MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nftpos Structured version   Visualization version   GIF version

Theorem nftpos 8191
Description: Hypothesis builder for transposition. (Contributed by Mario Carneiro, 10-Sep-2015.)
Hypothesis
Ref Expression
nftpos.1 𝑥𝐹
Assertion
Ref Expression
nftpos 𝑥tpos 𝐹

Proof of Theorem nftpos
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 dftpos4 8175 . 2 tpos 𝐹 = (𝐹 ∘ (𝑦 ∈ ((V × V) ∪ {∅}) ↦ {𝑦}))
2 nftpos.1 . . 3 𝑥𝐹
3 nfcv 2894 . . 3 𝑥(𝑦 ∈ ((V × V) ∪ {∅}) ↦ {𝑦})
42, 3nfco 5805 . 2 𝑥(𝐹 ∘ (𝑦 ∈ ((V × V) ∪ {∅}) ↦ {𝑦}))
51, 4nfcxfr 2892 1 𝑥tpos 𝐹
Colors of variables: wff setvar class
Syntax hints:  wnfc 2879  Vcvv 3436  cun 3900  c0 4283  {csn 4576   cuni 4859  cmpt 5172   × cxp 5614  ccnv 5615  ccom 5620  tpos ctpos 8155
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5234  ax-nul 5244  ax-pow 5303  ax-pr 5370  ax-un 7668
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-nul 4284  df-if 4476  df-pw 4552  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-br 5092  df-opab 5154  df-mpt 5173  df-id 5511  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-iota 6437  df-fun 6483  df-fn 6484  df-fv 6489  df-tpos 8156
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator