))
102101exlimdv 2032 . 2 (𝜑 → (∃𝑔(𝑔 Fn ran (𝑥𝐴𝐵) ∧ ∀𝑦 ∈ ran (𝑥𝐴𝐵)(𝑦 ≠ ∅ → (𝑔𝑦) ∈ 𝑦)) → ∃𝑓(𝑓 Fn 𝐴 ∧ ∀𝑥𝐴 (𝑓𝑥) ∈ 𝐵)))
1037, 102mpd 15 1 (𝜑 → ∃𝑓(𝑓 Fn 𝐴 ∧ ∀𝑥𝐴 (𝑓𝑥) ∈ 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 198  wa 386  w3a 1111   = wceq 1656  wex 1878  wcel 2164  wne 2999  wral 3117  wrex 3118  Vcvv 3414  wss 3798  c0 4146  cmpt 4954  dom cdm 5346  ran crn 5347  ccom 5350  Fun wfun 6121   Fn wfn 6122  cfv 6127  Fincfn 8228
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1894  ax-4 1908  ax-5 2009  ax-6 2075  ax-7 2112  ax-8 2166  ax-9 2173  ax-10 2192  ax-11 2207  ax-12 2220  ax-13 2389  ax-ext 2803  ax-rep 4996  ax-sep 5007  ax-nul 5015  ax-pow 5067  ax-pr 5129  ax-un 7214
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 879  df-3or 1112  df-3an 1113  df-tru 1660  df-ex 1879  df-nf 1883  df-sb 2068  df-mo 2605  df-eu 2640  df-clab 2812  df-cleq 2818  df-clel 2821  df-nfc 2958  df-ne 3000  df-ral 3122  df-rex 3123  df-reu 3124  df-rab 3126  df-v 3416  df-sbc 3663  df-csb 3758  df-dif 3801  df-un 3803  df-in 3805  df-ss 3812  df-pss 3814  df-nul 4147  df-if 4309  df-pw 4382  df-sn 4400  df-pr 4402  df-tp 4404  df-op 4406  df-uni 4661  df-int 4700  df-iun 4744  df-br 4876  df-opab 4938  df-mpt 4955  df-tr 4978  df-id 5252  df-eprel 5257  df-po 5265  df-so 5266  df-fr 5305  df-we 5307  df-xp 5352  df-rel 5353  df-cnv 5354  df-co 5355  df-dm 5356  df-rn 5357  df-res 5358  df-ima 5359  df-pred 5924  df-ord 5970  df-on 5971  df-lim 5972  df-suc 5973  df-iota 6090  df-fun 6129  df-fn 6130  df-f 6131  df-f1 6132  df-fo 6133  df-f1o 6134  df-fv 6135  df-ov 6913  df-oprab 6914  df-mpt2 6915  df-om 7332  df-1st 7433  df-2nd 7434  df-wrecs 7677  df-recs 7739  df-rdg 7777  df-1o 7831  df-oadd 7835  df-er 8014  df-en 8229  df-dom 8230  df-fin 8232
This theorem is referenced by:  axccdom  40217  axccd2  40227  qndenserrnbllem  41299  hoiqssbllem3  41626
  Copyright terms: Public domain W3C validator