![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ovmpt3rabdm | Structured version Visualization version GIF version |
Description: If the value of a function which is the result of an operation defined by the maps-to notation is not empty, the operands and the argument of the function must be sets. (Contributed by AV, 16-May-2019.) |
Ref | Expression |
---|---|
ovmpt3rab1.o | ⊢ 𝑂 = (𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑧 ∈ 𝑀 ↦ {𝑎 ∈ 𝑁 ∣ 𝜑})) |
ovmpt3rab1.m | ⊢ ((𝑥 = 𝑋 ∧ 𝑦 = 𝑌) → 𝑀 = 𝐾) |
ovmpt3rab1.n | ⊢ ((𝑥 = 𝑋 ∧ 𝑦 = 𝑌) → 𝑁 = 𝐿) |
Ref | Expression |
---|---|
ovmpt3rabdm | ⊢ (((𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑊 ∧ 𝐾 ∈ 𝑈) ∧ 𝐿 ∈ 𝑇) → dom (𝑋𝑂𝑌) = 𝐾) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ovmpt3rab1.o | . . . . 5 ⊢ 𝑂 = (𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑧 ∈ 𝑀 ↦ {𝑎 ∈ 𝑁 ∣ 𝜑})) | |
2 | ovmpt3rab1.m | . . . . 5 ⊢ ((𝑥 = 𝑋 ∧ 𝑦 = 𝑌) → 𝑀 = 𝐾) | |
3 | ovmpt3rab1.n | . . . . 5 ⊢ ((𝑥 = 𝑋 ∧ 𝑦 = 𝑌) → 𝑁 = 𝐿) | |
4 | sbceq1a 3786 | . . . . . 6 ⊢ (𝑦 = 𝑌 → (𝜑 ↔ [𝑌 / 𝑦]𝜑)) | |
5 | sbceq1a 3786 | . . . . . 6 ⊢ (𝑥 = 𝑋 → ([𝑌 / 𝑦]𝜑 ↔ [𝑋 / 𝑥][𝑌 / 𝑦]𝜑)) | |
6 | 4, 5 | sylan9bbr 509 | . . . . 5 ⊢ ((𝑥 = 𝑋 ∧ 𝑦 = 𝑌) → (𝜑 ↔ [𝑋 / 𝑥][𝑌 / 𝑦]𝜑)) |
7 | nfsbc1v 3795 | . . . . 5 ⊢ Ⅎ𝑥[𝑋 / 𝑥][𝑌 / 𝑦]𝜑 | |
8 | nfcv 2892 | . . . . . 6 ⊢ Ⅎ𝑦𝑋 | |
9 | nfsbc1v 3795 | . . . . . 6 ⊢ Ⅎ𝑦[𝑌 / 𝑦]𝜑 | |
10 | 8, 9 | nfsbcw 3797 | . . . . 5 ⊢ Ⅎ𝑦[𝑋 / 𝑥][𝑌 / 𝑦]𝜑 |
11 | 1, 2, 3, 6, 7, 10 | ovmpt3rab1 7676 | . . . 4 ⊢ ((𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑊 ∧ 𝐾 ∈ 𝑈) → (𝑋𝑂𝑌) = (𝑧 ∈ 𝐾 ↦ {𝑎 ∈ 𝐿 ∣ [𝑋 / 𝑥][𝑌 / 𝑦]𝜑})) |
12 | 11 | adantr 479 | . . 3 ⊢ (((𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑊 ∧ 𝐾 ∈ 𝑈) ∧ 𝐿 ∈ 𝑇) → (𝑋𝑂𝑌) = (𝑧 ∈ 𝐾 ↦ {𝑎 ∈ 𝐿 ∣ [𝑋 / 𝑥][𝑌 / 𝑦]𝜑})) |
13 | 12 | dmeqd 5904 | . 2 ⊢ (((𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑊 ∧ 𝐾 ∈ 𝑈) ∧ 𝐿 ∈ 𝑇) → dom (𝑋𝑂𝑌) = dom (𝑧 ∈ 𝐾 ↦ {𝑎 ∈ 𝐿 ∣ [𝑋 / 𝑥][𝑌 / 𝑦]𝜑})) |
14 | rabexg 5330 | . . . . 5 ⊢ (𝐿 ∈ 𝑇 → {𝑎 ∈ 𝐿 ∣ [𝑋 / 𝑥][𝑌 / 𝑦]𝜑} ∈ V) | |
15 | 14 | adantl 480 | . . . 4 ⊢ (((𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑊 ∧ 𝐾 ∈ 𝑈) ∧ 𝐿 ∈ 𝑇) → {𝑎 ∈ 𝐿 ∣ [𝑋 / 𝑥][𝑌 / 𝑦]𝜑} ∈ V) |
16 | 15 | ralrimivw 3140 | . . 3 ⊢ (((𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑊 ∧ 𝐾 ∈ 𝑈) ∧ 𝐿 ∈ 𝑇) → ∀𝑧 ∈ 𝐾 {𝑎 ∈ 𝐿 ∣ [𝑋 / 𝑥][𝑌 / 𝑦]𝜑} ∈ V) |
17 | dmmptg 6245 | . . 3 ⊢ (∀𝑧 ∈ 𝐾 {𝑎 ∈ 𝐿 ∣ [𝑋 / 𝑥][𝑌 / 𝑦]𝜑} ∈ V → dom (𝑧 ∈ 𝐾 ↦ {𝑎 ∈ 𝐿 ∣ [𝑋 / 𝑥][𝑌 / 𝑦]𝜑}) = 𝐾) | |
18 | 16, 17 | syl 17 | . 2 ⊢ (((𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑊 ∧ 𝐾 ∈ 𝑈) ∧ 𝐿 ∈ 𝑇) → dom (𝑧 ∈ 𝐾 ↦ {𝑎 ∈ 𝐿 ∣ [𝑋 / 𝑥][𝑌 / 𝑦]𝜑}) = 𝐾) |
19 | 13, 18 | eqtrd 2766 | 1 ⊢ (((𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑊 ∧ 𝐾 ∈ 𝑈) ∧ 𝐿 ∈ 𝑇) → dom (𝑋𝑂𝑌) = 𝐾) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 394 ∧ w3a 1084 = wceq 1534 ∈ wcel 2099 ∀wral 3051 {crab 3419 Vcvv 3462 [wsbc 3775 ↦ cmpt 5228 dom cdm 5674 (class class class)co 7416 ∈ cmpo 7418 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2697 ax-rep 5282 ax-sep 5296 ax-nul 5303 ax-pr 5425 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3an 1086 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2704 df-cleq 2718 df-clel 2803 df-nfc 2878 df-ne 2931 df-ral 3052 df-rex 3061 df-reu 3365 df-rab 3420 df-v 3464 df-sbc 3776 df-csb 3892 df-dif 3949 df-un 3951 df-in 3953 df-ss 3963 df-nul 4323 df-if 4524 df-sn 4624 df-pr 4626 df-op 4630 df-uni 4906 df-iun 4995 df-br 5146 df-opab 5208 df-mpt 5229 df-id 5572 df-xp 5680 df-rel 5681 df-cnv 5682 df-co 5683 df-dm 5684 df-rn 5685 df-res 5686 df-ima 5687 df-iota 6498 df-fun 6548 df-fn 6549 df-f 6550 df-f1 6551 df-fo 6552 df-f1o 6553 df-fv 6554 df-ov 7419 df-oprab 7420 df-mpo 7421 |
This theorem is referenced by: elovmpt3rab1 7678 |
Copyright terms: Public domain | W3C validator |