Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  nfafv Structured version   Visualization version   GIF version

Theorem nfafv 47140
Description: Bound-variable hypothesis builder for function value, analogous to nffv 6832. To prove a deduction version of this analogous to nffvd 6834 is not easily possible because a deduction version of nfdfat 47131 cannot be shown easily. (Contributed by Alexander van der Vekens, 26-May-2017.)
Hypotheses
Ref Expression
nfafv.1 𝑥𝐹
nfafv.2 𝑥𝐴
Assertion
Ref Expression
nfafv 𝑥(𝐹'''𝐴)

Proof of Theorem nfafv
StepHypRef Expression
1 dfafv2 47136 . 2 (𝐹'''𝐴) = if(𝐹 defAt 𝐴, (𝐹𝐴), V)
2 nfafv.1 . . . 4 𝑥𝐹
3 nfafv.2 . . . 4 𝑥𝐴
42, 3nfdfat 47131 . . 3 𝑥 𝐹 defAt 𝐴
52, 3nffv 6832 . . 3 𝑥(𝐹𝐴)
6 nfcv 2891 . . 3 𝑥V
74, 5, 6nfif 4507 . 2 𝑥if(𝐹 defAt 𝐴, (𝐹𝐴), V)
81, 7nfcxfr 2889 1 𝑥(𝐹'''𝐴)
Colors of variables: wff setvar class
Syntax hints:  wnfc 2876  Vcvv 3436  ifcif 4476  cfv 6482   defAt wdfat 47120  '''cafv 47121
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5235  ax-nul 5245  ax-pr 5371
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-nul 4285  df-if 4477  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-int 4897  df-br 5093  df-opab 5155  df-id 5514  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-res 5631  df-iota 6438  df-fun 6484  df-fv 6490  df-aiota 47089  df-dfat 47123  df-afv 47124
This theorem is referenced by:  csbafv12g  47141  nfaov  47183
  Copyright terms: Public domain W3C validator