Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > nftpos | Structured version Visualization version GIF version |
Description: Hypothesis builder for transposition. (Contributed by Mario Carneiro, 10-Sep-2015.) |
Ref | Expression |
---|---|
nftpos.1 | ⊢ Ⅎ𝑥𝐹 |
Ref | Expression |
---|---|
nftpos | ⊢ Ⅎ𝑥tpos 𝐹 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dftpos4 7928 | . 2 ⊢ tpos 𝐹 = (𝐹 ∘ (𝑦 ∈ ((V × V) ∪ {∅}) ↦ ∪ ◡{𝑦})) | |
2 | nftpos.1 | . . 3 ⊢ Ⅎ𝑥𝐹 | |
3 | nfcv 2920 | . . 3 ⊢ Ⅎ𝑥(𝑦 ∈ ((V × V) ∪ {∅}) ↦ ∪ ◡{𝑦}) | |
4 | 2, 3 | nfco 5712 | . 2 ⊢ Ⅎ𝑥(𝐹 ∘ (𝑦 ∈ ((V × V) ∪ {∅}) ↦ ∪ ◡{𝑦})) |
5 | 1, 4 | nfcxfr 2918 | 1 ⊢ Ⅎ𝑥tpos 𝐹 |
Colors of variables: wff setvar class |
Syntax hints: Ⅎwnfc 2900 Vcvv 3410 ∪ cun 3859 ∅c0 4228 {csn 4526 ∪ cuni 4802 ↦ cmpt 5117 × cxp 5527 ◡ccnv 5528 ∘ ccom 5533 tpos ctpos 7908 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1912 ax-6 1971 ax-7 2016 ax-8 2114 ax-9 2122 ax-10 2143 ax-11 2159 ax-12 2176 ax-ext 2730 ax-sep 5174 ax-nul 5181 ax-pow 5239 ax-pr 5303 ax-un 7466 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 845 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2071 df-mo 2558 df-eu 2589 df-clab 2737 df-cleq 2751 df-clel 2831 df-nfc 2902 df-ne 2953 df-ral 3076 df-rex 3077 df-rab 3080 df-v 3412 df-sbc 3700 df-dif 3864 df-un 3866 df-in 3868 df-ss 3878 df-nul 4229 df-if 4425 df-pw 4500 df-sn 4527 df-pr 4529 df-op 4533 df-uni 4803 df-br 5038 df-opab 5100 df-mpt 5118 df-id 5435 df-xp 5535 df-rel 5536 df-cnv 5537 df-co 5538 df-dm 5539 df-rn 5540 df-res 5541 df-ima 5542 df-iota 6300 df-fun 6343 df-fn 6344 df-fv 6349 df-tpos 7909 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |