| Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > nfafv | Structured version Visualization version GIF version | ||
| Description: Bound-variable hypothesis builder for function value, analogous to nffv 6832. To prove a deduction version of this analogous to nffvd 6834 is not easily possible because a deduction version of nfdfat 47226 cannot be shown easily. (Contributed by Alexander van der Vekens, 26-May-2017.) |
| Ref | Expression |
|---|---|
| nfafv.1 | ⊢ Ⅎ𝑥𝐹 |
| nfafv.2 | ⊢ Ⅎ𝑥𝐴 |
| Ref | Expression |
|---|---|
| nfafv | ⊢ Ⅎ𝑥(𝐹'''𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfafv2 47231 | . 2 ⊢ (𝐹'''𝐴) = if(𝐹 defAt 𝐴, (𝐹‘𝐴), V) | |
| 2 | nfafv.1 | . . . 4 ⊢ Ⅎ𝑥𝐹 | |
| 3 | nfafv.2 | . . . 4 ⊢ Ⅎ𝑥𝐴 | |
| 4 | 2, 3 | nfdfat 47226 | . . 3 ⊢ Ⅎ𝑥 𝐹 defAt 𝐴 |
| 5 | 2, 3 | nffv 6832 | . . 3 ⊢ Ⅎ𝑥(𝐹‘𝐴) |
| 6 | nfcv 2894 | . . 3 ⊢ Ⅎ𝑥V | |
| 7 | 4, 5, 6 | nfif 4503 | . 2 ⊢ Ⅎ𝑥if(𝐹 defAt 𝐴, (𝐹‘𝐴), V) |
| 8 | 1, 7 | nfcxfr 2892 | 1 ⊢ Ⅎ𝑥(𝐹'''𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: Ⅎwnfc 2879 Vcvv 3436 ifcif 4472 ‘cfv 6481 defAt wdfat 47215 '''cafv 47216 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pr 5368 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4281 df-if 4473 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-int 4896 df-br 5090 df-opab 5152 df-id 5509 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-res 5626 df-iota 6437 df-fun 6483 df-fv 6489 df-aiota 47184 df-dfat 47218 df-afv 47219 |
| This theorem is referenced by: csbafv12g 47236 nfaov 47278 |
| Copyright terms: Public domain | W3C validator |