Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ovmpt3rabdm | Structured version Visualization version GIF version |
Description: If the value of a function which is the result of an operation defined by the maps-to notation is not empty, the operands and the argument of the function must be sets. (Contributed by AV, 16-May-2019.) |
Ref | Expression |
---|---|
ovmpt3rab1.o | ⊢ 𝑂 = (𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑧 ∈ 𝑀 ↦ {𝑎 ∈ 𝑁 ∣ 𝜑})) |
ovmpt3rab1.m | ⊢ ((𝑥 = 𝑋 ∧ 𝑦 = 𝑌) → 𝑀 = 𝐾) |
ovmpt3rab1.n | ⊢ ((𝑥 = 𝑋 ∧ 𝑦 = 𝑌) → 𝑁 = 𝐿) |
Ref | Expression |
---|---|
ovmpt3rabdm | ⊢ (((𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑊 ∧ 𝐾 ∈ 𝑈) ∧ 𝐿 ∈ 𝑇) → dom (𝑋𝑂𝑌) = 𝐾) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ovmpt3rab1.o | . . . . 5 ⊢ 𝑂 = (𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑧 ∈ 𝑀 ↦ {𝑎 ∈ 𝑁 ∣ 𝜑})) | |
2 | ovmpt3rab1.m | . . . . 5 ⊢ ((𝑥 = 𝑋 ∧ 𝑦 = 𝑌) → 𝑀 = 𝐾) | |
3 | ovmpt3rab1.n | . . . . 5 ⊢ ((𝑥 = 𝑋 ∧ 𝑦 = 𝑌) → 𝑁 = 𝐿) | |
4 | sbceq1a 3722 | . . . . . 6 ⊢ (𝑦 = 𝑌 → (𝜑 ↔ [𝑌 / 𝑦]𝜑)) | |
5 | sbceq1a 3722 | . . . . . 6 ⊢ (𝑥 = 𝑋 → ([𝑌 / 𝑦]𝜑 ↔ [𝑋 / 𝑥][𝑌 / 𝑦]𝜑)) | |
6 | 4, 5 | sylan9bbr 510 | . . . . 5 ⊢ ((𝑥 = 𝑋 ∧ 𝑦 = 𝑌) → (𝜑 ↔ [𝑋 / 𝑥][𝑌 / 𝑦]𝜑)) |
7 | nfsbc1v 3731 | . . . . 5 ⊢ Ⅎ𝑥[𝑋 / 𝑥][𝑌 / 𝑦]𝜑 | |
8 | nfcv 2906 | . . . . . 6 ⊢ Ⅎ𝑦𝑋 | |
9 | nfsbc1v 3731 | . . . . . 6 ⊢ Ⅎ𝑦[𝑌 / 𝑦]𝜑 | |
10 | 8, 9 | nfsbcw 3733 | . . . . 5 ⊢ Ⅎ𝑦[𝑋 / 𝑥][𝑌 / 𝑦]𝜑 |
11 | 1, 2, 3, 6, 7, 10 | ovmpt3rab1 7505 | . . . 4 ⊢ ((𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑊 ∧ 𝐾 ∈ 𝑈) → (𝑋𝑂𝑌) = (𝑧 ∈ 𝐾 ↦ {𝑎 ∈ 𝐿 ∣ [𝑋 / 𝑥][𝑌 / 𝑦]𝜑})) |
12 | 11 | adantr 480 | . . 3 ⊢ (((𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑊 ∧ 𝐾 ∈ 𝑈) ∧ 𝐿 ∈ 𝑇) → (𝑋𝑂𝑌) = (𝑧 ∈ 𝐾 ↦ {𝑎 ∈ 𝐿 ∣ [𝑋 / 𝑥][𝑌 / 𝑦]𝜑})) |
13 | 12 | dmeqd 5803 | . 2 ⊢ (((𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑊 ∧ 𝐾 ∈ 𝑈) ∧ 𝐿 ∈ 𝑇) → dom (𝑋𝑂𝑌) = dom (𝑧 ∈ 𝐾 ↦ {𝑎 ∈ 𝐿 ∣ [𝑋 / 𝑥][𝑌 / 𝑦]𝜑})) |
14 | rabexg 5250 | . . . . 5 ⊢ (𝐿 ∈ 𝑇 → {𝑎 ∈ 𝐿 ∣ [𝑋 / 𝑥][𝑌 / 𝑦]𝜑} ∈ V) | |
15 | 14 | adantl 481 | . . . 4 ⊢ (((𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑊 ∧ 𝐾 ∈ 𝑈) ∧ 𝐿 ∈ 𝑇) → {𝑎 ∈ 𝐿 ∣ [𝑋 / 𝑥][𝑌 / 𝑦]𝜑} ∈ V) |
16 | 15 | ralrimivw 3108 | . . 3 ⊢ (((𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑊 ∧ 𝐾 ∈ 𝑈) ∧ 𝐿 ∈ 𝑇) → ∀𝑧 ∈ 𝐾 {𝑎 ∈ 𝐿 ∣ [𝑋 / 𝑥][𝑌 / 𝑦]𝜑} ∈ V) |
17 | dmmptg 6134 | . . 3 ⊢ (∀𝑧 ∈ 𝐾 {𝑎 ∈ 𝐿 ∣ [𝑋 / 𝑥][𝑌 / 𝑦]𝜑} ∈ V → dom (𝑧 ∈ 𝐾 ↦ {𝑎 ∈ 𝐿 ∣ [𝑋 / 𝑥][𝑌 / 𝑦]𝜑}) = 𝐾) | |
18 | 16, 17 | syl 17 | . 2 ⊢ (((𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑊 ∧ 𝐾 ∈ 𝑈) ∧ 𝐿 ∈ 𝑇) → dom (𝑧 ∈ 𝐾 ↦ {𝑎 ∈ 𝐿 ∣ [𝑋 / 𝑥][𝑌 / 𝑦]𝜑}) = 𝐾) |
19 | 13, 18 | eqtrd 2778 | 1 ⊢ (((𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑊 ∧ 𝐾 ∈ 𝑈) ∧ 𝐿 ∈ 𝑇) → dom (𝑋𝑂𝑌) = 𝐾) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1085 = wceq 1539 ∈ wcel 2108 ∀wral 3063 {crab 3067 Vcvv 3422 [wsbc 3711 ↦ cmpt 5153 dom cdm 5580 (class class class)co 7255 ∈ cmpo 7257 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pr 5347 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-reu 3070 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-ov 7258 df-oprab 7259 df-mpo 7260 |
This theorem is referenced by: elovmpt3rab1 7507 |
Copyright terms: Public domain | W3C validator |