![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ovmpt3rabdm | Structured version Visualization version GIF version |
Description: If the value of a function which is the result of an operation defined by the maps-to notation is not empty, the operands and the argument of the function must be sets. (Contributed by AV, 16-May-2019.) |
Ref | Expression |
---|---|
ovmpt3rab1.o | ⊢ 𝑂 = (𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑧 ∈ 𝑀 ↦ {𝑎 ∈ 𝑁 ∣ 𝜑})) |
ovmpt3rab1.m | ⊢ ((𝑥 = 𝑋 ∧ 𝑦 = 𝑌) → 𝑀 = 𝐾) |
ovmpt3rab1.n | ⊢ ((𝑥 = 𝑋 ∧ 𝑦 = 𝑌) → 𝑁 = 𝐿) |
Ref | Expression |
---|---|
ovmpt3rabdm | ⊢ (((𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑊 ∧ 𝐾 ∈ 𝑈) ∧ 𝐿 ∈ 𝑇) → dom (𝑋𝑂𝑌) = 𝐾) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ovmpt3rab1.o | . . . . 5 ⊢ 𝑂 = (𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑧 ∈ 𝑀 ↦ {𝑎 ∈ 𝑁 ∣ 𝜑})) | |
2 | ovmpt3rab1.m | . . . . 5 ⊢ ((𝑥 = 𝑋 ∧ 𝑦 = 𝑌) → 𝑀 = 𝐾) | |
3 | ovmpt3rab1.n | . . . . 5 ⊢ ((𝑥 = 𝑋 ∧ 𝑦 = 𝑌) → 𝑁 = 𝐿) | |
4 | sbceq1a 3802 | . . . . . 6 ⊢ (𝑦 = 𝑌 → (𝜑 ↔ [𝑌 / 𝑦]𝜑)) | |
5 | sbceq1a 3802 | . . . . . 6 ⊢ (𝑥 = 𝑋 → ([𝑌 / 𝑦]𝜑 ↔ [𝑋 / 𝑥][𝑌 / 𝑦]𝜑)) | |
6 | 4, 5 | sylan9bbr 510 | . . . . 5 ⊢ ((𝑥 = 𝑋 ∧ 𝑦 = 𝑌) → (𝜑 ↔ [𝑋 / 𝑥][𝑌 / 𝑦]𝜑)) |
7 | nfsbc1v 3811 | . . . . 5 ⊢ Ⅎ𝑥[𝑋 / 𝑥][𝑌 / 𝑦]𝜑 | |
8 | nfcv 2903 | . . . . . 6 ⊢ Ⅎ𝑦𝑋 | |
9 | nfsbc1v 3811 | . . . . . 6 ⊢ Ⅎ𝑦[𝑌 / 𝑦]𝜑 | |
10 | 8, 9 | nfsbcw 3813 | . . . . 5 ⊢ Ⅎ𝑦[𝑋 / 𝑥][𝑌 / 𝑦]𝜑 |
11 | 1, 2, 3, 6, 7, 10 | ovmpt3rab1 7691 | . . . 4 ⊢ ((𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑊 ∧ 𝐾 ∈ 𝑈) → (𝑋𝑂𝑌) = (𝑧 ∈ 𝐾 ↦ {𝑎 ∈ 𝐿 ∣ [𝑋 / 𝑥][𝑌 / 𝑦]𝜑})) |
12 | 11 | adantr 480 | . . 3 ⊢ (((𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑊 ∧ 𝐾 ∈ 𝑈) ∧ 𝐿 ∈ 𝑇) → (𝑋𝑂𝑌) = (𝑧 ∈ 𝐾 ↦ {𝑎 ∈ 𝐿 ∣ [𝑋 / 𝑥][𝑌 / 𝑦]𝜑})) |
13 | 12 | dmeqd 5919 | . 2 ⊢ (((𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑊 ∧ 𝐾 ∈ 𝑈) ∧ 𝐿 ∈ 𝑇) → dom (𝑋𝑂𝑌) = dom (𝑧 ∈ 𝐾 ↦ {𝑎 ∈ 𝐿 ∣ [𝑋 / 𝑥][𝑌 / 𝑦]𝜑})) |
14 | rabexg 5343 | . . . . 5 ⊢ (𝐿 ∈ 𝑇 → {𝑎 ∈ 𝐿 ∣ [𝑋 / 𝑥][𝑌 / 𝑦]𝜑} ∈ V) | |
15 | 14 | adantl 481 | . . . 4 ⊢ (((𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑊 ∧ 𝐾 ∈ 𝑈) ∧ 𝐿 ∈ 𝑇) → {𝑎 ∈ 𝐿 ∣ [𝑋 / 𝑥][𝑌 / 𝑦]𝜑} ∈ V) |
16 | 15 | ralrimivw 3148 | . . 3 ⊢ (((𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑊 ∧ 𝐾 ∈ 𝑈) ∧ 𝐿 ∈ 𝑇) → ∀𝑧 ∈ 𝐾 {𝑎 ∈ 𝐿 ∣ [𝑋 / 𝑥][𝑌 / 𝑦]𝜑} ∈ V) |
17 | dmmptg 6264 | . . 3 ⊢ (∀𝑧 ∈ 𝐾 {𝑎 ∈ 𝐿 ∣ [𝑋 / 𝑥][𝑌 / 𝑦]𝜑} ∈ V → dom (𝑧 ∈ 𝐾 ↦ {𝑎 ∈ 𝐿 ∣ [𝑋 / 𝑥][𝑌 / 𝑦]𝜑}) = 𝐾) | |
18 | 16, 17 | syl 17 | . 2 ⊢ (((𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑊 ∧ 𝐾 ∈ 𝑈) ∧ 𝐿 ∈ 𝑇) → dom (𝑧 ∈ 𝐾 ↦ {𝑎 ∈ 𝐿 ∣ [𝑋 / 𝑥][𝑌 / 𝑦]𝜑}) = 𝐾) |
19 | 13, 18 | eqtrd 2775 | 1 ⊢ (((𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑊 ∧ 𝐾 ∈ 𝑈) ∧ 𝐿 ∈ 𝑇) → dom (𝑋𝑂𝑌) = 𝐾) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1537 ∈ wcel 2106 ∀wral 3059 {crab 3433 Vcvv 3478 [wsbc 3791 ↦ cmpt 5231 dom cdm 5689 (class class class)co 7431 ∈ cmpo 7433 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-rep 5285 ax-sep 5302 ax-nul 5312 ax-pr 5438 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-ral 3060 df-rex 3069 df-reu 3379 df-rab 3434 df-v 3480 df-sbc 3792 df-csb 3909 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-iun 4998 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5583 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-res 5701 df-ima 5702 df-iota 6516 df-fun 6565 df-fn 6566 df-f 6567 df-f1 6568 df-fo 6569 df-f1o 6570 df-fv 6571 df-ov 7434 df-oprab 7435 df-mpo 7436 |
This theorem is referenced by: elovmpt3rab1 7693 |
Copyright terms: Public domain | W3C validator |