MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ovmpt3rabdm Structured version   Visualization version   GIF version

Theorem ovmpt3rabdm 7506
Description: If the value of a function which is the result of an operation defined by the maps-to notation is not empty, the operands and the argument of the function must be sets. (Contributed by AV, 16-May-2019.)
Hypotheses
Ref Expression
ovmpt3rab1.o 𝑂 = (𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑧𝑀 ↦ {𝑎𝑁𝜑}))
ovmpt3rab1.m ((𝑥 = 𝑋𝑦 = 𝑌) → 𝑀 = 𝐾)
ovmpt3rab1.n ((𝑥 = 𝑋𝑦 = 𝑌) → 𝑁 = 𝐿)
Assertion
Ref Expression
ovmpt3rabdm (((𝑋𝑉𝑌𝑊𝐾𝑈) ∧ 𝐿𝑇) → dom (𝑋𝑂𝑌) = 𝐾)
Distinct variable groups:   𝑥,𝐾,𝑦,𝑧   𝐿,𝑎,𝑥,𝑦   𝑁,𝑎   𝑥,𝑉,𝑦   𝑥,𝑊,𝑦   𝑥,𝑈,𝑦   𝑋,𝑎,𝑥,𝑦,𝑧   𝑌,𝑎,𝑥,𝑦,𝑧   𝑧,𝐿   𝑧,𝑇   𝑧,𝑈   𝑧,𝑉   𝑧,𝑊
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑧,𝑎)   𝑇(𝑥,𝑦,𝑎)   𝑈(𝑎)   𝐾(𝑎)   𝑀(𝑥,𝑦,𝑧,𝑎)   𝑁(𝑥,𝑦,𝑧)   𝑂(𝑥,𝑦,𝑧,𝑎)   𝑉(𝑎)   𝑊(𝑎)

Proof of Theorem ovmpt3rabdm
StepHypRef Expression
1 ovmpt3rab1.o . . . . 5 𝑂 = (𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑧𝑀 ↦ {𝑎𝑁𝜑}))
2 ovmpt3rab1.m . . . . 5 ((𝑥 = 𝑋𝑦 = 𝑌) → 𝑀 = 𝐾)
3 ovmpt3rab1.n . . . . 5 ((𝑥 = 𝑋𝑦 = 𝑌) → 𝑁 = 𝐿)
4 sbceq1a 3722 . . . . . 6 (𝑦 = 𝑌 → (𝜑[𝑌 / 𝑦]𝜑))
5 sbceq1a 3722 . . . . . 6 (𝑥 = 𝑋 → ([𝑌 / 𝑦]𝜑[𝑋 / 𝑥][𝑌 / 𝑦]𝜑))
64, 5sylan9bbr 510 . . . . 5 ((𝑥 = 𝑋𝑦 = 𝑌) → (𝜑[𝑋 / 𝑥][𝑌 / 𝑦]𝜑))
7 nfsbc1v 3731 . . . . 5 𝑥[𝑋 / 𝑥][𝑌 / 𝑦]𝜑
8 nfcv 2906 . . . . . 6 𝑦𝑋
9 nfsbc1v 3731 . . . . . 6 𝑦[𝑌 / 𝑦]𝜑
108, 9nfsbcw 3733 . . . . 5 𝑦[𝑋 / 𝑥][𝑌 / 𝑦]𝜑
111, 2, 3, 6, 7, 10ovmpt3rab1 7505 . . . 4 ((𝑋𝑉𝑌𝑊𝐾𝑈) → (𝑋𝑂𝑌) = (𝑧𝐾 ↦ {𝑎𝐿[𝑋 / 𝑥][𝑌 / 𝑦]𝜑}))
1211adantr 480 . . 3 (((𝑋𝑉𝑌𝑊𝐾𝑈) ∧ 𝐿𝑇) → (𝑋𝑂𝑌) = (𝑧𝐾 ↦ {𝑎𝐿[𝑋 / 𝑥][𝑌 / 𝑦]𝜑}))
1312dmeqd 5803 . 2 (((𝑋𝑉𝑌𝑊𝐾𝑈) ∧ 𝐿𝑇) → dom (𝑋𝑂𝑌) = dom (𝑧𝐾 ↦ {𝑎𝐿[𝑋 / 𝑥][𝑌 / 𝑦]𝜑}))
14 rabexg 5250 . . . . 5 (𝐿𝑇 → {𝑎𝐿[𝑋 / 𝑥][𝑌 / 𝑦]𝜑} ∈ V)
1514adantl 481 . . . 4 (((𝑋𝑉𝑌𝑊𝐾𝑈) ∧ 𝐿𝑇) → {𝑎𝐿[𝑋 / 𝑥][𝑌 / 𝑦]𝜑} ∈ V)
1615ralrimivw 3108 . . 3 (((𝑋𝑉𝑌𝑊𝐾𝑈) ∧ 𝐿𝑇) → ∀𝑧𝐾 {𝑎𝐿[𝑋 / 𝑥][𝑌 / 𝑦]𝜑} ∈ V)
17 dmmptg 6134 . . 3 (∀𝑧𝐾 {𝑎𝐿[𝑋 / 𝑥][𝑌 / 𝑦]𝜑} ∈ V → dom (𝑧𝐾 ↦ {𝑎𝐿[𝑋 / 𝑥][𝑌 / 𝑦]𝜑}) = 𝐾)
1816, 17syl 17 . 2 (((𝑋𝑉𝑌𝑊𝐾𝑈) ∧ 𝐿𝑇) → dom (𝑧𝐾 ↦ {𝑎𝐿[𝑋 / 𝑥][𝑌 / 𝑦]𝜑}) = 𝐾)
1913, 18eqtrd 2778 1 (((𝑋𝑉𝑌𝑊𝐾𝑈) ∧ 𝐿𝑇) → dom (𝑋𝑂𝑌) = 𝐾)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1085   = wceq 1539  wcel 2108  wral 3063  {crab 3067  Vcvv 3422  [wsbc 3711  cmpt 5153  dom cdm 5580  (class class class)co 7255  cmpo 7257
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pr 5347
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-reu 3070  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-ov 7258  df-oprab 7259  df-mpo 7260
This theorem is referenced by:  elovmpt3rab1  7507
  Copyright terms: Public domain W3C validator