| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nmvs | Structured version Visualization version GIF version | ||
| Description: Defining property of a normed module. (Contributed by Mario Carneiro, 4-Oct-2015.) |
| Ref | Expression |
|---|---|
| isnlm.v | ⊢ 𝑉 = (Base‘𝑊) |
| isnlm.n | ⊢ 𝑁 = (norm‘𝑊) |
| isnlm.s | ⊢ · = ( ·𝑠 ‘𝑊) |
| isnlm.f | ⊢ 𝐹 = (Scalar‘𝑊) |
| isnlm.k | ⊢ 𝐾 = (Base‘𝐹) |
| isnlm.a | ⊢ 𝐴 = (norm‘𝐹) |
| Ref | Expression |
|---|---|
| nmvs | ⊢ ((𝑊 ∈ NrmMod ∧ 𝑋 ∈ 𝐾 ∧ 𝑌 ∈ 𝑉) → (𝑁‘(𝑋 · 𝑌)) = ((𝐴‘𝑋) · (𝑁‘𝑌))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isnlm.v | . . . . 5 ⊢ 𝑉 = (Base‘𝑊) | |
| 2 | isnlm.n | . . . . 5 ⊢ 𝑁 = (norm‘𝑊) | |
| 3 | isnlm.s | . . . . 5 ⊢ · = ( ·𝑠 ‘𝑊) | |
| 4 | isnlm.f | . . . . 5 ⊢ 𝐹 = (Scalar‘𝑊) | |
| 5 | isnlm.k | . . . . 5 ⊢ 𝐾 = (Base‘𝐹) | |
| 6 | isnlm.a | . . . . 5 ⊢ 𝐴 = (norm‘𝐹) | |
| 7 | 1, 2, 3, 4, 5, 6 | isnlm 24570 | . . . 4 ⊢ (𝑊 ∈ NrmMod ↔ ((𝑊 ∈ NrmGrp ∧ 𝑊 ∈ LMod ∧ 𝐹 ∈ NrmRing) ∧ ∀𝑥 ∈ 𝐾 ∀𝑦 ∈ 𝑉 (𝑁‘(𝑥 · 𝑦)) = ((𝐴‘𝑥) · (𝑁‘𝑦)))) |
| 8 | 7 | simprbi 496 | . . 3 ⊢ (𝑊 ∈ NrmMod → ∀𝑥 ∈ 𝐾 ∀𝑦 ∈ 𝑉 (𝑁‘(𝑥 · 𝑦)) = ((𝐴‘𝑥) · (𝑁‘𝑦))) |
| 9 | fvoveq1 7413 | . . . . 5 ⊢ (𝑥 = 𝑋 → (𝑁‘(𝑥 · 𝑦)) = (𝑁‘(𝑋 · 𝑦))) | |
| 10 | fveq2 6861 | . . . . . 6 ⊢ (𝑥 = 𝑋 → (𝐴‘𝑥) = (𝐴‘𝑋)) | |
| 11 | 10 | oveq1d 7405 | . . . . 5 ⊢ (𝑥 = 𝑋 → ((𝐴‘𝑥) · (𝑁‘𝑦)) = ((𝐴‘𝑋) · (𝑁‘𝑦))) |
| 12 | 9, 11 | eqeq12d 2746 | . . . 4 ⊢ (𝑥 = 𝑋 → ((𝑁‘(𝑥 · 𝑦)) = ((𝐴‘𝑥) · (𝑁‘𝑦)) ↔ (𝑁‘(𝑋 · 𝑦)) = ((𝐴‘𝑋) · (𝑁‘𝑦)))) |
| 13 | oveq2 7398 | . . . . . 6 ⊢ (𝑦 = 𝑌 → (𝑋 · 𝑦) = (𝑋 · 𝑌)) | |
| 14 | 13 | fveq2d 6865 | . . . . 5 ⊢ (𝑦 = 𝑌 → (𝑁‘(𝑋 · 𝑦)) = (𝑁‘(𝑋 · 𝑌))) |
| 15 | fveq2 6861 | . . . . . 6 ⊢ (𝑦 = 𝑌 → (𝑁‘𝑦) = (𝑁‘𝑌)) | |
| 16 | 15 | oveq2d 7406 | . . . . 5 ⊢ (𝑦 = 𝑌 → ((𝐴‘𝑋) · (𝑁‘𝑦)) = ((𝐴‘𝑋) · (𝑁‘𝑌))) |
| 17 | 14, 16 | eqeq12d 2746 | . . . 4 ⊢ (𝑦 = 𝑌 → ((𝑁‘(𝑋 · 𝑦)) = ((𝐴‘𝑋) · (𝑁‘𝑦)) ↔ (𝑁‘(𝑋 · 𝑌)) = ((𝐴‘𝑋) · (𝑁‘𝑌)))) |
| 18 | 12, 17 | rspc2v 3602 | . . 3 ⊢ ((𝑋 ∈ 𝐾 ∧ 𝑌 ∈ 𝑉) → (∀𝑥 ∈ 𝐾 ∀𝑦 ∈ 𝑉 (𝑁‘(𝑥 · 𝑦)) = ((𝐴‘𝑥) · (𝑁‘𝑦)) → (𝑁‘(𝑋 · 𝑌)) = ((𝐴‘𝑋) · (𝑁‘𝑌)))) |
| 19 | 8, 18 | syl5com 31 | . 2 ⊢ (𝑊 ∈ NrmMod → ((𝑋 ∈ 𝐾 ∧ 𝑌 ∈ 𝑉) → (𝑁‘(𝑋 · 𝑌)) = ((𝐴‘𝑋) · (𝑁‘𝑌)))) |
| 20 | 19 | 3impib 1116 | 1 ⊢ ((𝑊 ∈ NrmMod ∧ 𝑋 ∈ 𝐾 ∧ 𝑌 ∈ 𝑉) → (𝑁‘(𝑋 · 𝑌)) = ((𝐴‘𝑋) · (𝑁‘𝑌))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ∀wral 3045 ‘cfv 6514 (class class class)co 7390 · cmul 11080 Basecbs 17186 Scalarcsca 17230 ·𝑠 cvsca 17231 LModclmod 20773 normcnm 24471 NrmGrpcngp 24472 NrmRingcnrg 24474 NrmModcnlm 24475 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 ax-nul 5264 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-ne 2927 df-ral 3046 df-rab 3409 df-v 3452 df-sbc 3757 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-br 5111 df-iota 6467 df-fv 6522 df-ov 7393 df-nlm 24481 |
| This theorem is referenced by: nlmdsdi 24576 nlmdsdir 24577 nlmmul0or 24578 lssnlm 24596 nmoleub2lem3 25022 nmoleub3 25026 ncvsprp 25059 cphnmvs 25097 nmmulg 33963 |
| Copyright terms: Public domain | W3C validator |