MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mpoxopoveq Structured version   Visualization version   GIF version

Theorem mpoxopoveq 8006
Description: Value of an operation given by a maps-to rule, where the first argument is a pair and the base set of the second argument is the first component of the first argument. (Contributed by Alexander van der Vekens, 11-Oct-2017.)
Hypothesis
Ref Expression
mpoxopoveq.f 𝐹 = (𝑥 ∈ V, 𝑦 ∈ (1st𝑥) ↦ {𝑛 ∈ (1st𝑥) ∣ 𝜑})
Assertion
Ref Expression
mpoxopoveq (((𝑉𝑋𝑊𝑌) ∧ 𝐾𝑉) → (⟨𝑉, 𝑊𝐹𝐾) = {𝑛𝑉[𝑉, 𝑊⟩ / 𝑥][𝐾 / 𝑦]𝜑})
Distinct variable groups:   𝑛,𝐾,𝑥,𝑦   𝑛,𝑉,𝑥,𝑦   𝑛,𝑊,𝑥,𝑦   𝑛,𝑋,𝑥,𝑦   𝑛,𝑌,𝑥,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑛)   𝐹(𝑥,𝑦,𝑛)

Proof of Theorem mpoxopoveq
StepHypRef Expression
1 mpoxopoveq.f . . 3 𝐹 = (𝑥 ∈ V, 𝑦 ∈ (1st𝑥) ↦ {𝑛 ∈ (1st𝑥) ∣ 𝜑})
21a1i 11 . 2 (((𝑉𝑋𝑊𝑌) ∧ 𝐾𝑉) → 𝐹 = (𝑥 ∈ V, 𝑦 ∈ (1st𝑥) ↦ {𝑛 ∈ (1st𝑥) ∣ 𝜑}))
3 fveq2 6756 . . . . 5 (𝑥 = ⟨𝑉, 𝑊⟩ → (1st𝑥) = (1st ‘⟨𝑉, 𝑊⟩))
4 op1stg 7816 . . . . . 6 ((𝑉𝑋𝑊𝑌) → (1st ‘⟨𝑉, 𝑊⟩) = 𝑉)
54adantr 480 . . . . 5 (((𝑉𝑋𝑊𝑌) ∧ 𝐾𝑉) → (1st ‘⟨𝑉, 𝑊⟩) = 𝑉)
63, 5sylan9eqr 2801 . . . 4 ((((𝑉𝑋𝑊𝑌) ∧ 𝐾𝑉) ∧ 𝑥 = ⟨𝑉, 𝑊⟩) → (1st𝑥) = 𝑉)
76adantrr 713 . . 3 ((((𝑉𝑋𝑊𝑌) ∧ 𝐾𝑉) ∧ (𝑥 = ⟨𝑉, 𝑊⟩ ∧ 𝑦 = 𝐾)) → (1st𝑥) = 𝑉)
8 sbceq1a 3722 . . . . . 6 (𝑦 = 𝐾 → (𝜑[𝐾 / 𝑦]𝜑))
98adantl 481 . . . . 5 ((𝑥 = ⟨𝑉, 𝑊⟩ ∧ 𝑦 = 𝐾) → (𝜑[𝐾 / 𝑦]𝜑))
109adantl 481 . . . 4 ((((𝑉𝑋𝑊𝑌) ∧ 𝐾𝑉) ∧ (𝑥 = ⟨𝑉, 𝑊⟩ ∧ 𝑦 = 𝐾)) → (𝜑[𝐾 / 𝑦]𝜑))
11 sbceq1a 3722 . . . . . 6 (𝑥 = ⟨𝑉, 𝑊⟩ → ([𝐾 / 𝑦]𝜑[𝑉, 𝑊⟩ / 𝑥][𝐾 / 𝑦]𝜑))
1211adantr 480 . . . . 5 ((𝑥 = ⟨𝑉, 𝑊⟩ ∧ 𝑦 = 𝐾) → ([𝐾 / 𝑦]𝜑[𝑉, 𝑊⟩ / 𝑥][𝐾 / 𝑦]𝜑))
1312adantl 481 . . . 4 ((((𝑉𝑋𝑊𝑌) ∧ 𝐾𝑉) ∧ (𝑥 = ⟨𝑉, 𝑊⟩ ∧ 𝑦 = 𝐾)) → ([𝐾 / 𝑦]𝜑[𝑉, 𝑊⟩ / 𝑥][𝐾 / 𝑦]𝜑))
1410, 13bitrd 278 . . 3 ((((𝑉𝑋𝑊𝑌) ∧ 𝐾𝑉) ∧ (𝑥 = ⟨𝑉, 𝑊⟩ ∧ 𝑦 = 𝐾)) → (𝜑[𝑉, 𝑊⟩ / 𝑥][𝐾 / 𝑦]𝜑))
157, 14rabeqbidv 3410 . 2 ((((𝑉𝑋𝑊𝑌) ∧ 𝐾𝑉) ∧ (𝑥 = ⟨𝑉, 𝑊⟩ ∧ 𝑦 = 𝐾)) → {𝑛 ∈ (1st𝑥) ∣ 𝜑} = {𝑛𝑉[𝑉, 𝑊⟩ / 𝑥][𝐾 / 𝑦]𝜑})
16 opex 5373 . . 3 𝑉, 𝑊⟩ ∈ V
1716a1i 11 . 2 (((𝑉𝑋𝑊𝑌) ∧ 𝐾𝑉) → ⟨𝑉, 𝑊⟩ ∈ V)
18 simpr 484 . 2 (((𝑉𝑋𝑊𝑌) ∧ 𝐾𝑉) → 𝐾𝑉)
19 rabexg 5250 . . 3 (𝑉𝑋 → {𝑛𝑉[𝑉, 𝑊⟩ / 𝑥][𝐾 / 𝑦]𝜑} ∈ V)
2019ad2antrr 722 . 2 (((𝑉𝑋𝑊𝑌) ∧ 𝐾𝑉) → {𝑛𝑉[𝑉, 𝑊⟩ / 𝑥][𝐾 / 𝑦]𝜑} ∈ V)
21 equid 2016 . . 3 𝑧 = 𝑧
22 nfvd 1919 . . 3 (𝑧 = 𝑧 → Ⅎ𝑥((𝑉𝑋𝑊𝑌) ∧ 𝐾𝑉))
2321, 22ax-mp 5 . 2 𝑥((𝑉𝑋𝑊𝑌) ∧ 𝐾𝑉)
24 nfvd 1919 . . 3 (𝑧 = 𝑧 → Ⅎ𝑦((𝑉𝑋𝑊𝑌) ∧ 𝐾𝑉))
2521, 24ax-mp 5 . 2 𝑦((𝑉𝑋𝑊𝑌) ∧ 𝐾𝑉)
26 nfcv 2906 . 2 𝑦𝑉, 𝑊
27 nfcv 2906 . 2 𝑥𝐾
28 nfsbc1v 3731 . . 3 𝑥[𝑉, 𝑊⟩ / 𝑥][𝐾 / 𝑦]𝜑
29 nfcv 2906 . . 3 𝑥𝑉
3028, 29nfrabw 3311 . 2 𝑥{𝑛𝑉[𝑉, 𝑊⟩ / 𝑥][𝐾 / 𝑦]𝜑}
31 nfsbc1v 3731 . . . 4 𝑦[𝐾 / 𝑦]𝜑
3226, 31nfsbcw 3733 . . 3 𝑦[𝑉, 𝑊⟩ / 𝑥][𝐾 / 𝑦]𝜑
33 nfcv 2906 . . 3 𝑦𝑉
3432, 33nfrabw 3311 . 2 𝑦{𝑛𝑉[𝑉, 𝑊⟩ / 𝑥][𝐾 / 𝑦]𝜑}
352, 15, 6, 17, 18, 20, 23, 25, 26, 27, 30, 34ovmpodxf 7401 1 (((𝑉𝑋𝑊𝑌) ∧ 𝐾𝑉) → (⟨𝑉, 𝑊𝐹𝐾) = {𝑛𝑉[𝑉, 𝑊⟩ / 𝑥][𝐾 / 𝑦]𝜑})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395   = wceq 1539  wnf 1787  wcel 2108  {crab 3067  Vcvv 3422  [wsbc 3711  cop 4564  cfv 6418  (class class class)co 7255  cmpo 7257  1st c1st 7802
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pr 5347  ax-un 7566
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-sbc 3712  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-iota 6376  df-fun 6420  df-fv 6426  df-ov 7258  df-oprab 7259  df-mpo 7260  df-1st 7804
This theorem is referenced by:  mpoxopovel  8007  mpoxopoveqd  8008
  Copyright terms: Public domain W3C validator