MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nmvs Structured version   Visualization version   GIF version

Theorem nmvs 22850
Description: Defining property of a normed module. (Contributed by Mario Carneiro, 4-Oct-2015.)
Hypotheses
Ref Expression
isnlm.v 𝑉 = (Base‘𝑊)
isnlm.n 𝑁 = (norm‘𝑊)
isnlm.s · = ( ·𝑠𝑊)
isnlm.f 𝐹 = (Scalar‘𝑊)
isnlm.k 𝐾 = (Base‘𝐹)
isnlm.a 𝐴 = (norm‘𝐹)
Assertion
Ref Expression
nmvs ((𝑊 ∈ NrmMod ∧ 𝑋𝐾𝑌𝑉) → (𝑁‘(𝑋 · 𝑌)) = ((𝐴𝑋) · (𝑁𝑌)))

Proof of Theorem nmvs
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 isnlm.v . . . . 5 𝑉 = (Base‘𝑊)
2 isnlm.n . . . . 5 𝑁 = (norm‘𝑊)
3 isnlm.s . . . . 5 · = ( ·𝑠𝑊)
4 isnlm.f . . . . 5 𝐹 = (Scalar‘𝑊)
5 isnlm.k . . . . 5 𝐾 = (Base‘𝐹)
6 isnlm.a . . . . 5 𝐴 = (norm‘𝐹)
71, 2, 3, 4, 5, 6isnlm 22849 . . . 4 (𝑊 ∈ NrmMod ↔ ((𝑊 ∈ NrmGrp ∧ 𝑊 ∈ LMod ∧ 𝐹 ∈ NrmRing) ∧ ∀𝑥𝐾𝑦𝑉 (𝑁‘(𝑥 · 𝑦)) = ((𝐴𝑥) · (𝑁𝑦))))
87simprbi 492 . . 3 (𝑊 ∈ NrmMod → ∀𝑥𝐾𝑦𝑉 (𝑁‘(𝑥 · 𝑦)) = ((𝐴𝑥) · (𝑁𝑦)))
9 fvoveq1 6928 . . . . 5 (𝑥 = 𝑋 → (𝑁‘(𝑥 · 𝑦)) = (𝑁‘(𝑋 · 𝑦)))
10 fveq2 6433 . . . . . 6 (𝑥 = 𝑋 → (𝐴𝑥) = (𝐴𝑋))
1110oveq1d 6920 . . . . 5 (𝑥 = 𝑋 → ((𝐴𝑥) · (𝑁𝑦)) = ((𝐴𝑋) · (𝑁𝑦)))
129, 11eqeq12d 2840 . . . 4 (𝑥 = 𝑋 → ((𝑁‘(𝑥 · 𝑦)) = ((𝐴𝑥) · (𝑁𝑦)) ↔ (𝑁‘(𝑋 · 𝑦)) = ((𝐴𝑋) · (𝑁𝑦))))
13 oveq2 6913 . . . . . 6 (𝑦 = 𝑌 → (𝑋 · 𝑦) = (𝑋 · 𝑌))
1413fveq2d 6437 . . . . 5 (𝑦 = 𝑌 → (𝑁‘(𝑋 · 𝑦)) = (𝑁‘(𝑋 · 𝑌)))
15 fveq2 6433 . . . . . 6 (𝑦 = 𝑌 → (𝑁𝑦) = (𝑁𝑌))
1615oveq2d 6921 . . . . 5 (𝑦 = 𝑌 → ((𝐴𝑋) · (𝑁𝑦)) = ((𝐴𝑋) · (𝑁𝑌)))
1714, 16eqeq12d 2840 . . . 4 (𝑦 = 𝑌 → ((𝑁‘(𝑋 · 𝑦)) = ((𝐴𝑋) · (𝑁𝑦)) ↔ (𝑁‘(𝑋 · 𝑌)) = ((𝐴𝑋) · (𝑁𝑌))))
1812, 17rspc2v 3539 . . 3 ((𝑋𝐾𝑌𝑉) → (∀𝑥𝐾𝑦𝑉 (𝑁‘(𝑥 · 𝑦)) = ((𝐴𝑥) · (𝑁𝑦)) → (𝑁‘(𝑋 · 𝑌)) = ((𝐴𝑋) · (𝑁𝑌))))
198, 18syl5com 31 . 2 (𝑊 ∈ NrmMod → ((𝑋𝐾𝑌𝑉) → (𝑁‘(𝑋 · 𝑌)) = ((𝐴𝑋) · (𝑁𝑌))))
20193impib 1150 1 ((𝑊 ∈ NrmMod ∧ 𝑋𝐾𝑌𝑉) → (𝑁‘(𝑋 · 𝑌)) = ((𝐴𝑋) · (𝑁𝑌)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 386  w3a 1113   = wceq 1658  wcel 2166  wral 3117  cfv 6123  (class class class)co 6905   · cmul 10257  Basecbs 16222  Scalarcsca 16308   ·𝑠 cvsca 16309  LModclmod 19219  normcnm 22751  NrmGrpcngp 22752  NrmRingcnrg 22754  NrmModcnlm 22755
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1896  ax-4 1910  ax-5 2011  ax-6 2077  ax-7 2114  ax-9 2175  ax-10 2194  ax-11 2209  ax-12 2222  ax-13 2391  ax-ext 2803  ax-nul 5013
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 881  df-3an 1115  df-tru 1662  df-ex 1881  df-nf 1885  df-sb 2070  df-mo 2605  df-eu 2640  df-clab 2812  df-cleq 2818  df-clel 2821  df-nfc 2958  df-ral 3122  df-rex 3123  df-rab 3126  df-v 3416  df-sbc 3663  df-dif 3801  df-un 3803  df-in 3805  df-ss 3812  df-nul 4145  df-if 4307  df-sn 4398  df-pr 4400  df-op 4404  df-uni 4659  df-br 4874  df-iota 6086  df-fv 6131  df-ov 6908  df-nlm 22761
This theorem is referenced by:  nlmdsdi  22855  nlmdsdir  22856  nlmmul0or  22857  lssnlm  22875  nmoleub2lem3  23284  nmoleub3  23288  ncvsprp  23321  cphnmvs  23359  nmmulg  30557
  Copyright terms: Public domain W3C validator