MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ovmpt3rabdm Structured version   Visualization version   GIF version

Theorem ovmpt3rabdm 7608
Description: If the value of a function which is the result of an operation defined by the maps-to notation is not empty, the operands and the argument of the function must be sets. (Contributed by AV, 16-May-2019.)
Hypotheses
Ref Expression
ovmpt3rab1.o 𝑂 = (𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑧𝑀 ↦ {𝑎𝑁𝜑}))
ovmpt3rab1.m ((𝑥 = 𝑋𝑦 = 𝑌) → 𝑀 = 𝐾)
ovmpt3rab1.n ((𝑥 = 𝑋𝑦 = 𝑌) → 𝑁 = 𝐿)
Assertion
Ref Expression
ovmpt3rabdm (((𝑋𝑉𝑌𝑊𝐾𝑈) ∧ 𝐿𝑇) → dom (𝑋𝑂𝑌) = 𝐾)
Distinct variable groups:   𝑥,𝐾,𝑦,𝑧   𝐿,𝑎,𝑥,𝑦   𝑁,𝑎   𝑥,𝑉,𝑦   𝑥,𝑊,𝑦   𝑥,𝑈,𝑦   𝑋,𝑎,𝑥,𝑦,𝑧   𝑌,𝑎,𝑥,𝑦,𝑧   𝑧,𝐿   𝑧,𝑇   𝑧,𝑈   𝑧,𝑉   𝑧,𝑊
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑧,𝑎)   𝑇(𝑥,𝑦,𝑎)   𝑈(𝑎)   𝐾(𝑎)   𝑀(𝑥,𝑦,𝑧,𝑎)   𝑁(𝑥,𝑦,𝑧)   𝑂(𝑥,𝑦,𝑧,𝑎)   𝑉(𝑎)   𝑊(𝑎)

Proof of Theorem ovmpt3rabdm
StepHypRef Expression
1 ovmpt3rab1.o . . . . 5 𝑂 = (𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑧𝑀 ↦ {𝑎𝑁𝜑}))
2 ovmpt3rab1.m . . . . 5 ((𝑥 = 𝑋𝑦 = 𝑌) → 𝑀 = 𝐾)
3 ovmpt3rab1.n . . . . 5 ((𝑥 = 𝑋𝑦 = 𝑌) → 𝑁 = 𝐿)
4 sbceq1a 3753 . . . . . 6 (𝑦 = 𝑌 → (𝜑[𝑌 / 𝑦]𝜑))
5 sbceq1a 3753 . . . . . 6 (𝑥 = 𝑋 → ([𝑌 / 𝑦]𝜑[𝑋 / 𝑥][𝑌 / 𝑦]𝜑))
64, 5sylan9bbr 510 . . . . 5 ((𝑥 = 𝑋𝑦 = 𝑌) → (𝜑[𝑋 / 𝑥][𝑌 / 𝑦]𝜑))
7 nfsbc1v 3762 . . . . 5 𝑥[𝑋 / 𝑥][𝑌 / 𝑦]𝜑
8 nfcv 2891 . . . . . 6 𝑦𝑋
9 nfsbc1v 3762 . . . . . 6 𝑦[𝑌 / 𝑦]𝜑
108, 9nfsbcw 3764 . . . . 5 𝑦[𝑋 / 𝑥][𝑌 / 𝑦]𝜑
111, 2, 3, 6, 7, 10ovmpt3rab1 7607 . . . 4 ((𝑋𝑉𝑌𝑊𝐾𝑈) → (𝑋𝑂𝑌) = (𝑧𝐾 ↦ {𝑎𝐿[𝑋 / 𝑥][𝑌 / 𝑦]𝜑}))
1211adantr 480 . . 3 (((𝑋𝑉𝑌𝑊𝐾𝑈) ∧ 𝐿𝑇) → (𝑋𝑂𝑌) = (𝑧𝐾 ↦ {𝑎𝐿[𝑋 / 𝑥][𝑌 / 𝑦]𝜑}))
1312dmeqd 5848 . 2 (((𝑋𝑉𝑌𝑊𝐾𝑈) ∧ 𝐿𝑇) → dom (𝑋𝑂𝑌) = dom (𝑧𝐾 ↦ {𝑎𝐿[𝑋 / 𝑥][𝑌 / 𝑦]𝜑}))
14 rabexg 5276 . . . . 5 (𝐿𝑇 → {𝑎𝐿[𝑋 / 𝑥][𝑌 / 𝑦]𝜑} ∈ V)
1514adantl 481 . . . 4 (((𝑋𝑉𝑌𝑊𝐾𝑈) ∧ 𝐿𝑇) → {𝑎𝐿[𝑋 / 𝑥][𝑌 / 𝑦]𝜑} ∈ V)
1615ralrimivw 3125 . . 3 (((𝑋𝑉𝑌𝑊𝐾𝑈) ∧ 𝐿𝑇) → ∀𝑧𝐾 {𝑎𝐿[𝑋 / 𝑥][𝑌 / 𝑦]𝜑} ∈ V)
17 dmmptg 6191 . . 3 (∀𝑧𝐾 {𝑎𝐿[𝑋 / 𝑥][𝑌 / 𝑦]𝜑} ∈ V → dom (𝑧𝐾 ↦ {𝑎𝐿[𝑋 / 𝑥][𝑌 / 𝑦]𝜑}) = 𝐾)
1816, 17syl 17 . 2 (((𝑋𝑉𝑌𝑊𝐾𝑈) ∧ 𝐿𝑇) → dom (𝑧𝐾 ↦ {𝑎𝐿[𝑋 / 𝑥][𝑌 / 𝑦]𝜑}) = 𝐾)
1913, 18eqtrd 2764 1 (((𝑋𝑉𝑌𝑊𝐾𝑈) ∧ 𝐿𝑇) → dom (𝑋𝑂𝑌) = 𝐾)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109  wral 3044  {crab 3394  Vcvv 3436  [wsbc 3742  cmpt 5173  dom cdm 5619  (class class class)co 7349  cmpo 7351
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5218  ax-sep 5235  ax-nul 5245  ax-pr 5371
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-iun 4943  df-br 5093  df-opab 5155  df-mpt 5174  df-id 5514  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-ov 7352  df-oprab 7353  df-mpo 7354
This theorem is referenced by:  elovmpt3rab1  7609
  Copyright terms: Public domain W3C validator