Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  nfafv Structured version   Visualization version   GIF version

Theorem nfafv 47141
Description: Bound-variable hypothesis builder for function value, analogous to nffv 6871. To prove a deduction version of this analogous to nffvd 6873 is not easily possible because a deduction version of nfdfat 47132 cannot be shown easily. (Contributed by Alexander van der Vekens, 26-May-2017.)
Hypotheses
Ref Expression
nfafv.1 𝑥𝐹
nfafv.2 𝑥𝐴
Assertion
Ref Expression
nfafv 𝑥(𝐹'''𝐴)

Proof of Theorem nfafv
StepHypRef Expression
1 dfafv2 47137 . 2 (𝐹'''𝐴) = if(𝐹 defAt 𝐴, (𝐹𝐴), V)
2 nfafv.1 . . . 4 𝑥𝐹
3 nfafv.2 . . . 4 𝑥𝐴
42, 3nfdfat 47132 . . 3 𝑥 𝐹 defAt 𝐴
52, 3nffv 6871 . . 3 𝑥(𝐹𝐴)
6 nfcv 2892 . . 3 𝑥V
74, 5, 6nfif 4522 . 2 𝑥if(𝐹 defAt 𝐴, (𝐹𝐴), V)
81, 7nfcxfr 2890 1 𝑥(𝐹'''𝐴)
Colors of variables: wff setvar class
Syntax hints:  wnfc 2877  Vcvv 3450  ifcif 4491  cfv 6514   defAt wdfat 47121  '''cafv 47122
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pr 5390
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-nul 4300  df-if 4492  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-int 4914  df-br 5111  df-opab 5173  df-id 5536  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-res 5653  df-iota 6467  df-fun 6516  df-fv 6522  df-aiota 47090  df-dfat 47124  df-afv 47125
This theorem is referenced by:  csbafv12g  47142  nfaov  47184
  Copyright terms: Public domain W3C validator