MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nmvs Structured version   Visualization version   GIF version

Theorem nmvs 24591
Description: Defining property of a normed module. (Contributed by Mario Carneiro, 4-Oct-2015.)
Hypotheses
Ref Expression
isnlm.v 𝑉 = (Base‘𝑊)
isnlm.n 𝑁 = (norm‘𝑊)
isnlm.s · = ( ·𝑠𝑊)
isnlm.f 𝐹 = (Scalar‘𝑊)
isnlm.k 𝐾 = (Base‘𝐹)
isnlm.a 𝐴 = (norm‘𝐹)
Assertion
Ref Expression
nmvs ((𝑊 ∈ NrmMod ∧ 𝑋𝐾𝑌𝑉) → (𝑁‘(𝑋 · 𝑌)) = ((𝐴𝑋) · (𝑁𝑌)))

Proof of Theorem nmvs
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 isnlm.v . . . . 5 𝑉 = (Base‘𝑊)
2 isnlm.n . . . . 5 𝑁 = (norm‘𝑊)
3 isnlm.s . . . . 5 · = ( ·𝑠𝑊)
4 isnlm.f . . . . 5 𝐹 = (Scalar‘𝑊)
5 isnlm.k . . . . 5 𝐾 = (Base‘𝐹)
6 isnlm.a . . . . 5 𝐴 = (norm‘𝐹)
71, 2, 3, 4, 5, 6isnlm 24590 . . . 4 (𝑊 ∈ NrmMod ↔ ((𝑊 ∈ NrmGrp ∧ 𝑊 ∈ LMod ∧ 𝐹 ∈ NrmRing) ∧ ∀𝑥𝐾𝑦𝑉 (𝑁‘(𝑥 · 𝑦)) = ((𝐴𝑥) · (𝑁𝑦))))
87simprbi 496 . . 3 (𝑊 ∈ NrmMod → ∀𝑥𝐾𝑦𝑉 (𝑁‘(𝑥 · 𝑦)) = ((𝐴𝑥) · (𝑁𝑦)))
9 fvoveq1 7369 . . . . 5 (𝑥 = 𝑋 → (𝑁‘(𝑥 · 𝑦)) = (𝑁‘(𝑋 · 𝑦)))
10 fveq2 6822 . . . . . 6 (𝑥 = 𝑋 → (𝐴𝑥) = (𝐴𝑋))
1110oveq1d 7361 . . . . 5 (𝑥 = 𝑋 → ((𝐴𝑥) · (𝑁𝑦)) = ((𝐴𝑋) · (𝑁𝑦)))
129, 11eqeq12d 2747 . . . 4 (𝑥 = 𝑋 → ((𝑁‘(𝑥 · 𝑦)) = ((𝐴𝑥) · (𝑁𝑦)) ↔ (𝑁‘(𝑋 · 𝑦)) = ((𝐴𝑋) · (𝑁𝑦))))
13 oveq2 7354 . . . . . 6 (𝑦 = 𝑌 → (𝑋 · 𝑦) = (𝑋 · 𝑌))
1413fveq2d 6826 . . . . 5 (𝑦 = 𝑌 → (𝑁‘(𝑋 · 𝑦)) = (𝑁‘(𝑋 · 𝑌)))
15 fveq2 6822 . . . . . 6 (𝑦 = 𝑌 → (𝑁𝑦) = (𝑁𝑌))
1615oveq2d 7362 . . . . 5 (𝑦 = 𝑌 → ((𝐴𝑋) · (𝑁𝑦)) = ((𝐴𝑋) · (𝑁𝑌)))
1714, 16eqeq12d 2747 . . . 4 (𝑦 = 𝑌 → ((𝑁‘(𝑋 · 𝑦)) = ((𝐴𝑋) · (𝑁𝑦)) ↔ (𝑁‘(𝑋 · 𝑌)) = ((𝐴𝑋) · (𝑁𝑌))))
1812, 17rspc2v 3583 . . 3 ((𝑋𝐾𝑌𝑉) → (∀𝑥𝐾𝑦𝑉 (𝑁‘(𝑥 · 𝑦)) = ((𝐴𝑥) · (𝑁𝑦)) → (𝑁‘(𝑋 · 𝑌)) = ((𝐴𝑋) · (𝑁𝑌))))
198, 18syl5com 31 . 2 (𝑊 ∈ NrmMod → ((𝑋𝐾𝑌𝑉) → (𝑁‘(𝑋 · 𝑌)) = ((𝐴𝑋) · (𝑁𝑌))))
20193impib 1116 1 ((𝑊 ∈ NrmMod ∧ 𝑋𝐾𝑌𝑉) → (𝑁‘(𝑋 · 𝑌)) = ((𝐴𝑋) · (𝑁𝑌)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1541  wcel 2111  wral 3047  cfv 6481  (class class class)co 7346   · cmul 11011  Basecbs 17120  Scalarcsca 17164   ·𝑠 cvsca 17165  LModclmod 20793  normcnm 24491  NrmGrpcngp 24492  NrmRingcnrg 24494  NrmModcnlm 24495
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-ext 2703  ax-nul 5242
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-ne 2929  df-ral 3048  df-rab 3396  df-v 3438  df-sbc 3737  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4281  df-if 4473  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-br 5090  df-iota 6437  df-fv 6489  df-ov 7349  df-nlm 24501
This theorem is referenced by:  nlmdsdi  24596  nlmdsdir  24597  nlmmul0or  24598  lssnlm  24616  nmoleub2lem3  25042  nmoleub3  25046  ncvsprp  25079  cphnmvs  25117  nmmulg  33979
  Copyright terms: Public domain W3C validator