Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > nmvs | Structured version Visualization version GIF version |
Description: Defining property of a normed module. (Contributed by Mario Carneiro, 4-Oct-2015.) |
Ref | Expression |
---|---|
isnlm.v | ⊢ 𝑉 = (Base‘𝑊) |
isnlm.n | ⊢ 𝑁 = (norm‘𝑊) |
isnlm.s | ⊢ · = ( ·𝑠 ‘𝑊) |
isnlm.f | ⊢ 𝐹 = (Scalar‘𝑊) |
isnlm.k | ⊢ 𝐾 = (Base‘𝐹) |
isnlm.a | ⊢ 𝐴 = (norm‘𝐹) |
Ref | Expression |
---|---|
nmvs | ⊢ ((𝑊 ∈ NrmMod ∧ 𝑋 ∈ 𝐾 ∧ 𝑌 ∈ 𝑉) → (𝑁‘(𝑋 · 𝑌)) = ((𝐴‘𝑋) · (𝑁‘𝑌))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | isnlm.v | . . . . 5 ⊢ 𝑉 = (Base‘𝑊) | |
2 | isnlm.n | . . . . 5 ⊢ 𝑁 = (norm‘𝑊) | |
3 | isnlm.s | . . . . 5 ⊢ · = ( ·𝑠 ‘𝑊) | |
4 | isnlm.f | . . . . 5 ⊢ 𝐹 = (Scalar‘𝑊) | |
5 | isnlm.k | . . . . 5 ⊢ 𝐾 = (Base‘𝐹) | |
6 | isnlm.a | . . . . 5 ⊢ 𝐴 = (norm‘𝐹) | |
7 | 1, 2, 3, 4, 5, 6 | isnlm 23839 | . . . 4 ⊢ (𝑊 ∈ NrmMod ↔ ((𝑊 ∈ NrmGrp ∧ 𝑊 ∈ LMod ∧ 𝐹 ∈ NrmRing) ∧ ∀𝑥 ∈ 𝐾 ∀𝑦 ∈ 𝑉 (𝑁‘(𝑥 · 𝑦)) = ((𝐴‘𝑥) · (𝑁‘𝑦)))) |
8 | 7 | simprbi 497 | . . 3 ⊢ (𝑊 ∈ NrmMod → ∀𝑥 ∈ 𝐾 ∀𝑦 ∈ 𝑉 (𝑁‘(𝑥 · 𝑦)) = ((𝐴‘𝑥) · (𝑁‘𝑦))) |
9 | fvoveq1 7298 | . . . . 5 ⊢ (𝑥 = 𝑋 → (𝑁‘(𝑥 · 𝑦)) = (𝑁‘(𝑋 · 𝑦))) | |
10 | fveq2 6774 | . . . . . 6 ⊢ (𝑥 = 𝑋 → (𝐴‘𝑥) = (𝐴‘𝑋)) | |
11 | 10 | oveq1d 7290 | . . . . 5 ⊢ (𝑥 = 𝑋 → ((𝐴‘𝑥) · (𝑁‘𝑦)) = ((𝐴‘𝑋) · (𝑁‘𝑦))) |
12 | 9, 11 | eqeq12d 2754 | . . . 4 ⊢ (𝑥 = 𝑋 → ((𝑁‘(𝑥 · 𝑦)) = ((𝐴‘𝑥) · (𝑁‘𝑦)) ↔ (𝑁‘(𝑋 · 𝑦)) = ((𝐴‘𝑋) · (𝑁‘𝑦)))) |
13 | oveq2 7283 | . . . . . 6 ⊢ (𝑦 = 𝑌 → (𝑋 · 𝑦) = (𝑋 · 𝑌)) | |
14 | 13 | fveq2d 6778 | . . . . 5 ⊢ (𝑦 = 𝑌 → (𝑁‘(𝑋 · 𝑦)) = (𝑁‘(𝑋 · 𝑌))) |
15 | fveq2 6774 | . . . . . 6 ⊢ (𝑦 = 𝑌 → (𝑁‘𝑦) = (𝑁‘𝑌)) | |
16 | 15 | oveq2d 7291 | . . . . 5 ⊢ (𝑦 = 𝑌 → ((𝐴‘𝑋) · (𝑁‘𝑦)) = ((𝐴‘𝑋) · (𝑁‘𝑌))) |
17 | 14, 16 | eqeq12d 2754 | . . . 4 ⊢ (𝑦 = 𝑌 → ((𝑁‘(𝑋 · 𝑦)) = ((𝐴‘𝑋) · (𝑁‘𝑦)) ↔ (𝑁‘(𝑋 · 𝑌)) = ((𝐴‘𝑋) · (𝑁‘𝑌)))) |
18 | 12, 17 | rspc2v 3570 | . . 3 ⊢ ((𝑋 ∈ 𝐾 ∧ 𝑌 ∈ 𝑉) → (∀𝑥 ∈ 𝐾 ∀𝑦 ∈ 𝑉 (𝑁‘(𝑥 · 𝑦)) = ((𝐴‘𝑥) · (𝑁‘𝑦)) → (𝑁‘(𝑋 · 𝑌)) = ((𝐴‘𝑋) · (𝑁‘𝑌)))) |
19 | 8, 18 | syl5com 31 | . 2 ⊢ (𝑊 ∈ NrmMod → ((𝑋 ∈ 𝐾 ∧ 𝑌 ∈ 𝑉) → (𝑁‘(𝑋 · 𝑌)) = ((𝐴‘𝑋) · (𝑁‘𝑌)))) |
20 | 19 | 3impib 1115 | 1 ⊢ ((𝑊 ∈ NrmMod ∧ 𝑋 ∈ 𝐾 ∧ 𝑌 ∈ 𝑉) → (𝑁‘(𝑋 · 𝑌)) = ((𝐴‘𝑋) · (𝑁‘𝑌))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 ∧ w3a 1086 = wceq 1539 ∈ wcel 2106 ∀wral 3064 ‘cfv 6433 (class class class)co 7275 · cmul 10876 Basecbs 16912 Scalarcsca 16965 ·𝑠 cvsca 16966 LModclmod 20123 normcnm 23732 NrmGrpcngp 23733 NrmRingcnrg 23735 NrmModcnlm 23736 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-nul 5230 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3434 df-sbc 3717 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-br 5075 df-iota 6391 df-fv 6441 df-ov 7278 df-nlm 23742 |
This theorem is referenced by: nlmdsdi 23845 nlmdsdir 23846 nlmmul0or 23847 lssnlm 23865 nmoleub2lem3 24278 nmoleub3 24282 ncvsprp 24316 cphnmvs 24354 nmmulg 31918 |
Copyright terms: Public domain | W3C validator |