MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nftpos Structured version   Visualization version   GIF version

Theorem nftpos 8285
Description: Hypothesis builder for transposition. (Contributed by Mario Carneiro, 10-Sep-2015.)
Hypothesis
Ref Expression
nftpos.1 𝑥𝐹
Assertion
Ref Expression
nftpos 𝑥tpos 𝐹

Proof of Theorem nftpos
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 dftpos4 8269 . 2 tpos 𝐹 = (𝐹 ∘ (𝑦 ∈ ((V × V) ∪ {∅}) ↦ {𝑦}))
2 nftpos.1 . . 3 𝑥𝐹
3 nfcv 2903 . . 3 𝑥(𝑦 ∈ ((V × V) ∪ {∅}) ↦ {𝑦})
42, 3nfco 5879 . 2 𝑥(𝐹 ∘ (𝑦 ∈ ((V × V) ∪ {∅}) ↦ {𝑦}))
51, 4nfcxfr 2901 1 𝑥tpos 𝐹
Colors of variables: wff setvar class
Syntax hints:  wnfc 2888  Vcvv 3478  cun 3961  c0 4339  {csn 4631   cuni 4912  cmpt 5231   × cxp 5687  ccnv 5688  ccom 5693  tpos ctpos 8249
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-ral 3060  df-rex 3069  df-rab 3434  df-v 3480  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5583  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-iota 6516  df-fun 6565  df-fn 6566  df-fv 6571  df-tpos 8250
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator