MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cnmpt11 Structured version   Visualization version   GIF version

Theorem cnmpt11 23658
Description: The composition of continuous functions is continuous. (Contributed by Mario Carneiro, 5-May-2014.) (Revised by Mario Carneiro, 22-Aug-2015.)
Hypotheses
Ref Expression
cnmptid.j (𝜑𝐽 ∈ (TopOn‘𝑋))
cnmpt11.a (𝜑 → (𝑥𝑋𝐴) ∈ (𝐽 Cn 𝐾))
cnmpt11.k (𝜑𝐾 ∈ (TopOn‘𝑌))
cnmpt11.b (𝜑 → (𝑦𝑌𝐵) ∈ (𝐾 Cn 𝐿))
cnmpt11.c (𝑦 = 𝐴𝐵 = 𝐶)
Assertion
Ref Expression
cnmpt11 (𝜑 → (𝑥𝑋𝐶) ∈ (𝐽 Cn 𝐿))
Distinct variable groups:   𝑦,𝐴   𝑥,𝑦   𝜑,𝑥   𝑥,𝐽,𝑦   𝑥,𝑋,𝑦   𝑥,𝑌,𝑦   𝑥,𝐾,𝑦   𝑥,𝐿,𝑦   𝑥,𝐵   𝑦,𝐶
Allowed substitution hints:   𝜑(𝑦)   𝐴(𝑥)   𝐵(𝑦)   𝐶(𝑥)

Proof of Theorem cnmpt11
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 simpr 483 . . . . . . . . 9 ((𝜑𝑥𝑋) → 𝑥𝑋)
2 cnmptid.j . . . . . . . . . . 11 (𝜑𝐽 ∈ (TopOn‘𝑋))
3 cnmpt11.k . . . . . . . . . . 11 (𝜑𝐾 ∈ (TopOn‘𝑌))
4 cnmpt11.a . . . . . . . . . . 11 (𝜑 → (𝑥𝑋𝐴) ∈ (𝐽 Cn 𝐾))
5 cnf2 23244 . . . . . . . . . . 11 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ (𝑥𝑋𝐴) ∈ (𝐽 Cn 𝐾)) → (𝑥𝑋𝐴):𝑋𝑌)
62, 3, 4, 5syl3anc 1368 . . . . . . . . . 10 (𝜑 → (𝑥𝑋𝐴):𝑋𝑌)
76fvmptelcdm 7127 . . . . . . . . 9 ((𝜑𝑥𝑋) → 𝐴𝑌)
8 eqid 2726 . . . . . . . . . 10 (𝑥𝑋𝐴) = (𝑥𝑋𝐴)
98fvmpt2 7020 . . . . . . . . 9 ((𝑥𝑋𝐴𝑌) → ((𝑥𝑋𝐴)‘𝑥) = 𝐴)
101, 7, 9syl2anc 582 . . . . . . . 8 ((𝜑𝑥𝑋) → ((𝑥𝑋𝐴)‘𝑥) = 𝐴)
1110fveq2d 6905 . . . . . . 7 ((𝜑𝑥𝑋) → ((𝑦𝑌𝐵)‘((𝑥𝑋𝐴)‘𝑥)) = ((𝑦𝑌𝐵)‘𝐴))
12 eqid 2726 . . . . . . . 8 (𝑦𝑌𝐵) = (𝑦𝑌𝐵)
13 cnmpt11.c . . . . . . . 8 (𝑦 = 𝐴𝐵 = 𝐶)
1413eleq1d 2811 . . . . . . . . 9 (𝑦 = 𝐴 → (𝐵 𝐿𝐶 𝐿))
15 cnmpt11.b . . . . . . . . . . . . . 14 (𝜑 → (𝑦𝑌𝐵) ∈ (𝐾 Cn 𝐿))
16 cntop2 23236 . . . . . . . . . . . . . 14 ((𝑦𝑌𝐵) ∈ (𝐾 Cn 𝐿) → 𝐿 ∈ Top)
1715, 16syl 17 . . . . . . . . . . . . 13 (𝜑𝐿 ∈ Top)
18 toptopon2 22911 . . . . . . . . . . . . 13 (𝐿 ∈ Top ↔ 𝐿 ∈ (TopOn‘ 𝐿))
1917, 18sylib 217 . . . . . . . . . . . 12 (𝜑𝐿 ∈ (TopOn‘ 𝐿))
20 cnf2 23244 . . . . . . . . . . . 12 ((𝐾 ∈ (TopOn‘𝑌) ∧ 𝐿 ∈ (TopOn‘ 𝐿) ∧ (𝑦𝑌𝐵) ∈ (𝐾 Cn 𝐿)) → (𝑦𝑌𝐵):𝑌 𝐿)
213, 19, 15, 20syl3anc 1368 . . . . . . . . . . 11 (𝜑 → (𝑦𝑌𝐵):𝑌 𝐿)
2212fmpt 7124 . . . . . . . . . . 11 (∀𝑦𝑌 𝐵 𝐿 ↔ (𝑦𝑌𝐵):𝑌 𝐿)
2321, 22sylibr 233 . . . . . . . . . 10 (𝜑 → ∀𝑦𝑌 𝐵 𝐿)
2423adantr 479 . . . . . . . . 9 ((𝜑𝑥𝑋) → ∀𝑦𝑌 𝐵 𝐿)
2514, 24, 7rspcdva 3609 . . . . . . . 8 ((𝜑𝑥𝑋) → 𝐶 𝐿)
2612, 13, 7, 25fvmptd3 7032 . . . . . . 7 ((𝜑𝑥𝑋) → ((𝑦𝑌𝐵)‘𝐴) = 𝐶)
2711, 26eqtrd 2766 . . . . . 6 ((𝜑𝑥𝑋) → ((𝑦𝑌𝐵)‘((𝑥𝑋𝐴)‘𝑥)) = 𝐶)
28 fvco3 7001 . . . . . . 7 (((𝑥𝑋𝐴):𝑋𝑌𝑥𝑋) → (((𝑦𝑌𝐵) ∘ (𝑥𝑋𝐴))‘𝑥) = ((𝑦𝑌𝐵)‘((𝑥𝑋𝐴)‘𝑥)))
296, 28sylan 578 . . . . . 6 ((𝜑𝑥𝑋) → (((𝑦𝑌𝐵) ∘ (𝑥𝑋𝐴))‘𝑥) = ((𝑦𝑌𝐵)‘((𝑥𝑋𝐴)‘𝑥)))
30 eqid 2726 . . . . . . . 8 (𝑥𝑋𝐶) = (𝑥𝑋𝐶)
3130fvmpt2 7020 . . . . . . 7 ((𝑥𝑋𝐶 𝐿) → ((𝑥𝑋𝐶)‘𝑥) = 𝐶)
321, 25, 31syl2anc 582 . . . . . 6 ((𝜑𝑥𝑋) → ((𝑥𝑋𝐶)‘𝑥) = 𝐶)
3327, 29, 323eqtr4d 2776 . . . . 5 ((𝜑𝑥𝑋) → (((𝑦𝑌𝐵) ∘ (𝑥𝑋𝐴))‘𝑥) = ((𝑥𝑋𝐶)‘𝑥))
3433ralrimiva 3136 . . . 4 (𝜑 → ∀𝑥𝑋 (((𝑦𝑌𝐵) ∘ (𝑥𝑋𝐴))‘𝑥) = ((𝑥𝑋𝐶)‘𝑥))
35 nfv 1910 . . . . 5 𝑧(((𝑦𝑌𝐵) ∘ (𝑥𝑋𝐴))‘𝑥) = ((𝑥𝑋𝐶)‘𝑥)
36 nfcv 2892 . . . . . . . 8 𝑥(𝑦𝑌𝐵)
37 nfmpt1 5261 . . . . . . . 8 𝑥(𝑥𝑋𝐴)
3836, 37nfco 5872 . . . . . . 7 𝑥((𝑦𝑌𝐵) ∘ (𝑥𝑋𝐴))
39 nfcv 2892 . . . . . . 7 𝑥𝑧
4038, 39nffv 6911 . . . . . 6 𝑥(((𝑦𝑌𝐵) ∘ (𝑥𝑋𝐴))‘𝑧)
41 nfmpt1 5261 . . . . . . 7 𝑥(𝑥𝑋𝐶)
4241, 39nffv 6911 . . . . . 6 𝑥((𝑥𝑋𝐶)‘𝑧)
4340, 42nfeq 2906 . . . . 5 𝑥(((𝑦𝑌𝐵) ∘ (𝑥𝑋𝐴))‘𝑧) = ((𝑥𝑋𝐶)‘𝑧)
44 fveq2 6901 . . . . . 6 (𝑥 = 𝑧 → (((𝑦𝑌𝐵) ∘ (𝑥𝑋𝐴))‘𝑥) = (((𝑦𝑌𝐵) ∘ (𝑥𝑋𝐴))‘𝑧))
45 fveq2 6901 . . . . . 6 (𝑥 = 𝑧 → ((𝑥𝑋𝐶)‘𝑥) = ((𝑥𝑋𝐶)‘𝑧))
4644, 45eqeq12d 2742 . . . . 5 (𝑥 = 𝑧 → ((((𝑦𝑌𝐵) ∘ (𝑥𝑋𝐴))‘𝑥) = ((𝑥𝑋𝐶)‘𝑥) ↔ (((𝑦𝑌𝐵) ∘ (𝑥𝑋𝐴))‘𝑧) = ((𝑥𝑋𝐶)‘𝑧)))
4735, 43, 46cbvralw 3294 . . . 4 (∀𝑥𝑋 (((𝑦𝑌𝐵) ∘ (𝑥𝑋𝐴))‘𝑥) = ((𝑥𝑋𝐶)‘𝑥) ↔ ∀𝑧𝑋 (((𝑦𝑌𝐵) ∘ (𝑥𝑋𝐴))‘𝑧) = ((𝑥𝑋𝐶)‘𝑧))
4834, 47sylib 217 . . 3 (𝜑 → ∀𝑧𝑋 (((𝑦𝑌𝐵) ∘ (𝑥𝑋𝐴))‘𝑧) = ((𝑥𝑋𝐶)‘𝑧))
49 fco 6752 . . . . . 6 (((𝑦𝑌𝐵):𝑌 𝐿 ∧ (𝑥𝑋𝐴):𝑋𝑌) → ((𝑦𝑌𝐵) ∘ (𝑥𝑋𝐴)):𝑋 𝐿)
5021, 6, 49syl2anc 582 . . . . 5 (𝜑 → ((𝑦𝑌𝐵) ∘ (𝑥𝑋𝐴)):𝑋 𝐿)
5150ffnd 6729 . . . 4 (𝜑 → ((𝑦𝑌𝐵) ∘ (𝑥𝑋𝐴)) Fn 𝑋)
5225fmpttd 7129 . . . . 5 (𝜑 → (𝑥𝑋𝐶):𝑋 𝐿)
5352ffnd 6729 . . . 4 (𝜑 → (𝑥𝑋𝐶) Fn 𝑋)
54 eqfnfv 7044 . . . 4 ((((𝑦𝑌𝐵) ∘ (𝑥𝑋𝐴)) Fn 𝑋 ∧ (𝑥𝑋𝐶) Fn 𝑋) → (((𝑦𝑌𝐵) ∘ (𝑥𝑋𝐴)) = (𝑥𝑋𝐶) ↔ ∀𝑧𝑋 (((𝑦𝑌𝐵) ∘ (𝑥𝑋𝐴))‘𝑧) = ((𝑥𝑋𝐶)‘𝑧)))
5551, 53, 54syl2anc 582 . . 3 (𝜑 → (((𝑦𝑌𝐵) ∘ (𝑥𝑋𝐴)) = (𝑥𝑋𝐶) ↔ ∀𝑧𝑋 (((𝑦𝑌𝐵) ∘ (𝑥𝑋𝐴))‘𝑧) = ((𝑥𝑋𝐶)‘𝑧)))
5648, 55mpbird 256 . 2 (𝜑 → ((𝑦𝑌𝐵) ∘ (𝑥𝑋𝐴)) = (𝑥𝑋𝐶))
57 cnco 23261 . . 3 (((𝑥𝑋𝐴) ∈ (𝐽 Cn 𝐾) ∧ (𝑦𝑌𝐵) ∈ (𝐾 Cn 𝐿)) → ((𝑦𝑌𝐵) ∘ (𝑥𝑋𝐴)) ∈ (𝐽 Cn 𝐿))
584, 15, 57syl2anc 582 . 2 (𝜑 → ((𝑦𝑌𝐵) ∘ (𝑥𝑋𝐴)) ∈ (𝐽 Cn 𝐿))
5956, 58eqeltrrd 2827 1 (𝜑 → (𝑥𝑋𝐶) ∈ (𝐽 Cn 𝐿))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 394   = wceq 1534  wcel 2099  wral 3051   cuni 4913  cmpt 5236  ccom 5686   Fn wfn 6549  wf 6550  cfv 6554  (class class class)co 7424  Topctop 22886  TopOnctopon 22903   Cn ccn 23219
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2697  ax-sep 5304  ax-nul 5311  ax-pow 5369  ax-pr 5433  ax-un 7746
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3an 1086  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2704  df-cleq 2718  df-clel 2803  df-nfc 2878  df-ne 2931  df-ral 3052  df-rex 3061  df-rab 3420  df-v 3464  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4326  df-if 4534  df-pw 4609  df-sn 4634  df-pr 4636  df-op 4640  df-uni 4914  df-br 5154  df-opab 5216  df-mpt 5237  df-id 5580  df-xp 5688  df-rel 5689  df-cnv 5690  df-co 5691  df-dm 5692  df-rn 5693  df-res 5694  df-ima 5695  df-iota 6506  df-fun 6556  df-fn 6557  df-f 6558  df-fv 6562  df-ov 7427  df-oprab 7428  df-mpo 7429  df-map 8857  df-top 22887  df-topon 22904  df-cn 23222
This theorem is referenced by:  cnmpt11f  23659  cnmptkp  23675  cnmptk1  23676  cnmpt1k  23677  ptunhmeo  23803  tmdgsum  24090  icchmeo  24956  icchmeoOLD  24957  evth2  24977  sinccvglem  35500  poimir  37354  broucube  37355
  Copyright terms: Public domain W3C validator