| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > nmmulg | Structured version Visualization version GIF version | ||
| Description: The norm of a group product, provided the ℤ-module is normed. (Contributed by Thierry Arnoux, 8-Nov-2017.) |
| Ref | Expression |
|---|---|
| nmmulg.x | ⊢ 𝐵 = (Base‘𝑅) |
| nmmulg.n | ⊢ 𝑁 = (norm‘𝑅) |
| nmmulg.z | ⊢ 𝑍 = (ℤMod‘𝑅) |
| nmmulg.t | ⊢ · = (.g‘𝑅) |
| Ref | Expression |
|---|---|
| nmmulg | ⊢ ((𝑍 ∈ NrmMod ∧ 𝑀 ∈ ℤ ∧ 𝑋 ∈ 𝐵) → (𝑁‘(𝑀 · 𝑋)) = ((abs‘𝑀) · (𝑁‘𝑋))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simp2 1137 | . . . 4 ⊢ ((𝑍 ∈ NrmMod ∧ 𝑀 ∈ ℤ ∧ 𝑋 ∈ 𝐵) → 𝑀 ∈ ℤ) | |
| 2 | zringbas 21370 | . . . . 5 ⊢ ℤ = (Base‘ℤring) | |
| 3 | nlmlmod 24573 | . . . . . . . . 9 ⊢ (𝑍 ∈ NrmMod → 𝑍 ∈ LMod) | |
| 4 | nmmulg.z | . . . . . . . . . 10 ⊢ 𝑍 = (ℤMod‘𝑅) | |
| 5 | 4 | zlmlmod 21439 | . . . . . . . . 9 ⊢ (𝑅 ∈ Abel ↔ 𝑍 ∈ LMod) |
| 6 | 3, 5 | sylibr 234 | . . . . . . . 8 ⊢ (𝑍 ∈ NrmMod → 𝑅 ∈ Abel) |
| 7 | 6 | 3ad2ant1 1133 | . . . . . . 7 ⊢ ((𝑍 ∈ NrmMod ∧ 𝑀 ∈ ℤ ∧ 𝑋 ∈ 𝐵) → 𝑅 ∈ Abel) |
| 8 | 4 | zlmsca 21437 | . . . . . . 7 ⊢ (𝑅 ∈ Abel → ℤring = (Scalar‘𝑍)) |
| 9 | 7, 8 | syl 17 | . . . . . 6 ⊢ ((𝑍 ∈ NrmMod ∧ 𝑀 ∈ ℤ ∧ 𝑋 ∈ 𝐵) → ℤring = (Scalar‘𝑍)) |
| 10 | 9 | fveq2d 6865 | . . . . 5 ⊢ ((𝑍 ∈ NrmMod ∧ 𝑀 ∈ ℤ ∧ 𝑋 ∈ 𝐵) → (Base‘ℤring) = (Base‘(Scalar‘𝑍))) |
| 11 | 2, 10 | eqtrid 2777 | . . . 4 ⊢ ((𝑍 ∈ NrmMod ∧ 𝑀 ∈ ℤ ∧ 𝑋 ∈ 𝐵) → ℤ = (Base‘(Scalar‘𝑍))) |
| 12 | 1, 11 | eleqtrd 2831 | . . 3 ⊢ ((𝑍 ∈ NrmMod ∧ 𝑀 ∈ ℤ ∧ 𝑋 ∈ 𝐵) → 𝑀 ∈ (Base‘(Scalar‘𝑍))) |
| 13 | nmmulg.x | . . . . 5 ⊢ 𝐵 = (Base‘𝑅) | |
| 14 | 4, 13 | zlmbas 21434 | . . . 4 ⊢ 𝐵 = (Base‘𝑍) |
| 15 | eqid 2730 | . . . 4 ⊢ (norm‘𝑍) = (norm‘𝑍) | |
| 16 | nmmulg.t | . . . . 5 ⊢ · = (.g‘𝑅) | |
| 17 | 4, 16 | zlmvsca 21438 | . . . 4 ⊢ · = ( ·𝑠 ‘𝑍) |
| 18 | eqid 2730 | . . . 4 ⊢ (Scalar‘𝑍) = (Scalar‘𝑍) | |
| 19 | eqid 2730 | . . . 4 ⊢ (Base‘(Scalar‘𝑍)) = (Base‘(Scalar‘𝑍)) | |
| 20 | eqid 2730 | . . . 4 ⊢ (norm‘(Scalar‘𝑍)) = (norm‘(Scalar‘𝑍)) | |
| 21 | 14, 15, 17, 18, 19, 20 | nmvs 24571 | . . 3 ⊢ ((𝑍 ∈ NrmMod ∧ 𝑀 ∈ (Base‘(Scalar‘𝑍)) ∧ 𝑋 ∈ 𝐵) → ((norm‘𝑍)‘(𝑀 · 𝑋)) = (((norm‘(Scalar‘𝑍))‘𝑀) · ((norm‘𝑍)‘𝑋))) |
| 22 | 12, 21 | syld3an2 1413 | . 2 ⊢ ((𝑍 ∈ NrmMod ∧ 𝑀 ∈ ℤ ∧ 𝑋 ∈ 𝐵) → ((norm‘𝑍)‘(𝑀 · 𝑋)) = (((norm‘(Scalar‘𝑍))‘𝑀) · ((norm‘𝑍)‘𝑋))) |
| 23 | nmmulg.n | . . . . 5 ⊢ 𝑁 = (norm‘𝑅) | |
| 24 | 4, 23 | zlmnm 33961 | . . . 4 ⊢ (𝑅 ∈ Abel → 𝑁 = (norm‘𝑍)) |
| 25 | 7, 24 | syl 17 | . . 3 ⊢ ((𝑍 ∈ NrmMod ∧ 𝑀 ∈ ℤ ∧ 𝑋 ∈ 𝐵) → 𝑁 = (norm‘𝑍)) |
| 26 | 25 | fveq1d 6863 | . 2 ⊢ ((𝑍 ∈ NrmMod ∧ 𝑀 ∈ ℤ ∧ 𝑋 ∈ 𝐵) → (𝑁‘(𝑀 · 𝑋)) = ((norm‘𝑍)‘(𝑀 · 𝑋))) |
| 27 | zzsnm 33956 | . . . . 5 ⊢ (𝑀 ∈ ℤ → (abs‘𝑀) = ((norm‘ℤring)‘𝑀)) | |
| 28 | 27 | 3ad2ant2 1134 | . . . 4 ⊢ ((𝑍 ∈ NrmMod ∧ 𝑀 ∈ ℤ ∧ 𝑋 ∈ 𝐵) → (abs‘𝑀) = ((norm‘ℤring)‘𝑀)) |
| 29 | 9 | fveq2d 6865 | . . . . 5 ⊢ ((𝑍 ∈ NrmMod ∧ 𝑀 ∈ ℤ ∧ 𝑋 ∈ 𝐵) → (norm‘ℤring) = (norm‘(Scalar‘𝑍))) |
| 30 | 29 | fveq1d 6863 | . . . 4 ⊢ ((𝑍 ∈ NrmMod ∧ 𝑀 ∈ ℤ ∧ 𝑋 ∈ 𝐵) → ((norm‘ℤring)‘𝑀) = ((norm‘(Scalar‘𝑍))‘𝑀)) |
| 31 | 28, 30 | eqtrd 2765 | . . 3 ⊢ ((𝑍 ∈ NrmMod ∧ 𝑀 ∈ ℤ ∧ 𝑋 ∈ 𝐵) → (abs‘𝑀) = ((norm‘(Scalar‘𝑍))‘𝑀)) |
| 32 | 25 | fveq1d 6863 | . . 3 ⊢ ((𝑍 ∈ NrmMod ∧ 𝑀 ∈ ℤ ∧ 𝑋 ∈ 𝐵) → (𝑁‘𝑋) = ((norm‘𝑍)‘𝑋)) |
| 33 | 31, 32 | oveq12d 7408 | . 2 ⊢ ((𝑍 ∈ NrmMod ∧ 𝑀 ∈ ℤ ∧ 𝑋 ∈ 𝐵) → ((abs‘𝑀) · (𝑁‘𝑋)) = (((norm‘(Scalar‘𝑍))‘𝑀) · ((norm‘𝑍)‘𝑋))) |
| 34 | 22, 26, 33 | 3eqtr4d 2775 | 1 ⊢ ((𝑍 ∈ NrmMod ∧ 𝑀 ∈ ℤ ∧ 𝑋 ∈ 𝐵) → (𝑁‘(𝑀 · 𝑋)) = ((abs‘𝑀) · (𝑁‘𝑋))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ‘cfv 6514 (class class class)co 7390 · cmul 11080 ℤcz 12536 abscabs 15207 Basecbs 17186 Scalarcsca 17230 .gcmg 19006 Abelcabl 19718 LModclmod 20773 ℤringczring 21363 ℤModczlm 21417 normcnm 24471 NrmModcnlm 24475 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 ax-cnex 11131 ax-resscn 11132 ax-1cn 11133 ax-icn 11134 ax-addcl 11135 ax-addrcl 11136 ax-mulcl 11137 ax-mulrcl 11138 ax-mulcom 11139 ax-addass 11140 ax-mulass 11141 ax-distr 11142 ax-i2m1 11143 ax-1ne0 11144 ax-1rid 11145 ax-rnegex 11146 ax-rrecex 11147 ax-cnre 11148 ax-pre-lttri 11149 ax-pre-lttrn 11150 ax-pre-ltadd 11151 ax-pre-mulgt0 11152 ax-pre-sup 11153 ax-addf 11154 ax-mulf 11155 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-rmo 3356 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-pss 3937 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-tp 4597 df-op 4599 df-uni 4875 df-iun 4960 df-br 5111 df-opab 5173 df-mpt 5192 df-tr 5218 df-id 5536 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5594 df-we 5596 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-pred 6277 df-ord 6338 df-on 6339 df-lim 6340 df-suc 6341 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-riota 7347 df-ov 7393 df-oprab 7394 df-mpo 7395 df-om 7846 df-1st 7971 df-2nd 7972 df-frecs 8263 df-wrecs 8294 df-recs 8343 df-rdg 8381 df-1o 8437 df-er 8674 df-en 8922 df-dom 8923 df-sdom 8924 df-fin 8925 df-sup 9400 df-pnf 11217 df-mnf 11218 df-xr 11219 df-ltxr 11220 df-le 11221 df-sub 11414 df-neg 11415 df-div 11843 df-nn 12194 df-2 12256 df-3 12257 df-4 12258 df-5 12259 df-6 12260 df-7 12261 df-8 12262 df-9 12263 df-n0 12450 df-z 12537 df-dec 12657 df-uz 12801 df-rp 12959 df-fz 13476 df-fzo 13623 df-seq 13974 df-exp 14034 df-cj 15072 df-re 15073 df-im 15074 df-sqrt 15208 df-abs 15209 df-struct 17124 df-sets 17141 df-slot 17159 df-ndx 17171 df-base 17187 df-ress 17208 df-plusg 17240 df-mulr 17241 df-starv 17242 df-sca 17243 df-vsca 17244 df-ip 17245 df-tset 17246 df-ple 17247 df-ds 17249 df-unif 17250 df-0g 17411 df-mgm 18574 df-sgrp 18653 df-mnd 18669 df-grp 18875 df-minusg 18876 df-mulg 19007 df-subg 19062 df-cmn 19719 df-abl 19720 df-mgp 20057 df-rng 20069 df-ur 20098 df-ring 20151 df-cring 20152 df-subrng 20462 df-subrg 20486 df-lmod 20775 df-cnfld 21272 df-zring 21364 df-zlm 21421 df-nm 24477 df-nlm 24481 |
| This theorem is referenced by: zrhnm 33964 |
| Copyright terms: Public domain | W3C validator |