Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > cphnmvs | Structured version Visualization version GIF version |
Description: Norm of a scalar product. (Contributed by Mario Carneiro, 16-Oct-2015.) |
Ref | Expression |
---|---|
cphnmvs.v | ⊢ 𝑉 = (Base‘𝑊) |
cphnmvs.n | ⊢ 𝑁 = (norm‘𝑊) |
cphnmvs.s | ⊢ · = ( ·𝑠 ‘𝑊) |
cphnmvs.f | ⊢ 𝐹 = (Scalar‘𝑊) |
cphnmvs.k | ⊢ 𝐾 = (Base‘𝐹) |
Ref | Expression |
---|---|
cphnmvs | ⊢ ((𝑊 ∈ ℂPreHil ∧ 𝑋 ∈ 𝐾 ∧ 𝑌 ∈ 𝑉) → (𝑁‘(𝑋 · 𝑌)) = ((abs‘𝑋) · (𝑁‘𝑌))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cphnlm 24407 | . . 3 ⊢ (𝑊 ∈ ℂPreHil → 𝑊 ∈ NrmMod) | |
2 | cphnmvs.v | . . . 4 ⊢ 𝑉 = (Base‘𝑊) | |
3 | cphnmvs.n | . . . 4 ⊢ 𝑁 = (norm‘𝑊) | |
4 | cphnmvs.s | . . . 4 ⊢ · = ( ·𝑠 ‘𝑊) | |
5 | cphnmvs.f | . . . 4 ⊢ 𝐹 = (Scalar‘𝑊) | |
6 | cphnmvs.k | . . . 4 ⊢ 𝐾 = (Base‘𝐹) | |
7 | eqid 2737 | . . . 4 ⊢ (norm‘𝐹) = (norm‘𝐹) | |
8 | 2, 3, 4, 5, 6, 7 | nmvs 23911 | . . 3 ⊢ ((𝑊 ∈ NrmMod ∧ 𝑋 ∈ 𝐾 ∧ 𝑌 ∈ 𝑉) → (𝑁‘(𝑋 · 𝑌)) = (((norm‘𝐹)‘𝑋) · (𝑁‘𝑌))) |
9 | 1, 8 | syl3an1 1162 | . 2 ⊢ ((𝑊 ∈ ℂPreHil ∧ 𝑋 ∈ 𝐾 ∧ 𝑌 ∈ 𝑉) → (𝑁‘(𝑋 · 𝑌)) = (((norm‘𝐹)‘𝑋) · (𝑁‘𝑌))) |
10 | cphclm 24424 | . . . . 5 ⊢ (𝑊 ∈ ℂPreHil → 𝑊 ∈ ℂMod) | |
11 | 5, 6 | clmabs 24317 | . . . . 5 ⊢ ((𝑊 ∈ ℂMod ∧ 𝑋 ∈ 𝐾) → (abs‘𝑋) = ((norm‘𝐹)‘𝑋)) |
12 | 10, 11 | sylan 580 | . . . 4 ⊢ ((𝑊 ∈ ℂPreHil ∧ 𝑋 ∈ 𝐾) → (abs‘𝑋) = ((norm‘𝐹)‘𝑋)) |
13 | 12 | 3adant3 1131 | . . 3 ⊢ ((𝑊 ∈ ℂPreHil ∧ 𝑋 ∈ 𝐾 ∧ 𝑌 ∈ 𝑉) → (abs‘𝑋) = ((norm‘𝐹)‘𝑋)) |
14 | 13 | oveq1d 7328 | . 2 ⊢ ((𝑊 ∈ ℂPreHil ∧ 𝑋 ∈ 𝐾 ∧ 𝑌 ∈ 𝑉) → ((abs‘𝑋) · (𝑁‘𝑌)) = (((norm‘𝐹)‘𝑋) · (𝑁‘𝑌))) |
15 | 9, 14 | eqtr4d 2780 | 1 ⊢ ((𝑊 ∈ ℂPreHil ∧ 𝑋 ∈ 𝐾 ∧ 𝑌 ∈ 𝑉) → (𝑁‘(𝑋 · 𝑌)) = ((abs‘𝑋) · (𝑁‘𝑌))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1086 = wceq 1540 ∈ wcel 2105 ‘cfv 6463 (class class class)co 7313 · cmul 10946 abscabs 15014 Basecbs 16979 Scalarcsca 17032 ·𝑠 cvsca 17033 normcnm 23803 NrmModcnlm 23807 ℂModcclm 24296 ℂPreHilccph 24401 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2708 ax-rep 5222 ax-sep 5236 ax-nul 5243 ax-pow 5301 ax-pr 5365 ax-un 7626 ax-cnex 10997 ax-resscn 10998 ax-1cn 10999 ax-icn 11000 ax-addcl 11001 ax-addrcl 11002 ax-mulcl 11003 ax-mulrcl 11004 ax-mulcom 11005 ax-addass 11006 ax-mulass 11007 ax-distr 11008 ax-i2m1 11009 ax-1ne0 11010 ax-1rid 11011 ax-rnegex 11012 ax-rrecex 11013 ax-cnre 11014 ax-pre-lttri 11015 ax-pre-lttrn 11016 ax-pre-ltadd 11017 ax-pre-mulgt0 11018 ax-pre-sup 11019 ax-addf 11020 ax-mulf 11021 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2815 df-nfc 2887 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-rmo 3350 df-reu 3351 df-rab 3405 df-v 3443 df-sbc 3726 df-csb 3842 df-dif 3899 df-un 3901 df-in 3903 df-ss 3913 df-pss 3915 df-nul 4267 df-if 4470 df-pw 4545 df-sn 4570 df-pr 4572 df-tp 4574 df-op 4576 df-uni 4849 df-iun 4937 df-br 5086 df-opab 5148 df-mpt 5169 df-tr 5203 df-id 5505 df-eprel 5511 df-po 5519 df-so 5520 df-fr 5560 df-we 5562 df-xp 5611 df-rel 5612 df-cnv 5613 df-co 5614 df-dm 5615 df-rn 5616 df-res 5617 df-ima 5618 df-pred 6222 df-ord 6289 df-on 6290 df-lim 6291 df-suc 6292 df-iota 6415 df-fun 6465 df-fn 6466 df-f 6467 df-f1 6468 df-fo 6469 df-f1o 6470 df-fv 6471 df-riota 7270 df-ov 7316 df-oprab 7317 df-mpo 7318 df-om 7756 df-1st 7874 df-2nd 7875 df-tpos 8087 df-frecs 8142 df-wrecs 8173 df-recs 8247 df-rdg 8286 df-1o 8342 df-er 8544 df-en 8780 df-dom 8781 df-sdom 8782 df-fin 8783 df-sup 9269 df-pnf 11081 df-mnf 11082 df-xr 11083 df-ltxr 11084 df-le 11085 df-sub 11277 df-neg 11278 df-div 11703 df-nn 12044 df-2 12106 df-3 12107 df-4 12108 df-5 12109 df-6 12110 df-7 12111 df-8 12112 df-9 12113 df-n0 12304 df-z 12390 df-dec 12508 df-uz 12653 df-rp 12801 df-fz 13310 df-seq 13792 df-exp 13853 df-cj 14879 df-re 14880 df-im 14881 df-sqrt 15015 df-abs 15016 df-struct 16915 df-sets 16932 df-slot 16950 df-ndx 16962 df-base 16980 df-ress 17009 df-plusg 17042 df-mulr 17043 df-starv 17044 df-tset 17048 df-ple 17049 df-ds 17051 df-unif 17052 df-0g 17219 df-mgm 18393 df-sgrp 18442 df-mnd 18453 df-grp 18647 df-subg 18819 df-cmn 19455 df-mgp 19788 df-ur 19805 df-ring 19852 df-cring 19853 df-oppr 19929 df-dvdsr 19950 df-unit 19951 df-drng 20064 df-subrg 20093 df-lvec 20436 df-cnfld 20669 df-phl 20902 df-nm 23809 df-nlm 23813 df-clm 24297 df-cph 24403 |
This theorem is referenced by: minveclem2 24661 |
Copyright terms: Public domain | W3C validator |