Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  nmmulg Structured version   Visualization version   GIF version

Theorem nmmulg 33403
Description: The norm of a group product, provided the -module is normed. (Contributed by Thierry Arnoux, 8-Nov-2017.)
Hypotheses
Ref Expression
nmmulg.x 𝐵 = (Base‘𝑅)
nmmulg.n 𝑁 = (norm‘𝑅)
nmmulg.z 𝑍 = (ℤMod‘𝑅)
nmmulg.t · = (.g𝑅)
Assertion
Ref Expression
nmmulg ((𝑍 ∈ NrmMod ∧ 𝑀 ∈ ℤ ∧ 𝑋𝐵) → (𝑁‘(𝑀 · 𝑋)) = ((abs‘𝑀) · (𝑁𝑋)))

Proof of Theorem nmmulg
StepHypRef Expression
1 simp2 1134 . . . 4 ((𝑍 ∈ NrmMod ∧ 𝑀 ∈ ℤ ∧ 𝑋𝐵) → 𝑀 ∈ ℤ)
2 zringbas 21307 . . . . 5 ℤ = (Base‘ℤring)
3 nlmlmod 24516 . . . . . . . . 9 (𝑍 ∈ NrmMod → 𝑍 ∈ LMod)
4 nmmulg.z . . . . . . . . . 10 𝑍 = (ℤMod‘𝑅)
54zlmlmod 21380 . . . . . . . . 9 (𝑅 ∈ Abel ↔ 𝑍 ∈ LMod)
63, 5sylibr 233 . . . . . . . 8 (𝑍 ∈ NrmMod → 𝑅 ∈ Abel)
763ad2ant1 1130 . . . . . . 7 ((𝑍 ∈ NrmMod ∧ 𝑀 ∈ ℤ ∧ 𝑋𝐵) → 𝑅 ∈ Abel)
84zlmsca 21378 . . . . . . 7 (𝑅 ∈ Abel → ℤring = (Scalar‘𝑍))
97, 8syl 17 . . . . . 6 ((𝑍 ∈ NrmMod ∧ 𝑀 ∈ ℤ ∧ 𝑋𝐵) → ℤring = (Scalar‘𝑍))
109fveq2d 6885 . . . . 5 ((𝑍 ∈ NrmMod ∧ 𝑀 ∈ ℤ ∧ 𝑋𝐵) → (Base‘ℤring) = (Base‘(Scalar‘𝑍)))
112, 10eqtrid 2776 . . . 4 ((𝑍 ∈ NrmMod ∧ 𝑀 ∈ ℤ ∧ 𝑋𝐵) → ℤ = (Base‘(Scalar‘𝑍)))
121, 11eleqtrd 2827 . . 3 ((𝑍 ∈ NrmMod ∧ 𝑀 ∈ ℤ ∧ 𝑋𝐵) → 𝑀 ∈ (Base‘(Scalar‘𝑍)))
13 nmmulg.x . . . . 5 𝐵 = (Base‘𝑅)
144, 13zlmbas 21372 . . . 4 𝐵 = (Base‘𝑍)
15 eqid 2724 . . . 4 (norm‘𝑍) = (norm‘𝑍)
16 nmmulg.t . . . . 5 · = (.g𝑅)
174, 16zlmvsca 21379 . . . 4 · = ( ·𝑠𝑍)
18 eqid 2724 . . . 4 (Scalar‘𝑍) = (Scalar‘𝑍)
19 eqid 2724 . . . 4 (Base‘(Scalar‘𝑍)) = (Base‘(Scalar‘𝑍))
20 eqid 2724 . . . 4 (norm‘(Scalar‘𝑍)) = (norm‘(Scalar‘𝑍))
2114, 15, 17, 18, 19, 20nmvs 24514 . . 3 ((𝑍 ∈ NrmMod ∧ 𝑀 ∈ (Base‘(Scalar‘𝑍)) ∧ 𝑋𝐵) → ((norm‘𝑍)‘(𝑀 · 𝑋)) = (((norm‘(Scalar‘𝑍))‘𝑀) · ((norm‘𝑍)‘𝑋)))
2212, 21syld3an2 1408 . 2 ((𝑍 ∈ NrmMod ∧ 𝑀 ∈ ℤ ∧ 𝑋𝐵) → ((norm‘𝑍)‘(𝑀 · 𝑋)) = (((norm‘(Scalar‘𝑍))‘𝑀) · ((norm‘𝑍)‘𝑋)))
23 nmmulg.n . . . . 5 𝑁 = (norm‘𝑅)
244, 23zlmnm 33401 . . . 4 (𝑅 ∈ Abel → 𝑁 = (norm‘𝑍))
257, 24syl 17 . . 3 ((𝑍 ∈ NrmMod ∧ 𝑀 ∈ ℤ ∧ 𝑋𝐵) → 𝑁 = (norm‘𝑍))
2625fveq1d 6883 . 2 ((𝑍 ∈ NrmMod ∧ 𝑀 ∈ ℤ ∧ 𝑋𝐵) → (𝑁‘(𝑀 · 𝑋)) = ((norm‘𝑍)‘(𝑀 · 𝑋)))
27 zzsnm 33394 . . . . 5 (𝑀 ∈ ℤ → (abs‘𝑀) = ((norm‘ℤring)‘𝑀))
28273ad2ant2 1131 . . . 4 ((𝑍 ∈ NrmMod ∧ 𝑀 ∈ ℤ ∧ 𝑋𝐵) → (abs‘𝑀) = ((norm‘ℤring)‘𝑀))
299fveq2d 6885 . . . . 5 ((𝑍 ∈ NrmMod ∧ 𝑀 ∈ ℤ ∧ 𝑋𝐵) → (norm‘ℤring) = (norm‘(Scalar‘𝑍)))
3029fveq1d 6883 . . . 4 ((𝑍 ∈ NrmMod ∧ 𝑀 ∈ ℤ ∧ 𝑋𝐵) → ((norm‘ℤring)‘𝑀) = ((norm‘(Scalar‘𝑍))‘𝑀))
3128, 30eqtrd 2764 . . 3 ((𝑍 ∈ NrmMod ∧ 𝑀 ∈ ℤ ∧ 𝑋𝐵) → (abs‘𝑀) = ((norm‘(Scalar‘𝑍))‘𝑀))
3225fveq1d 6883 . . 3 ((𝑍 ∈ NrmMod ∧ 𝑀 ∈ ℤ ∧ 𝑋𝐵) → (𝑁𝑋) = ((norm‘𝑍)‘𝑋))
3331, 32oveq12d 7419 . 2 ((𝑍 ∈ NrmMod ∧ 𝑀 ∈ ℤ ∧ 𝑋𝐵) → ((abs‘𝑀) · (𝑁𝑋)) = (((norm‘(Scalar‘𝑍))‘𝑀) · ((norm‘𝑍)‘𝑋)))
3422, 26, 333eqtr4d 2774 1 ((𝑍 ∈ NrmMod ∧ 𝑀 ∈ ℤ ∧ 𝑋𝐵) → (𝑁‘(𝑀 · 𝑋)) = ((abs‘𝑀) · (𝑁𝑋)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1084   = wceq 1533  wcel 2098  cfv 6533  (class class class)co 7401   · cmul 11110  cz 12554  abscabs 15177  Basecbs 17142  Scalarcsca 17198  .gcmg 18984  Abelcabl 19690  LModclmod 20695  ringczring 21300  ℤModczlm 21354  normcnm 24406  NrmModcnlm 24410
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2695  ax-sep 5289  ax-nul 5296  ax-pow 5353  ax-pr 5417  ax-un 7718  ax-cnex 11161  ax-resscn 11162  ax-1cn 11163  ax-icn 11164  ax-addcl 11165  ax-addrcl 11166  ax-mulcl 11167  ax-mulrcl 11168  ax-mulcom 11169  ax-addass 11170  ax-mulass 11171  ax-distr 11172  ax-i2m1 11173  ax-1ne0 11174  ax-1rid 11175  ax-rnegex 11176  ax-rrecex 11177  ax-cnre 11178  ax-pre-lttri 11179  ax-pre-lttrn 11180  ax-pre-ltadd 11181  ax-pre-mulgt0 11182  ax-pre-sup 11183  ax-addf 11184  ax-mulf 11185
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2526  df-eu 2555  df-clab 2702  df-cleq 2716  df-clel 2802  df-nfc 2877  df-ne 2933  df-nel 3039  df-ral 3054  df-rex 3063  df-rmo 3368  df-reu 3369  df-rab 3425  df-v 3468  df-sbc 3770  df-csb 3886  df-dif 3943  df-un 3945  df-in 3947  df-ss 3957  df-pss 3959  df-nul 4315  df-if 4521  df-pw 4596  df-sn 4621  df-pr 4623  df-tp 4625  df-op 4627  df-uni 4900  df-iun 4989  df-br 5139  df-opab 5201  df-mpt 5222  df-tr 5256  df-id 5564  df-eprel 5570  df-po 5578  df-so 5579  df-fr 5621  df-we 5623  df-xp 5672  df-rel 5673  df-cnv 5674  df-co 5675  df-dm 5676  df-rn 5677  df-res 5678  df-ima 5679  df-pred 6290  df-ord 6357  df-on 6358  df-lim 6359  df-suc 6360  df-iota 6485  df-fun 6535  df-fn 6536  df-f 6537  df-f1 6538  df-fo 6539  df-f1o 6540  df-fv 6541  df-riota 7357  df-ov 7404  df-oprab 7405  df-mpo 7406  df-om 7849  df-1st 7968  df-2nd 7969  df-frecs 8261  df-wrecs 8292  df-recs 8366  df-rdg 8405  df-1o 8461  df-er 8698  df-en 8935  df-dom 8936  df-sdom 8937  df-fin 8938  df-sup 9432  df-pnf 11246  df-mnf 11247  df-xr 11248  df-ltxr 11249  df-le 11250  df-sub 11442  df-neg 11443  df-div 11868  df-nn 12209  df-2 12271  df-3 12272  df-4 12273  df-5 12274  df-6 12275  df-7 12276  df-8 12277  df-9 12278  df-n0 12469  df-z 12555  df-dec 12674  df-uz 12819  df-rp 12971  df-fz 13481  df-fzo 13624  df-seq 13963  df-exp 14024  df-cj 15042  df-re 15043  df-im 15044  df-sqrt 15178  df-abs 15179  df-struct 17078  df-sets 17095  df-slot 17113  df-ndx 17125  df-base 17143  df-ress 17172  df-plusg 17208  df-mulr 17209  df-starv 17210  df-sca 17211  df-vsca 17212  df-ip 17213  df-tset 17214  df-ple 17215  df-ds 17217  df-unif 17218  df-0g 17385  df-mgm 18562  df-sgrp 18641  df-mnd 18657  df-grp 18855  df-minusg 18856  df-mulg 18985  df-subg 19039  df-cmn 19691  df-abl 19692  df-mgp 20029  df-rng 20047  df-ur 20076  df-ring 20129  df-cring 20130  df-subrng 20435  df-subrg 20460  df-lmod 20697  df-cnfld 21228  df-zring 21301  df-zlm 21358  df-nm 24412  df-nlm 24416
This theorem is referenced by:  zrhnm  33404
  Copyright terms: Public domain W3C validator