![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nmvs | Structured version Visualization version GIF version |
Description: Defining property of a normed module. (Contributed by Mario Carneiro, 4-Oct-2015.) |
Ref | Expression |
---|---|
isnlm.v | ⊢ 𝑉 = (Base‘𝑊) |
isnlm.n | ⊢ 𝑁 = (norm‘𝑊) |
isnlm.s | ⊢ · = ( ·𝑠 ‘𝑊) |
isnlm.f | ⊢ 𝐹 = (Scalar‘𝑊) |
isnlm.k | ⊢ 𝐾 = (Base‘𝐹) |
isnlm.a | ⊢ 𝐴 = (norm‘𝐹) |
Ref | Expression |
---|---|
nmvs | ⊢ ((𝑊 ∈ NrmMod ∧ 𝑋 ∈ 𝐾 ∧ 𝑌 ∈ 𝑉) → (𝑁‘(𝑋 · 𝑌)) = ((𝐴‘𝑋) · (𝑁‘𝑌))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | isnlm.v | . . . . 5 ⊢ 𝑉 = (Base‘𝑊) | |
2 | isnlm.n | . . . . 5 ⊢ 𝑁 = (norm‘𝑊) | |
3 | isnlm.s | . . . . 5 ⊢ · = ( ·𝑠 ‘𝑊) | |
4 | isnlm.f | . . . . 5 ⊢ 𝐹 = (Scalar‘𝑊) | |
5 | isnlm.k | . . . . 5 ⊢ 𝐾 = (Base‘𝐹) | |
6 | isnlm.a | . . . . 5 ⊢ 𝐴 = (norm‘𝐹) | |
7 | 1, 2, 3, 4, 5, 6 | isnlm 24711 | . . . 4 ⊢ (𝑊 ∈ NrmMod ↔ ((𝑊 ∈ NrmGrp ∧ 𝑊 ∈ LMod ∧ 𝐹 ∈ NrmRing) ∧ ∀𝑥 ∈ 𝐾 ∀𝑦 ∈ 𝑉 (𝑁‘(𝑥 · 𝑦)) = ((𝐴‘𝑥) · (𝑁‘𝑦)))) |
8 | 7 | simprbi 496 | . . 3 ⊢ (𝑊 ∈ NrmMod → ∀𝑥 ∈ 𝐾 ∀𝑦 ∈ 𝑉 (𝑁‘(𝑥 · 𝑦)) = ((𝐴‘𝑥) · (𝑁‘𝑦))) |
9 | fvoveq1 7453 | . . . . 5 ⊢ (𝑥 = 𝑋 → (𝑁‘(𝑥 · 𝑦)) = (𝑁‘(𝑋 · 𝑦))) | |
10 | fveq2 6906 | . . . . . 6 ⊢ (𝑥 = 𝑋 → (𝐴‘𝑥) = (𝐴‘𝑋)) | |
11 | 10 | oveq1d 7445 | . . . . 5 ⊢ (𝑥 = 𝑋 → ((𝐴‘𝑥) · (𝑁‘𝑦)) = ((𝐴‘𝑋) · (𝑁‘𝑦))) |
12 | 9, 11 | eqeq12d 2750 | . . . 4 ⊢ (𝑥 = 𝑋 → ((𝑁‘(𝑥 · 𝑦)) = ((𝐴‘𝑥) · (𝑁‘𝑦)) ↔ (𝑁‘(𝑋 · 𝑦)) = ((𝐴‘𝑋) · (𝑁‘𝑦)))) |
13 | oveq2 7438 | . . . . . 6 ⊢ (𝑦 = 𝑌 → (𝑋 · 𝑦) = (𝑋 · 𝑌)) | |
14 | 13 | fveq2d 6910 | . . . . 5 ⊢ (𝑦 = 𝑌 → (𝑁‘(𝑋 · 𝑦)) = (𝑁‘(𝑋 · 𝑌))) |
15 | fveq2 6906 | . . . . . 6 ⊢ (𝑦 = 𝑌 → (𝑁‘𝑦) = (𝑁‘𝑌)) | |
16 | 15 | oveq2d 7446 | . . . . 5 ⊢ (𝑦 = 𝑌 → ((𝐴‘𝑋) · (𝑁‘𝑦)) = ((𝐴‘𝑋) · (𝑁‘𝑌))) |
17 | 14, 16 | eqeq12d 2750 | . . . 4 ⊢ (𝑦 = 𝑌 → ((𝑁‘(𝑋 · 𝑦)) = ((𝐴‘𝑋) · (𝑁‘𝑦)) ↔ (𝑁‘(𝑋 · 𝑌)) = ((𝐴‘𝑋) · (𝑁‘𝑌)))) |
18 | 12, 17 | rspc2v 3632 | . . 3 ⊢ ((𝑋 ∈ 𝐾 ∧ 𝑌 ∈ 𝑉) → (∀𝑥 ∈ 𝐾 ∀𝑦 ∈ 𝑉 (𝑁‘(𝑥 · 𝑦)) = ((𝐴‘𝑥) · (𝑁‘𝑦)) → (𝑁‘(𝑋 · 𝑌)) = ((𝐴‘𝑋) · (𝑁‘𝑌)))) |
19 | 8, 18 | syl5com 31 | . 2 ⊢ (𝑊 ∈ NrmMod → ((𝑋 ∈ 𝐾 ∧ 𝑌 ∈ 𝑉) → (𝑁‘(𝑋 · 𝑌)) = ((𝐴‘𝑋) · (𝑁‘𝑌)))) |
20 | 19 | 3impib 1115 | 1 ⊢ ((𝑊 ∈ NrmMod ∧ 𝑋 ∈ 𝐾 ∧ 𝑌 ∈ 𝑉) → (𝑁‘(𝑋 · 𝑌)) = ((𝐴‘𝑋) · (𝑁‘𝑌))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1536 ∈ wcel 2105 ∀wral 3058 ‘cfv 6562 (class class class)co 7430 · cmul 11157 Basecbs 17244 Scalarcsca 17300 ·𝑠 cvsca 17301 LModclmod 20874 normcnm 24604 NrmGrpcngp 24605 NrmRingcnrg 24607 NrmModcnlm 24608 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1791 ax-4 1805 ax-5 1907 ax-6 1964 ax-7 2004 ax-8 2107 ax-9 2115 ax-ext 2705 ax-nul 5311 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1539 df-fal 1549 df-ex 1776 df-sb 2062 df-clab 2712 df-cleq 2726 df-clel 2813 df-ne 2938 df-ral 3059 df-rab 3433 df-v 3479 df-sbc 3791 df-dif 3965 df-un 3967 df-in 3969 df-ss 3979 df-nul 4339 df-if 4531 df-sn 4631 df-pr 4633 df-op 4637 df-uni 4912 df-br 5148 df-iota 6515 df-fv 6570 df-ov 7433 df-nlm 24614 |
This theorem is referenced by: nlmdsdi 24717 nlmdsdir 24718 nlmmul0or 24719 lssnlm 24737 nmoleub2lem3 25161 nmoleub3 25165 ncvsprp 25199 cphnmvs 25237 nmmulg 33928 |
Copyright terms: Public domain | W3C validator |