Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  nmmulg Structured version   Visualization version   GIF version

Theorem nmmulg 33933
Description: The norm of a group product, provided the -module is normed. (Contributed by Thierry Arnoux, 8-Nov-2017.)
Hypotheses
Ref Expression
nmmulg.x 𝐵 = (Base‘𝑅)
nmmulg.n 𝑁 = (norm‘𝑅)
nmmulg.z 𝑍 = (ℤMod‘𝑅)
nmmulg.t · = (.g𝑅)
Assertion
Ref Expression
nmmulg ((𝑍 ∈ NrmMod ∧ 𝑀 ∈ ℤ ∧ 𝑋𝐵) → (𝑁‘(𝑀 · 𝑋)) = ((abs‘𝑀) · (𝑁𝑋)))

Proof of Theorem nmmulg
StepHypRef Expression
1 simp2 1137 . . . 4 ((𝑍 ∈ NrmMod ∧ 𝑀 ∈ ℤ ∧ 𝑋𝐵) → 𝑀 ∈ ℤ)
2 zringbas 21360 . . . . 5 ℤ = (Base‘ℤring)
3 nlmlmod 24564 . . . . . . . . 9 (𝑍 ∈ NrmMod → 𝑍 ∈ LMod)
4 nmmulg.z . . . . . . . . . 10 𝑍 = (ℤMod‘𝑅)
54zlmlmod 21429 . . . . . . . . 9 (𝑅 ∈ Abel ↔ 𝑍 ∈ LMod)
63, 5sylibr 234 . . . . . . . 8 (𝑍 ∈ NrmMod → 𝑅 ∈ Abel)
763ad2ant1 1133 . . . . . . 7 ((𝑍 ∈ NrmMod ∧ 𝑀 ∈ ℤ ∧ 𝑋𝐵) → 𝑅 ∈ Abel)
84zlmsca 21427 . . . . . . 7 (𝑅 ∈ Abel → ℤring = (Scalar‘𝑍))
97, 8syl 17 . . . . . 6 ((𝑍 ∈ NrmMod ∧ 𝑀 ∈ ℤ ∧ 𝑋𝐵) → ℤring = (Scalar‘𝑍))
109fveq2d 6826 . . . . 5 ((𝑍 ∈ NrmMod ∧ 𝑀 ∈ ℤ ∧ 𝑋𝐵) → (Base‘ℤring) = (Base‘(Scalar‘𝑍)))
112, 10eqtrid 2776 . . . 4 ((𝑍 ∈ NrmMod ∧ 𝑀 ∈ ℤ ∧ 𝑋𝐵) → ℤ = (Base‘(Scalar‘𝑍)))
121, 11eleqtrd 2830 . . 3 ((𝑍 ∈ NrmMod ∧ 𝑀 ∈ ℤ ∧ 𝑋𝐵) → 𝑀 ∈ (Base‘(Scalar‘𝑍)))
13 nmmulg.x . . . . 5 𝐵 = (Base‘𝑅)
144, 13zlmbas 21424 . . . 4 𝐵 = (Base‘𝑍)
15 eqid 2729 . . . 4 (norm‘𝑍) = (norm‘𝑍)
16 nmmulg.t . . . . 5 · = (.g𝑅)
174, 16zlmvsca 21428 . . . 4 · = ( ·𝑠𝑍)
18 eqid 2729 . . . 4 (Scalar‘𝑍) = (Scalar‘𝑍)
19 eqid 2729 . . . 4 (Base‘(Scalar‘𝑍)) = (Base‘(Scalar‘𝑍))
20 eqid 2729 . . . 4 (norm‘(Scalar‘𝑍)) = (norm‘(Scalar‘𝑍))
2114, 15, 17, 18, 19, 20nmvs 24562 . . 3 ((𝑍 ∈ NrmMod ∧ 𝑀 ∈ (Base‘(Scalar‘𝑍)) ∧ 𝑋𝐵) → ((norm‘𝑍)‘(𝑀 · 𝑋)) = (((norm‘(Scalar‘𝑍))‘𝑀) · ((norm‘𝑍)‘𝑋)))
2212, 21syld3an2 1413 . 2 ((𝑍 ∈ NrmMod ∧ 𝑀 ∈ ℤ ∧ 𝑋𝐵) → ((norm‘𝑍)‘(𝑀 · 𝑋)) = (((norm‘(Scalar‘𝑍))‘𝑀) · ((norm‘𝑍)‘𝑋)))
23 nmmulg.n . . . . 5 𝑁 = (norm‘𝑅)
244, 23zlmnm 33931 . . . 4 (𝑅 ∈ Abel → 𝑁 = (norm‘𝑍))
257, 24syl 17 . . 3 ((𝑍 ∈ NrmMod ∧ 𝑀 ∈ ℤ ∧ 𝑋𝐵) → 𝑁 = (norm‘𝑍))
2625fveq1d 6824 . 2 ((𝑍 ∈ NrmMod ∧ 𝑀 ∈ ℤ ∧ 𝑋𝐵) → (𝑁‘(𝑀 · 𝑋)) = ((norm‘𝑍)‘(𝑀 · 𝑋)))
27 zzsnm 33926 . . . . 5 (𝑀 ∈ ℤ → (abs‘𝑀) = ((norm‘ℤring)‘𝑀))
28273ad2ant2 1134 . . . 4 ((𝑍 ∈ NrmMod ∧ 𝑀 ∈ ℤ ∧ 𝑋𝐵) → (abs‘𝑀) = ((norm‘ℤring)‘𝑀))
299fveq2d 6826 . . . . 5 ((𝑍 ∈ NrmMod ∧ 𝑀 ∈ ℤ ∧ 𝑋𝐵) → (norm‘ℤring) = (norm‘(Scalar‘𝑍)))
3029fveq1d 6824 . . . 4 ((𝑍 ∈ NrmMod ∧ 𝑀 ∈ ℤ ∧ 𝑋𝐵) → ((norm‘ℤring)‘𝑀) = ((norm‘(Scalar‘𝑍))‘𝑀))
3128, 30eqtrd 2764 . . 3 ((𝑍 ∈ NrmMod ∧ 𝑀 ∈ ℤ ∧ 𝑋𝐵) → (abs‘𝑀) = ((norm‘(Scalar‘𝑍))‘𝑀))
3225fveq1d 6824 . . 3 ((𝑍 ∈ NrmMod ∧ 𝑀 ∈ ℤ ∧ 𝑋𝐵) → (𝑁𝑋) = ((norm‘𝑍)‘𝑋))
3331, 32oveq12d 7367 . 2 ((𝑍 ∈ NrmMod ∧ 𝑀 ∈ ℤ ∧ 𝑋𝐵) → ((abs‘𝑀) · (𝑁𝑋)) = (((norm‘(Scalar‘𝑍))‘𝑀) · ((norm‘𝑍)‘𝑋)))
3422, 26, 333eqtr4d 2774 1 ((𝑍 ∈ NrmMod ∧ 𝑀 ∈ ℤ ∧ 𝑋𝐵) → (𝑁‘(𝑀 · 𝑋)) = ((abs‘𝑀) · (𝑁𝑋)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1086   = wceq 1540  wcel 2109  cfv 6482  (class class class)co 7349   · cmul 11014  cz 12471  abscabs 15141  Basecbs 17120  Scalarcsca 17164  .gcmg 18946  Abelcabl 19660  LModclmod 20763  ringczring 21353  ℤModczlm 21407  normcnm 24462  NrmModcnlm 24466
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671  ax-cnex 11065  ax-resscn 11066  ax-1cn 11067  ax-icn 11068  ax-addcl 11069  ax-addrcl 11070  ax-mulcl 11071  ax-mulrcl 11072  ax-mulcom 11073  ax-addass 11074  ax-mulass 11075  ax-distr 11076  ax-i2m1 11077  ax-1ne0 11078  ax-1rid 11079  ax-rnegex 11080  ax-rrecex 11081  ax-cnre 11082  ax-pre-lttri 11083  ax-pre-lttrn 11084  ax-pre-ltadd 11085  ax-pre-mulgt0 11086  ax-pre-sup 11087  ax-addf 11088  ax-mulf 11089
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3343  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-pss 3923  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-tp 4582  df-op 4584  df-uni 4859  df-iun 4943  df-br 5093  df-opab 5155  df-mpt 5174  df-tr 5200  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6249  df-ord 6310  df-on 6311  df-lim 6312  df-suc 6313  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-riota 7306  df-ov 7352  df-oprab 7353  df-mpo 7354  df-om 7800  df-1st 7924  df-2nd 7925  df-frecs 8214  df-wrecs 8245  df-recs 8294  df-rdg 8332  df-1o 8388  df-er 8625  df-en 8873  df-dom 8874  df-sdom 8875  df-fin 8876  df-sup 9332  df-pnf 11151  df-mnf 11152  df-xr 11153  df-ltxr 11154  df-le 11155  df-sub 11349  df-neg 11350  df-div 11778  df-nn 12129  df-2 12191  df-3 12192  df-4 12193  df-5 12194  df-6 12195  df-7 12196  df-8 12197  df-9 12198  df-n0 12385  df-z 12472  df-dec 12592  df-uz 12736  df-rp 12894  df-fz 13411  df-fzo 13558  df-seq 13909  df-exp 13969  df-cj 15006  df-re 15007  df-im 15008  df-sqrt 15142  df-abs 15143  df-struct 17058  df-sets 17075  df-slot 17093  df-ndx 17105  df-base 17121  df-ress 17142  df-plusg 17174  df-mulr 17175  df-starv 17176  df-sca 17177  df-vsca 17178  df-ip 17179  df-tset 17180  df-ple 17181  df-ds 17183  df-unif 17184  df-0g 17345  df-mgm 18514  df-sgrp 18593  df-mnd 18609  df-grp 18815  df-minusg 18816  df-mulg 18947  df-subg 19002  df-cmn 19661  df-abl 19662  df-mgp 20026  df-rng 20038  df-ur 20067  df-ring 20120  df-cring 20121  df-subrng 20431  df-subrg 20455  df-lmod 20765  df-cnfld 21262  df-zring 21354  df-zlm 21411  df-nm 24468  df-nlm 24472
This theorem is referenced by:  zrhnm  33934
  Copyright terms: Public domain W3C validator