Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  nmmulg Structured version   Visualization version   GIF version

Theorem nmmulg 33942
Description: The norm of a group product, provided the -module is normed. (Contributed by Thierry Arnoux, 8-Nov-2017.)
Hypotheses
Ref Expression
nmmulg.x 𝐵 = (Base‘𝑅)
nmmulg.n 𝑁 = (norm‘𝑅)
nmmulg.z 𝑍 = (ℤMod‘𝑅)
nmmulg.t · = (.g𝑅)
Assertion
Ref Expression
nmmulg ((𝑍 ∈ NrmMod ∧ 𝑀 ∈ ℤ ∧ 𝑋𝐵) → (𝑁‘(𝑀 · 𝑋)) = ((abs‘𝑀) · (𝑁𝑋)))

Proof of Theorem nmmulg
StepHypRef Expression
1 simp2 1137 . . . 4 ((𝑍 ∈ NrmMod ∧ 𝑀 ∈ ℤ ∧ 𝑋𝐵) → 𝑀 ∈ ℤ)
2 zringbas 21427 . . . . 5 ℤ = (Base‘ℤring)
3 nlmlmod 24636 . . . . . . . . 9 (𝑍 ∈ NrmMod → 𝑍 ∈ LMod)
4 nmmulg.z . . . . . . . . . 10 𝑍 = (ℤMod‘𝑅)
54zlmlmod 21496 . . . . . . . . 9 (𝑅 ∈ Abel ↔ 𝑍 ∈ LMod)
63, 5sylibr 234 . . . . . . . 8 (𝑍 ∈ NrmMod → 𝑅 ∈ Abel)
763ad2ant1 1133 . . . . . . 7 ((𝑍 ∈ NrmMod ∧ 𝑀 ∈ ℤ ∧ 𝑋𝐵) → 𝑅 ∈ Abel)
84zlmsca 21494 . . . . . . 7 (𝑅 ∈ Abel → ℤring = (Scalar‘𝑍))
97, 8syl 17 . . . . . 6 ((𝑍 ∈ NrmMod ∧ 𝑀 ∈ ℤ ∧ 𝑋𝐵) → ℤring = (Scalar‘𝑍))
109fveq2d 6890 . . . . 5 ((𝑍 ∈ NrmMod ∧ 𝑀 ∈ ℤ ∧ 𝑋𝐵) → (Base‘ℤring) = (Base‘(Scalar‘𝑍)))
112, 10eqtrid 2781 . . . 4 ((𝑍 ∈ NrmMod ∧ 𝑀 ∈ ℤ ∧ 𝑋𝐵) → ℤ = (Base‘(Scalar‘𝑍)))
121, 11eleqtrd 2835 . . 3 ((𝑍 ∈ NrmMod ∧ 𝑀 ∈ ℤ ∧ 𝑋𝐵) → 𝑀 ∈ (Base‘(Scalar‘𝑍)))
13 nmmulg.x . . . . 5 𝐵 = (Base‘𝑅)
144, 13zlmbas 21491 . . . 4 𝐵 = (Base‘𝑍)
15 eqid 2734 . . . 4 (norm‘𝑍) = (norm‘𝑍)
16 nmmulg.t . . . . 5 · = (.g𝑅)
174, 16zlmvsca 21495 . . . 4 · = ( ·𝑠𝑍)
18 eqid 2734 . . . 4 (Scalar‘𝑍) = (Scalar‘𝑍)
19 eqid 2734 . . . 4 (Base‘(Scalar‘𝑍)) = (Base‘(Scalar‘𝑍))
20 eqid 2734 . . . 4 (norm‘(Scalar‘𝑍)) = (norm‘(Scalar‘𝑍))
2114, 15, 17, 18, 19, 20nmvs 24634 . . 3 ((𝑍 ∈ NrmMod ∧ 𝑀 ∈ (Base‘(Scalar‘𝑍)) ∧ 𝑋𝐵) → ((norm‘𝑍)‘(𝑀 · 𝑋)) = (((norm‘(Scalar‘𝑍))‘𝑀) · ((norm‘𝑍)‘𝑋)))
2212, 21syld3an2 1412 . 2 ((𝑍 ∈ NrmMod ∧ 𝑀 ∈ ℤ ∧ 𝑋𝐵) → ((norm‘𝑍)‘(𝑀 · 𝑋)) = (((norm‘(Scalar‘𝑍))‘𝑀) · ((norm‘𝑍)‘𝑋)))
23 nmmulg.n . . . . 5 𝑁 = (norm‘𝑅)
244, 23zlmnm 33940 . . . 4 (𝑅 ∈ Abel → 𝑁 = (norm‘𝑍))
257, 24syl 17 . . 3 ((𝑍 ∈ NrmMod ∧ 𝑀 ∈ ℤ ∧ 𝑋𝐵) → 𝑁 = (norm‘𝑍))
2625fveq1d 6888 . 2 ((𝑍 ∈ NrmMod ∧ 𝑀 ∈ ℤ ∧ 𝑋𝐵) → (𝑁‘(𝑀 · 𝑋)) = ((norm‘𝑍)‘(𝑀 · 𝑋)))
27 zzsnm 33933 . . . . 5 (𝑀 ∈ ℤ → (abs‘𝑀) = ((norm‘ℤring)‘𝑀))
28273ad2ant2 1134 . . . 4 ((𝑍 ∈ NrmMod ∧ 𝑀 ∈ ℤ ∧ 𝑋𝐵) → (abs‘𝑀) = ((norm‘ℤring)‘𝑀))
299fveq2d 6890 . . . . 5 ((𝑍 ∈ NrmMod ∧ 𝑀 ∈ ℤ ∧ 𝑋𝐵) → (norm‘ℤring) = (norm‘(Scalar‘𝑍)))
3029fveq1d 6888 . . . 4 ((𝑍 ∈ NrmMod ∧ 𝑀 ∈ ℤ ∧ 𝑋𝐵) → ((norm‘ℤring)‘𝑀) = ((norm‘(Scalar‘𝑍))‘𝑀))
3128, 30eqtrd 2769 . . 3 ((𝑍 ∈ NrmMod ∧ 𝑀 ∈ ℤ ∧ 𝑋𝐵) → (abs‘𝑀) = ((norm‘(Scalar‘𝑍))‘𝑀))
3225fveq1d 6888 . . 3 ((𝑍 ∈ NrmMod ∧ 𝑀 ∈ ℤ ∧ 𝑋𝐵) → (𝑁𝑋) = ((norm‘𝑍)‘𝑋))
3331, 32oveq12d 7431 . 2 ((𝑍 ∈ NrmMod ∧ 𝑀 ∈ ℤ ∧ 𝑋𝐵) → ((abs‘𝑀) · (𝑁𝑋)) = (((norm‘(Scalar‘𝑍))‘𝑀) · ((norm‘𝑍)‘𝑋)))
3422, 26, 333eqtr4d 2779 1 ((𝑍 ∈ NrmMod ∧ 𝑀 ∈ ℤ ∧ 𝑋𝐵) → (𝑁‘(𝑀 · 𝑋)) = ((abs‘𝑀) · (𝑁𝑋)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1086   = wceq 1539  wcel 2107  cfv 6541  (class class class)co 7413   · cmul 11142  cz 12596  abscabs 15256  Basecbs 17230  Scalarcsca 17277  .gcmg 19055  Abelcabl 19768  LModclmod 20827  ringczring 21420  ℤModczlm 21474  normcnm 24534  NrmModcnlm 24538
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-sep 5276  ax-nul 5286  ax-pow 5345  ax-pr 5412  ax-un 7737  ax-cnex 11193  ax-resscn 11194  ax-1cn 11195  ax-icn 11196  ax-addcl 11197  ax-addrcl 11198  ax-mulcl 11199  ax-mulrcl 11200  ax-mulcom 11201  ax-addass 11202  ax-mulass 11203  ax-distr 11204  ax-i2m1 11205  ax-1ne0 11206  ax-1rid 11207  ax-rnegex 11208  ax-rrecex 11209  ax-cnre 11210  ax-pre-lttri 11211  ax-pre-lttrn 11212  ax-pre-ltadd 11213  ax-pre-mulgt0 11214  ax-pre-sup 11215  ax-addf 11216  ax-mulf 11217
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ne 2932  df-nel 3036  df-ral 3051  df-rex 3060  df-rmo 3363  df-reu 3364  df-rab 3420  df-v 3465  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-tp 4611  df-op 4613  df-uni 4888  df-iun 4973  df-br 5124  df-opab 5186  df-mpt 5206  df-tr 5240  df-id 5558  df-eprel 5564  df-po 5572  df-so 5573  df-fr 5617  df-we 5619  df-xp 5671  df-rel 5672  df-cnv 5673  df-co 5674  df-dm 5675  df-rn 5676  df-res 5677  df-ima 5678  df-pred 6301  df-ord 6366  df-on 6367  df-lim 6368  df-suc 6369  df-iota 6494  df-fun 6543  df-fn 6544  df-f 6545  df-f1 6546  df-fo 6547  df-f1o 6548  df-fv 6549  df-riota 7370  df-ov 7416  df-oprab 7417  df-mpo 7418  df-om 7870  df-1st 7996  df-2nd 7997  df-frecs 8288  df-wrecs 8319  df-recs 8393  df-rdg 8432  df-1o 8488  df-er 8727  df-en 8968  df-dom 8969  df-sdom 8970  df-fin 8971  df-sup 9464  df-pnf 11279  df-mnf 11280  df-xr 11281  df-ltxr 11282  df-le 11283  df-sub 11476  df-neg 11477  df-div 11903  df-nn 12249  df-2 12311  df-3 12312  df-4 12313  df-5 12314  df-6 12315  df-7 12316  df-8 12317  df-9 12318  df-n0 12510  df-z 12597  df-dec 12717  df-uz 12861  df-rp 13017  df-fz 13530  df-fzo 13677  df-seq 14025  df-exp 14085  df-cj 15121  df-re 15122  df-im 15123  df-sqrt 15257  df-abs 15258  df-struct 17167  df-sets 17184  df-slot 17202  df-ndx 17214  df-base 17231  df-ress 17254  df-plusg 17287  df-mulr 17288  df-starv 17289  df-sca 17290  df-vsca 17291  df-ip 17292  df-tset 17293  df-ple 17294  df-ds 17296  df-unif 17297  df-0g 17458  df-mgm 18623  df-sgrp 18702  df-mnd 18718  df-grp 18924  df-minusg 18925  df-mulg 19056  df-subg 19111  df-cmn 19769  df-abl 19770  df-mgp 20107  df-rng 20119  df-ur 20148  df-ring 20201  df-cring 20202  df-subrng 20515  df-subrg 20539  df-lmod 20829  df-cnfld 21328  df-zring 21421  df-zlm 21478  df-nm 24540  df-nlm 24544
This theorem is referenced by:  zrhnm  33943
  Copyright terms: Public domain W3C validator