| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > nmmulg | Structured version Visualization version GIF version | ||
| Description: The norm of a group product, provided the ℤ-module is normed. (Contributed by Thierry Arnoux, 8-Nov-2017.) |
| Ref | Expression |
|---|---|
| nmmulg.x | ⊢ 𝐵 = (Base‘𝑅) |
| nmmulg.n | ⊢ 𝑁 = (norm‘𝑅) |
| nmmulg.z | ⊢ 𝑍 = (ℤMod‘𝑅) |
| nmmulg.t | ⊢ · = (.g‘𝑅) |
| Ref | Expression |
|---|---|
| nmmulg | ⊢ ((𝑍 ∈ NrmMod ∧ 𝑀 ∈ ℤ ∧ 𝑋 ∈ 𝐵) → (𝑁‘(𝑀 · 𝑋)) = ((abs‘𝑀) · (𝑁‘𝑋))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simp2 1137 | . . . 4 ⊢ ((𝑍 ∈ NrmMod ∧ 𝑀 ∈ ℤ ∧ 𝑋 ∈ 𝐵) → 𝑀 ∈ ℤ) | |
| 2 | zringbas 21390 | . . . . 5 ⊢ ℤ = (Base‘ℤring) | |
| 3 | nlmlmod 24593 | . . . . . . . . 9 ⊢ (𝑍 ∈ NrmMod → 𝑍 ∈ LMod) | |
| 4 | nmmulg.z | . . . . . . . . . 10 ⊢ 𝑍 = (ℤMod‘𝑅) | |
| 5 | 4 | zlmlmod 21459 | . . . . . . . . 9 ⊢ (𝑅 ∈ Abel ↔ 𝑍 ∈ LMod) |
| 6 | 3, 5 | sylibr 234 | . . . . . . . 8 ⊢ (𝑍 ∈ NrmMod → 𝑅 ∈ Abel) |
| 7 | 6 | 3ad2ant1 1133 | . . . . . . 7 ⊢ ((𝑍 ∈ NrmMod ∧ 𝑀 ∈ ℤ ∧ 𝑋 ∈ 𝐵) → 𝑅 ∈ Abel) |
| 8 | 4 | zlmsca 21457 | . . . . . . 7 ⊢ (𝑅 ∈ Abel → ℤring = (Scalar‘𝑍)) |
| 9 | 7, 8 | syl 17 | . . . . . 6 ⊢ ((𝑍 ∈ NrmMod ∧ 𝑀 ∈ ℤ ∧ 𝑋 ∈ 𝐵) → ℤring = (Scalar‘𝑍)) |
| 10 | 9 | fveq2d 6826 | . . . . 5 ⊢ ((𝑍 ∈ NrmMod ∧ 𝑀 ∈ ℤ ∧ 𝑋 ∈ 𝐵) → (Base‘ℤring) = (Base‘(Scalar‘𝑍))) |
| 11 | 2, 10 | eqtrid 2778 | . . . 4 ⊢ ((𝑍 ∈ NrmMod ∧ 𝑀 ∈ ℤ ∧ 𝑋 ∈ 𝐵) → ℤ = (Base‘(Scalar‘𝑍))) |
| 12 | 1, 11 | eleqtrd 2833 | . . 3 ⊢ ((𝑍 ∈ NrmMod ∧ 𝑀 ∈ ℤ ∧ 𝑋 ∈ 𝐵) → 𝑀 ∈ (Base‘(Scalar‘𝑍))) |
| 13 | nmmulg.x | . . . . 5 ⊢ 𝐵 = (Base‘𝑅) | |
| 14 | 4, 13 | zlmbas 21454 | . . . 4 ⊢ 𝐵 = (Base‘𝑍) |
| 15 | eqid 2731 | . . . 4 ⊢ (norm‘𝑍) = (norm‘𝑍) | |
| 16 | nmmulg.t | . . . . 5 ⊢ · = (.g‘𝑅) | |
| 17 | 4, 16 | zlmvsca 21458 | . . . 4 ⊢ · = ( ·𝑠 ‘𝑍) |
| 18 | eqid 2731 | . . . 4 ⊢ (Scalar‘𝑍) = (Scalar‘𝑍) | |
| 19 | eqid 2731 | . . . 4 ⊢ (Base‘(Scalar‘𝑍)) = (Base‘(Scalar‘𝑍)) | |
| 20 | eqid 2731 | . . . 4 ⊢ (norm‘(Scalar‘𝑍)) = (norm‘(Scalar‘𝑍)) | |
| 21 | 14, 15, 17, 18, 19, 20 | nmvs 24591 | . . 3 ⊢ ((𝑍 ∈ NrmMod ∧ 𝑀 ∈ (Base‘(Scalar‘𝑍)) ∧ 𝑋 ∈ 𝐵) → ((norm‘𝑍)‘(𝑀 · 𝑋)) = (((norm‘(Scalar‘𝑍))‘𝑀) · ((norm‘𝑍)‘𝑋))) |
| 22 | 12, 21 | syld3an2 1413 | . 2 ⊢ ((𝑍 ∈ NrmMod ∧ 𝑀 ∈ ℤ ∧ 𝑋 ∈ 𝐵) → ((norm‘𝑍)‘(𝑀 · 𝑋)) = (((norm‘(Scalar‘𝑍))‘𝑀) · ((norm‘𝑍)‘𝑋))) |
| 23 | nmmulg.n | . . . . 5 ⊢ 𝑁 = (norm‘𝑅) | |
| 24 | 4, 23 | zlmnm 33977 | . . . 4 ⊢ (𝑅 ∈ Abel → 𝑁 = (norm‘𝑍)) |
| 25 | 7, 24 | syl 17 | . . 3 ⊢ ((𝑍 ∈ NrmMod ∧ 𝑀 ∈ ℤ ∧ 𝑋 ∈ 𝐵) → 𝑁 = (norm‘𝑍)) |
| 26 | 25 | fveq1d 6824 | . 2 ⊢ ((𝑍 ∈ NrmMod ∧ 𝑀 ∈ ℤ ∧ 𝑋 ∈ 𝐵) → (𝑁‘(𝑀 · 𝑋)) = ((norm‘𝑍)‘(𝑀 · 𝑋))) |
| 27 | zzsnm 33972 | . . . . 5 ⊢ (𝑀 ∈ ℤ → (abs‘𝑀) = ((norm‘ℤring)‘𝑀)) | |
| 28 | 27 | 3ad2ant2 1134 | . . . 4 ⊢ ((𝑍 ∈ NrmMod ∧ 𝑀 ∈ ℤ ∧ 𝑋 ∈ 𝐵) → (abs‘𝑀) = ((norm‘ℤring)‘𝑀)) |
| 29 | 9 | fveq2d 6826 | . . . . 5 ⊢ ((𝑍 ∈ NrmMod ∧ 𝑀 ∈ ℤ ∧ 𝑋 ∈ 𝐵) → (norm‘ℤring) = (norm‘(Scalar‘𝑍))) |
| 30 | 29 | fveq1d 6824 | . . . 4 ⊢ ((𝑍 ∈ NrmMod ∧ 𝑀 ∈ ℤ ∧ 𝑋 ∈ 𝐵) → ((norm‘ℤring)‘𝑀) = ((norm‘(Scalar‘𝑍))‘𝑀)) |
| 31 | 28, 30 | eqtrd 2766 | . . 3 ⊢ ((𝑍 ∈ NrmMod ∧ 𝑀 ∈ ℤ ∧ 𝑋 ∈ 𝐵) → (abs‘𝑀) = ((norm‘(Scalar‘𝑍))‘𝑀)) |
| 32 | 25 | fveq1d 6824 | . . 3 ⊢ ((𝑍 ∈ NrmMod ∧ 𝑀 ∈ ℤ ∧ 𝑋 ∈ 𝐵) → (𝑁‘𝑋) = ((norm‘𝑍)‘𝑋)) |
| 33 | 31, 32 | oveq12d 7364 | . 2 ⊢ ((𝑍 ∈ NrmMod ∧ 𝑀 ∈ ℤ ∧ 𝑋 ∈ 𝐵) → ((abs‘𝑀) · (𝑁‘𝑋)) = (((norm‘(Scalar‘𝑍))‘𝑀) · ((norm‘𝑍)‘𝑋))) |
| 34 | 22, 26, 33 | 3eqtr4d 2776 | 1 ⊢ ((𝑍 ∈ NrmMod ∧ 𝑀 ∈ ℤ ∧ 𝑋 ∈ 𝐵) → (𝑁‘(𝑀 · 𝑋)) = ((abs‘𝑀) · (𝑁‘𝑋))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ w3a 1086 = wceq 1541 ∈ wcel 2111 ‘cfv 6481 (class class class)co 7346 · cmul 11011 ℤcz 12468 abscabs 15141 Basecbs 17120 Scalarcsca 17164 .gcmg 18980 Abelcabl 19693 LModclmod 20793 ℤringczring 21383 ℤModczlm 21437 normcnm 24491 NrmModcnlm 24495 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7668 ax-cnex 11062 ax-resscn 11063 ax-1cn 11064 ax-icn 11065 ax-addcl 11066 ax-addrcl 11067 ax-mulcl 11068 ax-mulrcl 11069 ax-mulcom 11070 ax-addass 11071 ax-mulass 11072 ax-distr 11073 ax-i2m1 11074 ax-1ne0 11075 ax-1rid 11076 ax-rnegex 11077 ax-rrecex 11078 ax-cnre 11079 ax-pre-lttri 11080 ax-pre-lttrn 11081 ax-pre-ltadd 11082 ax-pre-mulgt0 11083 ax-pre-sup 11084 ax-addf 11085 ax-mulf 11086 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-tp 4578 df-op 4580 df-uni 4857 df-iun 4941 df-br 5090 df-opab 5152 df-mpt 5171 df-tr 5197 df-id 5509 df-eprel 5514 df-po 5522 df-so 5523 df-fr 5567 df-we 5569 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-om 7797 df-1st 7921 df-2nd 7922 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-1o 8385 df-er 8622 df-en 8870 df-dom 8871 df-sdom 8872 df-fin 8873 df-sup 9326 df-pnf 11148 df-mnf 11149 df-xr 11150 df-ltxr 11151 df-le 11152 df-sub 11346 df-neg 11347 df-div 11775 df-nn 12126 df-2 12188 df-3 12189 df-4 12190 df-5 12191 df-6 12192 df-7 12193 df-8 12194 df-9 12195 df-n0 12382 df-z 12469 df-dec 12589 df-uz 12733 df-rp 12891 df-fz 13408 df-fzo 13555 df-seq 13909 df-exp 13969 df-cj 15006 df-re 15007 df-im 15008 df-sqrt 15142 df-abs 15143 df-struct 17058 df-sets 17075 df-slot 17093 df-ndx 17105 df-base 17121 df-ress 17142 df-plusg 17174 df-mulr 17175 df-starv 17176 df-sca 17177 df-vsca 17178 df-ip 17179 df-tset 17180 df-ple 17181 df-ds 17183 df-unif 17184 df-0g 17345 df-mgm 18548 df-sgrp 18627 df-mnd 18643 df-grp 18849 df-minusg 18850 df-mulg 18981 df-subg 19036 df-cmn 19694 df-abl 19695 df-mgp 20059 df-rng 20071 df-ur 20100 df-ring 20153 df-cring 20154 df-subrng 20461 df-subrg 20485 df-lmod 20795 df-cnfld 21292 df-zring 21384 df-zlm 21441 df-nm 24497 df-nlm 24501 |
| This theorem is referenced by: zrhnm 33980 |
| Copyright terms: Public domain | W3C validator |