![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > nmmulg | Structured version Visualization version GIF version |
Description: The norm of a group product, provided the β€-module is normed. (Contributed by Thierry Arnoux, 8-Nov-2017.) |
Ref | Expression |
---|---|
nmmulg.x | β’ π΅ = (Baseβπ ) |
nmmulg.n | β’ π = (normβπ ) |
nmmulg.z | β’ π = (β€Modβπ ) |
nmmulg.t | β’ Β· = (.gβπ ) |
Ref | Expression |
---|---|
nmmulg | β’ ((π β NrmMod β§ π β β€ β§ π β π΅) β (πβ(π Β· π)) = ((absβπ) Β· (πβπ))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simp2 1137 | . . . 4 β’ ((π β NrmMod β§ π β β€ β§ π β π΅) β π β β€) | |
2 | zringbas 21015 | . . . . 5 β’ β€ = (Baseββ€ring) | |
3 | nlmlmod 24186 | . . . . . . . . 9 β’ (π β NrmMod β π β LMod) | |
4 | nmmulg.z | . . . . . . . . . 10 β’ π = (β€Modβπ ) | |
5 | 4 | zlmlmod 21067 | . . . . . . . . 9 β’ (π β Abel β π β LMod) |
6 | 3, 5 | sylibr 233 | . . . . . . . 8 β’ (π β NrmMod β π β Abel) |
7 | 6 | 3ad2ant1 1133 | . . . . . . 7 β’ ((π β NrmMod β§ π β β€ β§ π β π΅) β π β Abel) |
8 | 4 | zlmsca 21065 | . . . . . . 7 β’ (π β Abel β β€ring = (Scalarβπ)) |
9 | 7, 8 | syl 17 | . . . . . 6 β’ ((π β NrmMod β§ π β β€ β§ π β π΅) β β€ring = (Scalarβπ)) |
10 | 9 | fveq2d 6892 | . . . . 5 β’ ((π β NrmMod β§ π β β€ β§ π β π΅) β (Baseββ€ring) = (Baseβ(Scalarβπ))) |
11 | 2, 10 | eqtrid 2784 | . . . 4 β’ ((π β NrmMod β§ π β β€ β§ π β π΅) β β€ = (Baseβ(Scalarβπ))) |
12 | 1, 11 | eleqtrd 2835 | . . 3 β’ ((π β NrmMod β§ π β β€ β§ π β π΅) β π β (Baseβ(Scalarβπ))) |
13 | nmmulg.x | . . . . 5 β’ π΅ = (Baseβπ ) | |
14 | 4, 13 | zlmbas 21059 | . . . 4 β’ π΅ = (Baseβπ) |
15 | eqid 2732 | . . . 4 β’ (normβπ) = (normβπ) | |
16 | nmmulg.t | . . . . 5 β’ Β· = (.gβπ ) | |
17 | 4, 16 | zlmvsca 21066 | . . . 4 β’ Β· = ( Β·π βπ) |
18 | eqid 2732 | . . . 4 β’ (Scalarβπ) = (Scalarβπ) | |
19 | eqid 2732 | . . . 4 β’ (Baseβ(Scalarβπ)) = (Baseβ(Scalarβπ)) | |
20 | eqid 2732 | . . . 4 β’ (normβ(Scalarβπ)) = (normβ(Scalarβπ)) | |
21 | 14, 15, 17, 18, 19, 20 | nmvs 24184 | . . 3 β’ ((π β NrmMod β§ π β (Baseβ(Scalarβπ)) β§ π β π΅) β ((normβπ)β(π Β· π)) = (((normβ(Scalarβπ))βπ) Β· ((normβπ)βπ))) |
22 | 12, 21 | syld3an2 1411 | . 2 β’ ((π β NrmMod β§ π β β€ β§ π β π΅) β ((normβπ)β(π Β· π)) = (((normβ(Scalarβπ))βπ) Β· ((normβπ)βπ))) |
23 | nmmulg.n | . . . . 5 β’ π = (normβπ ) | |
24 | 4, 23 | zlmnm 32934 | . . . 4 β’ (π β Abel β π = (normβπ)) |
25 | 7, 24 | syl 17 | . . 3 β’ ((π β NrmMod β§ π β β€ β§ π β π΅) β π = (normβπ)) |
26 | 25 | fveq1d 6890 | . 2 β’ ((π β NrmMod β§ π β β€ β§ π β π΅) β (πβ(π Β· π)) = ((normβπ)β(π Β· π))) |
27 | zzsnm 32927 | . . . . 5 β’ (π β β€ β (absβπ) = ((normββ€ring)βπ)) | |
28 | 27 | 3ad2ant2 1134 | . . . 4 β’ ((π β NrmMod β§ π β β€ β§ π β π΅) β (absβπ) = ((normββ€ring)βπ)) |
29 | 9 | fveq2d 6892 | . . . . 5 β’ ((π β NrmMod β§ π β β€ β§ π β π΅) β (normββ€ring) = (normβ(Scalarβπ))) |
30 | 29 | fveq1d 6890 | . . . 4 β’ ((π β NrmMod β§ π β β€ β§ π β π΅) β ((normββ€ring)βπ) = ((normβ(Scalarβπ))βπ)) |
31 | 28, 30 | eqtrd 2772 | . . 3 β’ ((π β NrmMod β§ π β β€ β§ π β π΅) β (absβπ) = ((normβ(Scalarβπ))βπ)) |
32 | 25 | fveq1d 6890 | . . 3 β’ ((π β NrmMod β§ π β β€ β§ π β π΅) β (πβπ) = ((normβπ)βπ)) |
33 | 31, 32 | oveq12d 7423 | . 2 β’ ((π β NrmMod β§ π β β€ β§ π β π΅) β ((absβπ) Β· (πβπ)) = (((normβ(Scalarβπ))βπ) Β· ((normβπ)βπ))) |
34 | 22, 26, 33 | 3eqtr4d 2782 | 1 β’ ((π β NrmMod β§ π β β€ β§ π β π΅) β (πβ(π Β· π)) = ((absβπ) Β· (πβπ))) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β§ w3a 1087 = wceq 1541 β wcel 2106 βcfv 6540 (class class class)co 7405 Β· cmul 11111 β€cz 12554 abscabs 15177 Basecbs 17140 Scalarcsca 17196 .gcmg 18944 Abelcabl 19643 LModclmod 20463 β€ringczring 21009 β€Modczlm 21041 normcnm 24076 NrmModcnlm 24080 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-sep 5298 ax-nul 5305 ax-pow 5362 ax-pr 5426 ax-un 7721 ax-cnex 11162 ax-resscn 11163 ax-1cn 11164 ax-icn 11165 ax-addcl 11166 ax-addrcl 11167 ax-mulcl 11168 ax-mulrcl 11169 ax-mulcom 11170 ax-addass 11171 ax-mulass 11172 ax-distr 11173 ax-i2m1 11174 ax-1ne0 11175 ax-1rid 11176 ax-rnegex 11177 ax-rrecex 11178 ax-cnre 11179 ax-pre-lttri 11180 ax-pre-lttrn 11181 ax-pre-ltadd 11182 ax-pre-mulgt0 11183 ax-pre-sup 11184 ax-addf 11185 ax-mulf 11186 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3376 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3966 df-nul 4322 df-if 4528 df-pw 4603 df-sn 4628 df-pr 4630 df-tp 4632 df-op 4634 df-uni 4908 df-iun 4998 df-br 5148 df-opab 5210 df-mpt 5231 df-tr 5265 df-id 5573 df-eprel 5579 df-po 5587 df-so 5588 df-fr 5630 df-we 5632 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-res 5687 df-ima 5688 df-pred 6297 df-ord 6364 df-on 6365 df-lim 6366 df-suc 6367 df-iota 6492 df-fun 6542 df-fn 6543 df-f 6544 df-f1 6545 df-fo 6546 df-f1o 6547 df-fv 6548 df-riota 7361 df-ov 7408 df-oprab 7409 df-mpo 7410 df-om 7852 df-1st 7971 df-2nd 7972 df-frecs 8262 df-wrecs 8293 df-recs 8367 df-rdg 8406 df-1o 8462 df-er 8699 df-en 8936 df-dom 8937 df-sdom 8938 df-fin 8939 df-sup 9433 df-pnf 11246 df-mnf 11247 df-xr 11248 df-ltxr 11249 df-le 11250 df-sub 11442 df-neg 11443 df-div 11868 df-nn 12209 df-2 12271 df-3 12272 df-4 12273 df-5 12274 df-6 12275 df-7 12276 df-8 12277 df-9 12278 df-n0 12469 df-z 12555 df-dec 12674 df-uz 12819 df-rp 12971 df-fz 13481 df-fzo 13624 df-seq 13963 df-exp 14024 df-cj 15042 df-re 15043 df-im 15044 df-sqrt 15178 df-abs 15179 df-struct 17076 df-sets 17093 df-slot 17111 df-ndx 17123 df-base 17141 df-ress 17170 df-plusg 17206 df-mulr 17207 df-starv 17208 df-sca 17209 df-vsca 17210 df-ip 17211 df-tset 17212 df-ple 17213 df-ds 17215 df-unif 17216 df-0g 17383 df-mgm 18557 df-sgrp 18606 df-mnd 18622 df-grp 18818 df-minusg 18819 df-mulg 18945 df-subg 18997 df-cmn 19644 df-abl 19645 df-mgp 19982 df-ur 19999 df-ring 20051 df-cring 20052 df-subrg 20353 df-lmod 20465 df-cnfld 20937 df-zring 21010 df-zlm 21045 df-nm 24082 df-nlm 24086 |
This theorem is referenced by: zrhnm 32937 |
Copyright terms: Public domain | W3C validator |