MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cnmpt11 Structured version   Visualization version   GIF version

Theorem cnmpt11 23557
Description: The composition of continuous functions is continuous. (Contributed by Mario Carneiro, 5-May-2014.) (Revised by Mario Carneiro, 22-Aug-2015.)
Hypotheses
Ref Expression
cnmptid.j (𝜑𝐽 ∈ (TopOn‘𝑋))
cnmpt11.a (𝜑 → (𝑥𝑋𝐴) ∈ (𝐽 Cn 𝐾))
cnmpt11.k (𝜑𝐾 ∈ (TopOn‘𝑌))
cnmpt11.b (𝜑 → (𝑦𝑌𝐵) ∈ (𝐾 Cn 𝐿))
cnmpt11.c (𝑦 = 𝐴𝐵 = 𝐶)
Assertion
Ref Expression
cnmpt11 (𝜑 → (𝑥𝑋𝐶) ∈ (𝐽 Cn 𝐿))
Distinct variable groups:   𝑦,𝐴   𝑥,𝑦   𝜑,𝑥   𝑥,𝐽,𝑦   𝑥,𝑋,𝑦   𝑥,𝑌,𝑦   𝑥,𝐾,𝑦   𝑥,𝐿,𝑦   𝑥,𝐵   𝑦,𝐶
Allowed substitution hints:   𝜑(𝑦)   𝐴(𝑥)   𝐵(𝑦)   𝐶(𝑥)

Proof of Theorem cnmpt11
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 simpr 484 . . . . . . . . 9 ((𝜑𝑥𝑋) → 𝑥𝑋)
2 cnmptid.j . . . . . . . . . . 11 (𝜑𝐽 ∈ (TopOn‘𝑋))
3 cnmpt11.k . . . . . . . . . . 11 (𝜑𝐾 ∈ (TopOn‘𝑌))
4 cnmpt11.a . . . . . . . . . . 11 (𝜑 → (𝑥𝑋𝐴) ∈ (𝐽 Cn 𝐾))
5 cnf2 23143 . . . . . . . . . . 11 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ (𝑥𝑋𝐴) ∈ (𝐽 Cn 𝐾)) → (𝑥𝑋𝐴):𝑋𝑌)
62, 3, 4, 5syl3anc 1373 . . . . . . . . . 10 (𝜑 → (𝑥𝑋𝐴):𝑋𝑌)
76fvmptelcdm 7088 . . . . . . . . 9 ((𝜑𝑥𝑋) → 𝐴𝑌)
8 eqid 2730 . . . . . . . . . 10 (𝑥𝑋𝐴) = (𝑥𝑋𝐴)
98fvmpt2 6982 . . . . . . . . 9 ((𝑥𝑋𝐴𝑌) → ((𝑥𝑋𝐴)‘𝑥) = 𝐴)
101, 7, 9syl2anc 584 . . . . . . . 8 ((𝜑𝑥𝑋) → ((𝑥𝑋𝐴)‘𝑥) = 𝐴)
1110fveq2d 6865 . . . . . . 7 ((𝜑𝑥𝑋) → ((𝑦𝑌𝐵)‘((𝑥𝑋𝐴)‘𝑥)) = ((𝑦𝑌𝐵)‘𝐴))
12 eqid 2730 . . . . . . . 8 (𝑦𝑌𝐵) = (𝑦𝑌𝐵)
13 cnmpt11.c . . . . . . . 8 (𝑦 = 𝐴𝐵 = 𝐶)
1413eleq1d 2814 . . . . . . . . 9 (𝑦 = 𝐴 → (𝐵 𝐿𝐶 𝐿))
15 cnmpt11.b . . . . . . . . . . . . . 14 (𝜑 → (𝑦𝑌𝐵) ∈ (𝐾 Cn 𝐿))
16 cntop2 23135 . . . . . . . . . . . . . 14 ((𝑦𝑌𝐵) ∈ (𝐾 Cn 𝐿) → 𝐿 ∈ Top)
1715, 16syl 17 . . . . . . . . . . . . 13 (𝜑𝐿 ∈ Top)
18 toptopon2 22812 . . . . . . . . . . . . 13 (𝐿 ∈ Top ↔ 𝐿 ∈ (TopOn‘ 𝐿))
1917, 18sylib 218 . . . . . . . . . . . 12 (𝜑𝐿 ∈ (TopOn‘ 𝐿))
20 cnf2 23143 . . . . . . . . . . . 12 ((𝐾 ∈ (TopOn‘𝑌) ∧ 𝐿 ∈ (TopOn‘ 𝐿) ∧ (𝑦𝑌𝐵) ∈ (𝐾 Cn 𝐿)) → (𝑦𝑌𝐵):𝑌 𝐿)
213, 19, 15, 20syl3anc 1373 . . . . . . . . . . 11 (𝜑 → (𝑦𝑌𝐵):𝑌 𝐿)
2212fmpt 7085 . . . . . . . . . . 11 (∀𝑦𝑌 𝐵 𝐿 ↔ (𝑦𝑌𝐵):𝑌 𝐿)
2321, 22sylibr 234 . . . . . . . . . 10 (𝜑 → ∀𝑦𝑌 𝐵 𝐿)
2423adantr 480 . . . . . . . . 9 ((𝜑𝑥𝑋) → ∀𝑦𝑌 𝐵 𝐿)
2514, 24, 7rspcdva 3592 . . . . . . . 8 ((𝜑𝑥𝑋) → 𝐶 𝐿)
2612, 13, 7, 25fvmptd3 6994 . . . . . . 7 ((𝜑𝑥𝑋) → ((𝑦𝑌𝐵)‘𝐴) = 𝐶)
2711, 26eqtrd 2765 . . . . . 6 ((𝜑𝑥𝑋) → ((𝑦𝑌𝐵)‘((𝑥𝑋𝐴)‘𝑥)) = 𝐶)
28 fvco3 6963 . . . . . . 7 (((𝑥𝑋𝐴):𝑋𝑌𝑥𝑋) → (((𝑦𝑌𝐵) ∘ (𝑥𝑋𝐴))‘𝑥) = ((𝑦𝑌𝐵)‘((𝑥𝑋𝐴)‘𝑥)))
296, 28sylan 580 . . . . . 6 ((𝜑𝑥𝑋) → (((𝑦𝑌𝐵) ∘ (𝑥𝑋𝐴))‘𝑥) = ((𝑦𝑌𝐵)‘((𝑥𝑋𝐴)‘𝑥)))
30 eqid 2730 . . . . . . . 8 (𝑥𝑋𝐶) = (𝑥𝑋𝐶)
3130fvmpt2 6982 . . . . . . 7 ((𝑥𝑋𝐶 𝐿) → ((𝑥𝑋𝐶)‘𝑥) = 𝐶)
321, 25, 31syl2anc 584 . . . . . 6 ((𝜑𝑥𝑋) → ((𝑥𝑋𝐶)‘𝑥) = 𝐶)
3327, 29, 323eqtr4d 2775 . . . . 5 ((𝜑𝑥𝑋) → (((𝑦𝑌𝐵) ∘ (𝑥𝑋𝐴))‘𝑥) = ((𝑥𝑋𝐶)‘𝑥))
3433ralrimiva 3126 . . . 4 (𝜑 → ∀𝑥𝑋 (((𝑦𝑌𝐵) ∘ (𝑥𝑋𝐴))‘𝑥) = ((𝑥𝑋𝐶)‘𝑥))
35 nfv 1914 . . . . 5 𝑧(((𝑦𝑌𝐵) ∘ (𝑥𝑋𝐴))‘𝑥) = ((𝑥𝑋𝐶)‘𝑥)
36 nfcv 2892 . . . . . . . 8 𝑥(𝑦𝑌𝐵)
37 nfmpt1 5209 . . . . . . . 8 𝑥(𝑥𝑋𝐴)
3836, 37nfco 5832 . . . . . . 7 𝑥((𝑦𝑌𝐵) ∘ (𝑥𝑋𝐴))
39 nfcv 2892 . . . . . . 7 𝑥𝑧
4038, 39nffv 6871 . . . . . 6 𝑥(((𝑦𝑌𝐵) ∘ (𝑥𝑋𝐴))‘𝑧)
41 nfmpt1 5209 . . . . . . 7 𝑥(𝑥𝑋𝐶)
4241, 39nffv 6871 . . . . . 6 𝑥((𝑥𝑋𝐶)‘𝑧)
4340, 42nfeq 2906 . . . . 5 𝑥(((𝑦𝑌𝐵) ∘ (𝑥𝑋𝐴))‘𝑧) = ((𝑥𝑋𝐶)‘𝑧)
44 fveq2 6861 . . . . . 6 (𝑥 = 𝑧 → (((𝑦𝑌𝐵) ∘ (𝑥𝑋𝐴))‘𝑥) = (((𝑦𝑌𝐵) ∘ (𝑥𝑋𝐴))‘𝑧))
45 fveq2 6861 . . . . . 6 (𝑥 = 𝑧 → ((𝑥𝑋𝐶)‘𝑥) = ((𝑥𝑋𝐶)‘𝑧))
4644, 45eqeq12d 2746 . . . . 5 (𝑥 = 𝑧 → ((((𝑦𝑌𝐵) ∘ (𝑥𝑋𝐴))‘𝑥) = ((𝑥𝑋𝐶)‘𝑥) ↔ (((𝑦𝑌𝐵) ∘ (𝑥𝑋𝐴))‘𝑧) = ((𝑥𝑋𝐶)‘𝑧)))
4735, 43, 46cbvralw 3282 . . . 4 (∀𝑥𝑋 (((𝑦𝑌𝐵) ∘ (𝑥𝑋𝐴))‘𝑥) = ((𝑥𝑋𝐶)‘𝑥) ↔ ∀𝑧𝑋 (((𝑦𝑌𝐵) ∘ (𝑥𝑋𝐴))‘𝑧) = ((𝑥𝑋𝐶)‘𝑧))
4834, 47sylib 218 . . 3 (𝜑 → ∀𝑧𝑋 (((𝑦𝑌𝐵) ∘ (𝑥𝑋𝐴))‘𝑧) = ((𝑥𝑋𝐶)‘𝑧))
49 fco 6715 . . . . . 6 (((𝑦𝑌𝐵):𝑌 𝐿 ∧ (𝑥𝑋𝐴):𝑋𝑌) → ((𝑦𝑌𝐵) ∘ (𝑥𝑋𝐴)):𝑋 𝐿)
5021, 6, 49syl2anc 584 . . . . 5 (𝜑 → ((𝑦𝑌𝐵) ∘ (𝑥𝑋𝐴)):𝑋 𝐿)
5150ffnd 6692 . . . 4 (𝜑 → ((𝑦𝑌𝐵) ∘ (𝑥𝑋𝐴)) Fn 𝑋)
5225fmpttd 7090 . . . . 5 (𝜑 → (𝑥𝑋𝐶):𝑋 𝐿)
5352ffnd 6692 . . . 4 (𝜑 → (𝑥𝑋𝐶) Fn 𝑋)
54 eqfnfv 7006 . . . 4 ((((𝑦𝑌𝐵) ∘ (𝑥𝑋𝐴)) Fn 𝑋 ∧ (𝑥𝑋𝐶) Fn 𝑋) → (((𝑦𝑌𝐵) ∘ (𝑥𝑋𝐴)) = (𝑥𝑋𝐶) ↔ ∀𝑧𝑋 (((𝑦𝑌𝐵) ∘ (𝑥𝑋𝐴))‘𝑧) = ((𝑥𝑋𝐶)‘𝑧)))
5551, 53, 54syl2anc 584 . . 3 (𝜑 → (((𝑦𝑌𝐵) ∘ (𝑥𝑋𝐴)) = (𝑥𝑋𝐶) ↔ ∀𝑧𝑋 (((𝑦𝑌𝐵) ∘ (𝑥𝑋𝐴))‘𝑧) = ((𝑥𝑋𝐶)‘𝑧)))
5648, 55mpbird 257 . 2 (𝜑 → ((𝑦𝑌𝐵) ∘ (𝑥𝑋𝐴)) = (𝑥𝑋𝐶))
57 cnco 23160 . . 3 (((𝑥𝑋𝐴) ∈ (𝐽 Cn 𝐾) ∧ (𝑦𝑌𝐵) ∈ (𝐾 Cn 𝐿)) → ((𝑦𝑌𝐵) ∘ (𝑥𝑋𝐴)) ∈ (𝐽 Cn 𝐿))
584, 15, 57syl2anc 584 . 2 (𝜑 → ((𝑦𝑌𝐵) ∘ (𝑥𝑋𝐴)) ∈ (𝐽 Cn 𝐿))
5956, 58eqeltrrd 2830 1 (𝜑 → (𝑥𝑋𝐶) ∈ (𝐽 Cn 𝐿))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wral 3045   cuni 4874  cmpt 5191  ccom 5645   Fn wfn 6509  wf 6510  cfv 6514  (class class class)co 7390  Topctop 22787  TopOnctopon 22804   Cn ccn 23118
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-br 5111  df-opab 5173  df-mpt 5192  df-id 5536  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-fv 6522  df-ov 7393  df-oprab 7394  df-mpo 7395  df-map 8804  df-top 22788  df-topon 22805  df-cn 23121
This theorem is referenced by:  cnmpt11f  23558  cnmptkp  23574  cnmptk1  23575  cnmpt1k  23576  ptunhmeo  23702  tmdgsum  23989  icchmeo  24845  icchmeoOLD  24846  evth2  24866  sinccvglem  35666  poimir  37654  broucube  37655
  Copyright terms: Public domain W3C validator