Step | Hyp | Ref
| Expression |
1 | | simpr 484 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝑥 ∈ 𝑋) |
2 | | cnmptid.j |
. . . . . . . . . . 11
⊢ (𝜑 → 𝐽 ∈ (TopOn‘𝑋)) |
3 | | cnmpt11.k |
. . . . . . . . . . 11
⊢ (𝜑 → 𝐾 ∈ (TopOn‘𝑌)) |
4 | | cnmpt11.a |
. . . . . . . . . . 11
⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ 𝐴) ∈ (𝐽 Cn 𝐾)) |
5 | | cnf2 22308 |
. . . . . . . . . . 11
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ (𝑥 ∈ 𝑋 ↦ 𝐴) ∈ (𝐽 Cn 𝐾)) → (𝑥 ∈ 𝑋 ↦ 𝐴):𝑋⟶𝑌) |
6 | 2, 3, 4, 5 | syl3anc 1369 |
. . . . . . . . . 10
⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ 𝐴):𝑋⟶𝑌) |
7 | 6 | fvmptelrn 6969 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝐴 ∈ 𝑌) |
8 | | eqid 2738 |
. . . . . . . . . 10
⊢ (𝑥 ∈ 𝑋 ↦ 𝐴) = (𝑥 ∈ 𝑋 ↦ 𝐴) |
9 | 8 | fvmpt2 6868 |
. . . . . . . . 9
⊢ ((𝑥 ∈ 𝑋 ∧ 𝐴 ∈ 𝑌) → ((𝑥 ∈ 𝑋 ↦ 𝐴)‘𝑥) = 𝐴) |
10 | 1, 7, 9 | syl2anc 583 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → ((𝑥 ∈ 𝑋 ↦ 𝐴)‘𝑥) = 𝐴) |
11 | 10 | fveq2d 6760 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → ((𝑦 ∈ 𝑌 ↦ 𝐵)‘((𝑥 ∈ 𝑋 ↦ 𝐴)‘𝑥)) = ((𝑦 ∈ 𝑌 ↦ 𝐵)‘𝐴)) |
12 | | eqid 2738 |
. . . . . . . 8
⊢ (𝑦 ∈ 𝑌 ↦ 𝐵) = (𝑦 ∈ 𝑌 ↦ 𝐵) |
13 | | cnmpt11.c |
. . . . . . . 8
⊢ (𝑦 = 𝐴 → 𝐵 = 𝐶) |
14 | 13 | eleq1d 2823 |
. . . . . . . . 9
⊢ (𝑦 = 𝐴 → (𝐵 ∈ ∪ 𝐿 ↔ 𝐶 ∈ ∪ 𝐿)) |
15 | | cnmpt11.b |
. . . . . . . . . . . . . 14
⊢ (𝜑 → (𝑦 ∈ 𝑌 ↦ 𝐵) ∈ (𝐾 Cn 𝐿)) |
16 | | cntop2 22300 |
. . . . . . . . . . . . . 14
⊢ ((𝑦 ∈ 𝑌 ↦ 𝐵) ∈ (𝐾 Cn 𝐿) → 𝐿 ∈ Top) |
17 | 15, 16 | syl 17 |
. . . . . . . . . . . . 13
⊢ (𝜑 → 𝐿 ∈ Top) |
18 | | toptopon2 21975 |
. . . . . . . . . . . . 13
⊢ (𝐿 ∈ Top ↔ 𝐿 ∈ (TopOn‘∪ 𝐿)) |
19 | 17, 18 | sylib 217 |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝐿 ∈ (TopOn‘∪ 𝐿)) |
20 | | cnf2 22308 |
. . . . . . . . . . . 12
⊢ ((𝐾 ∈ (TopOn‘𝑌) ∧ 𝐿 ∈ (TopOn‘∪ 𝐿)
∧ (𝑦 ∈ 𝑌 ↦ 𝐵) ∈ (𝐾 Cn 𝐿)) → (𝑦 ∈ 𝑌 ↦ 𝐵):𝑌⟶∪ 𝐿) |
21 | 3, 19, 15, 20 | syl3anc 1369 |
. . . . . . . . . . 11
⊢ (𝜑 → (𝑦 ∈ 𝑌 ↦ 𝐵):𝑌⟶∪ 𝐿) |
22 | 12 | fmpt 6966 |
. . . . . . . . . . 11
⊢
(∀𝑦 ∈
𝑌 𝐵 ∈ ∪ 𝐿 ↔ (𝑦 ∈ 𝑌 ↦ 𝐵):𝑌⟶∪ 𝐿) |
23 | 21, 22 | sylibr 233 |
. . . . . . . . . 10
⊢ (𝜑 → ∀𝑦 ∈ 𝑌 𝐵 ∈ ∪ 𝐿) |
24 | 23 | adantr 480 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → ∀𝑦 ∈ 𝑌 𝐵 ∈ ∪ 𝐿) |
25 | 14, 24, 7 | rspcdva 3554 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝐶 ∈ ∪ 𝐿) |
26 | 12, 13, 7, 25 | fvmptd3 6880 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → ((𝑦 ∈ 𝑌 ↦ 𝐵)‘𝐴) = 𝐶) |
27 | 11, 26 | eqtrd 2778 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → ((𝑦 ∈ 𝑌 ↦ 𝐵)‘((𝑥 ∈ 𝑋 ↦ 𝐴)‘𝑥)) = 𝐶) |
28 | | fvco3 6849 |
. . . . . . 7
⊢ (((𝑥 ∈ 𝑋 ↦ 𝐴):𝑋⟶𝑌 ∧ 𝑥 ∈ 𝑋) → (((𝑦 ∈ 𝑌 ↦ 𝐵) ∘ (𝑥 ∈ 𝑋 ↦ 𝐴))‘𝑥) = ((𝑦 ∈ 𝑌 ↦ 𝐵)‘((𝑥 ∈ 𝑋 ↦ 𝐴)‘𝑥))) |
29 | 6, 28 | sylan 579 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → (((𝑦 ∈ 𝑌 ↦ 𝐵) ∘ (𝑥 ∈ 𝑋 ↦ 𝐴))‘𝑥) = ((𝑦 ∈ 𝑌 ↦ 𝐵)‘((𝑥 ∈ 𝑋 ↦ 𝐴)‘𝑥))) |
30 | | eqid 2738 |
. . . . . . . 8
⊢ (𝑥 ∈ 𝑋 ↦ 𝐶) = (𝑥 ∈ 𝑋 ↦ 𝐶) |
31 | 30 | fvmpt2 6868 |
. . . . . . 7
⊢ ((𝑥 ∈ 𝑋 ∧ 𝐶 ∈ ∪ 𝐿) → ((𝑥 ∈ 𝑋 ↦ 𝐶)‘𝑥) = 𝐶) |
32 | 1, 25, 31 | syl2anc 583 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → ((𝑥 ∈ 𝑋 ↦ 𝐶)‘𝑥) = 𝐶) |
33 | 27, 29, 32 | 3eqtr4d 2788 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → (((𝑦 ∈ 𝑌 ↦ 𝐵) ∘ (𝑥 ∈ 𝑋 ↦ 𝐴))‘𝑥) = ((𝑥 ∈ 𝑋 ↦ 𝐶)‘𝑥)) |
34 | 33 | ralrimiva 3107 |
. . . 4
⊢ (𝜑 → ∀𝑥 ∈ 𝑋 (((𝑦 ∈ 𝑌 ↦ 𝐵) ∘ (𝑥 ∈ 𝑋 ↦ 𝐴))‘𝑥) = ((𝑥 ∈ 𝑋 ↦ 𝐶)‘𝑥)) |
35 | | nfv 1918 |
. . . . 5
⊢
Ⅎ𝑧(((𝑦 ∈ 𝑌 ↦ 𝐵) ∘ (𝑥 ∈ 𝑋 ↦ 𝐴))‘𝑥) = ((𝑥 ∈ 𝑋 ↦ 𝐶)‘𝑥) |
36 | | nfcv 2906 |
. . . . . . . 8
⊢
Ⅎ𝑥(𝑦 ∈ 𝑌 ↦ 𝐵) |
37 | | nfmpt1 5178 |
. . . . . . . 8
⊢
Ⅎ𝑥(𝑥 ∈ 𝑋 ↦ 𝐴) |
38 | 36, 37 | nfco 5763 |
. . . . . . 7
⊢
Ⅎ𝑥((𝑦 ∈ 𝑌 ↦ 𝐵) ∘ (𝑥 ∈ 𝑋 ↦ 𝐴)) |
39 | | nfcv 2906 |
. . . . . . 7
⊢
Ⅎ𝑥𝑧 |
40 | 38, 39 | nffv 6766 |
. . . . . 6
⊢
Ⅎ𝑥(((𝑦 ∈ 𝑌 ↦ 𝐵) ∘ (𝑥 ∈ 𝑋 ↦ 𝐴))‘𝑧) |
41 | | nfmpt1 5178 |
. . . . . . 7
⊢
Ⅎ𝑥(𝑥 ∈ 𝑋 ↦ 𝐶) |
42 | 41, 39 | nffv 6766 |
. . . . . 6
⊢
Ⅎ𝑥((𝑥 ∈ 𝑋 ↦ 𝐶)‘𝑧) |
43 | 40, 42 | nfeq 2919 |
. . . . 5
⊢
Ⅎ𝑥(((𝑦 ∈ 𝑌 ↦ 𝐵) ∘ (𝑥 ∈ 𝑋 ↦ 𝐴))‘𝑧) = ((𝑥 ∈ 𝑋 ↦ 𝐶)‘𝑧) |
44 | | fveq2 6756 |
. . . . . 6
⊢ (𝑥 = 𝑧 → (((𝑦 ∈ 𝑌 ↦ 𝐵) ∘ (𝑥 ∈ 𝑋 ↦ 𝐴))‘𝑥) = (((𝑦 ∈ 𝑌 ↦ 𝐵) ∘ (𝑥 ∈ 𝑋 ↦ 𝐴))‘𝑧)) |
45 | | fveq2 6756 |
. . . . . 6
⊢ (𝑥 = 𝑧 → ((𝑥 ∈ 𝑋 ↦ 𝐶)‘𝑥) = ((𝑥 ∈ 𝑋 ↦ 𝐶)‘𝑧)) |
46 | 44, 45 | eqeq12d 2754 |
. . . . 5
⊢ (𝑥 = 𝑧 → ((((𝑦 ∈ 𝑌 ↦ 𝐵) ∘ (𝑥 ∈ 𝑋 ↦ 𝐴))‘𝑥) = ((𝑥 ∈ 𝑋 ↦ 𝐶)‘𝑥) ↔ (((𝑦 ∈ 𝑌 ↦ 𝐵) ∘ (𝑥 ∈ 𝑋 ↦ 𝐴))‘𝑧) = ((𝑥 ∈ 𝑋 ↦ 𝐶)‘𝑧))) |
47 | 35, 43, 46 | cbvralw 3363 |
. . . 4
⊢
(∀𝑥 ∈
𝑋 (((𝑦 ∈ 𝑌 ↦ 𝐵) ∘ (𝑥 ∈ 𝑋 ↦ 𝐴))‘𝑥) = ((𝑥 ∈ 𝑋 ↦ 𝐶)‘𝑥) ↔ ∀𝑧 ∈ 𝑋 (((𝑦 ∈ 𝑌 ↦ 𝐵) ∘ (𝑥 ∈ 𝑋 ↦ 𝐴))‘𝑧) = ((𝑥 ∈ 𝑋 ↦ 𝐶)‘𝑧)) |
48 | 34, 47 | sylib 217 |
. . 3
⊢ (𝜑 → ∀𝑧 ∈ 𝑋 (((𝑦 ∈ 𝑌 ↦ 𝐵) ∘ (𝑥 ∈ 𝑋 ↦ 𝐴))‘𝑧) = ((𝑥 ∈ 𝑋 ↦ 𝐶)‘𝑧)) |
49 | | fco 6608 |
. . . . . 6
⊢ (((𝑦 ∈ 𝑌 ↦ 𝐵):𝑌⟶∪ 𝐿 ∧ (𝑥 ∈ 𝑋 ↦ 𝐴):𝑋⟶𝑌) → ((𝑦 ∈ 𝑌 ↦ 𝐵) ∘ (𝑥 ∈ 𝑋 ↦ 𝐴)):𝑋⟶∪ 𝐿) |
50 | 21, 6, 49 | syl2anc 583 |
. . . . 5
⊢ (𝜑 → ((𝑦 ∈ 𝑌 ↦ 𝐵) ∘ (𝑥 ∈ 𝑋 ↦ 𝐴)):𝑋⟶∪ 𝐿) |
51 | 50 | ffnd 6585 |
. . . 4
⊢ (𝜑 → ((𝑦 ∈ 𝑌 ↦ 𝐵) ∘ (𝑥 ∈ 𝑋 ↦ 𝐴)) Fn 𝑋) |
52 | 25 | fmpttd 6971 |
. . . . 5
⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ 𝐶):𝑋⟶∪ 𝐿) |
53 | 52 | ffnd 6585 |
. . . 4
⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ 𝐶) Fn 𝑋) |
54 | | eqfnfv 6891 |
. . . 4
⊢ ((((𝑦 ∈ 𝑌 ↦ 𝐵) ∘ (𝑥 ∈ 𝑋 ↦ 𝐴)) Fn 𝑋 ∧ (𝑥 ∈ 𝑋 ↦ 𝐶) Fn 𝑋) → (((𝑦 ∈ 𝑌 ↦ 𝐵) ∘ (𝑥 ∈ 𝑋 ↦ 𝐴)) = (𝑥 ∈ 𝑋 ↦ 𝐶) ↔ ∀𝑧 ∈ 𝑋 (((𝑦 ∈ 𝑌 ↦ 𝐵) ∘ (𝑥 ∈ 𝑋 ↦ 𝐴))‘𝑧) = ((𝑥 ∈ 𝑋 ↦ 𝐶)‘𝑧))) |
55 | 51, 53, 54 | syl2anc 583 |
. . 3
⊢ (𝜑 → (((𝑦 ∈ 𝑌 ↦ 𝐵) ∘ (𝑥 ∈ 𝑋 ↦ 𝐴)) = (𝑥 ∈ 𝑋 ↦ 𝐶) ↔ ∀𝑧 ∈ 𝑋 (((𝑦 ∈ 𝑌 ↦ 𝐵) ∘ (𝑥 ∈ 𝑋 ↦ 𝐴))‘𝑧) = ((𝑥 ∈ 𝑋 ↦ 𝐶)‘𝑧))) |
56 | 48, 55 | mpbird 256 |
. 2
⊢ (𝜑 → ((𝑦 ∈ 𝑌 ↦ 𝐵) ∘ (𝑥 ∈ 𝑋 ↦ 𝐴)) = (𝑥 ∈ 𝑋 ↦ 𝐶)) |
57 | | cnco 22325 |
. . 3
⊢ (((𝑥 ∈ 𝑋 ↦ 𝐴) ∈ (𝐽 Cn 𝐾) ∧ (𝑦 ∈ 𝑌 ↦ 𝐵) ∈ (𝐾 Cn 𝐿)) → ((𝑦 ∈ 𝑌 ↦ 𝐵) ∘ (𝑥 ∈ 𝑋 ↦ 𝐴)) ∈ (𝐽 Cn 𝐿)) |
58 | 4, 15, 57 | syl2anc 583 |
. 2
⊢ (𝜑 → ((𝑦 ∈ 𝑌 ↦ 𝐵) ∘ (𝑥 ∈ 𝑋 ↦ 𝐴)) ∈ (𝐽 Cn 𝐿)) |
59 | 56, 58 | eqeltrrd 2840 |
1
⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ 𝐶) ∈ (𝐽 Cn 𝐿)) |