![]() |
Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > ntrclsfveq | Structured version Visualization version GIF version |
Description: If interior and closure functions are related then equality of a pair of function values is equivalent to equality of a pair of the other function's values. (Contributed by RP, 27-Jun-2021.) |
Ref | Expression |
---|---|
ntrcls.o | ⊢ 𝑂 = (𝑖 ∈ V ↦ (𝑘 ∈ (𝒫 𝑖 ↑𝑚 𝒫 𝑖) ↦ (𝑗 ∈ 𝒫 𝑖 ↦ (𝑖 ∖ (𝑘‘(𝑖 ∖ 𝑗)))))) |
ntrcls.d | ⊢ 𝐷 = (𝑂‘𝐵) |
ntrcls.r | ⊢ (𝜑 → 𝐼𝐷𝐾) |
ntrclsfv.s | ⊢ (𝜑 → 𝑆 ∈ 𝒫 𝐵) |
ntrclsfv.t | ⊢ (𝜑 → 𝑇 ∈ 𝒫 𝐵) |
Ref | Expression |
---|---|
ntrclsfveq | ⊢ (𝜑 → ((𝐼‘𝑆) = (𝐼‘𝑇) ↔ (𝐾‘(𝐵 ∖ 𝑆)) = (𝐾‘(𝐵 ∖ 𝑇)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ntrcls.o | . . . 4 ⊢ 𝑂 = (𝑖 ∈ V ↦ (𝑘 ∈ (𝒫 𝑖 ↑𝑚 𝒫 𝑖) ↦ (𝑗 ∈ 𝒫 𝑖 ↦ (𝑖 ∖ (𝑘‘(𝑖 ∖ 𝑗)))))) | |
2 | ntrcls.d | . . . 4 ⊢ 𝐷 = (𝑂‘𝐵) | |
3 | ntrcls.r | . . . 4 ⊢ (𝜑 → 𝐼𝐷𝐾) | |
4 | ntrclsfv.t | . . . 4 ⊢ (𝜑 → 𝑇 ∈ 𝒫 𝐵) | |
5 | 1, 2, 3, 4 | ntrclsfv 39198 | . . 3 ⊢ (𝜑 → (𝐼‘𝑇) = (𝐵 ∖ (𝐾‘(𝐵 ∖ 𝑇)))) |
6 | 5 | eqeq2d 2836 | . 2 ⊢ (𝜑 → ((𝐼‘𝑆) = (𝐼‘𝑇) ↔ (𝐼‘𝑆) = (𝐵 ∖ (𝐾‘(𝐵 ∖ 𝑇))))) |
7 | ntrclsfv.s | . . 3 ⊢ (𝜑 → 𝑆 ∈ 𝒫 𝐵) | |
8 | 2, 3 | ntrclsrcomplex 39174 | . . 3 ⊢ (𝜑 → (𝐵 ∖ (𝐾‘(𝐵 ∖ 𝑇))) ∈ 𝒫 𝐵) |
9 | 1, 2, 3, 7, 8 | ntrclsfveq1 39199 | . 2 ⊢ (𝜑 → ((𝐼‘𝑆) = (𝐵 ∖ (𝐾‘(𝐵 ∖ 𝑇))) ↔ (𝐾‘(𝐵 ∖ 𝑆)) = (𝐵 ∖ (𝐵 ∖ (𝐾‘(𝐵 ∖ 𝑇)))))) |
10 | 1, 2, 3 | ntrclskex 39193 | . . . . . . 7 ⊢ (𝜑 → 𝐾 ∈ (𝒫 𝐵 ↑𝑚 𝒫 𝐵)) |
11 | elmapi 8145 | . . . . . . 7 ⊢ (𝐾 ∈ (𝒫 𝐵 ↑𝑚 𝒫 𝐵) → 𝐾:𝒫 𝐵⟶𝒫 𝐵) | |
12 | 10, 11 | syl 17 | . . . . . 6 ⊢ (𝜑 → 𝐾:𝒫 𝐵⟶𝒫 𝐵) |
13 | 2, 3 | ntrclsrcomplex 39174 | . . . . . 6 ⊢ (𝜑 → (𝐵 ∖ 𝑇) ∈ 𝒫 𝐵) |
14 | 12, 13 | ffvelrnd 6610 | . . . . 5 ⊢ (𝜑 → (𝐾‘(𝐵 ∖ 𝑇)) ∈ 𝒫 𝐵) |
15 | 14 | elpwid 4391 | . . . 4 ⊢ (𝜑 → (𝐾‘(𝐵 ∖ 𝑇)) ⊆ 𝐵) |
16 | dfss4 4089 | . . . 4 ⊢ ((𝐾‘(𝐵 ∖ 𝑇)) ⊆ 𝐵 ↔ (𝐵 ∖ (𝐵 ∖ (𝐾‘(𝐵 ∖ 𝑇)))) = (𝐾‘(𝐵 ∖ 𝑇))) | |
17 | 15, 16 | sylib 210 | . . 3 ⊢ (𝜑 → (𝐵 ∖ (𝐵 ∖ (𝐾‘(𝐵 ∖ 𝑇)))) = (𝐾‘(𝐵 ∖ 𝑇))) |
18 | 17 | eqeq2d 2836 | . 2 ⊢ (𝜑 → ((𝐾‘(𝐵 ∖ 𝑆)) = (𝐵 ∖ (𝐵 ∖ (𝐾‘(𝐵 ∖ 𝑇)))) ↔ (𝐾‘(𝐵 ∖ 𝑆)) = (𝐾‘(𝐵 ∖ 𝑇)))) |
19 | 6, 9, 18 | 3bitrd 297 | 1 ⊢ (𝜑 → ((𝐼‘𝑆) = (𝐼‘𝑇) ↔ (𝐾‘(𝐵 ∖ 𝑆)) = (𝐾‘(𝐵 ∖ 𝑇)))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 198 = wceq 1658 ∈ wcel 2166 Vcvv 3415 ∖ cdif 3796 ⊆ wss 3799 𝒫 cpw 4379 class class class wbr 4874 ↦ cmpt 4953 ⟶wf 6120 ‘cfv 6124 (class class class)co 6906 ↑𝑚 cmap 8123 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1896 ax-4 1910 ax-5 2011 ax-6 2077 ax-7 2114 ax-8 2168 ax-9 2175 ax-10 2194 ax-11 2209 ax-12 2222 ax-13 2391 ax-ext 2804 ax-rep 4995 ax-sep 5006 ax-nul 5014 ax-pow 5066 ax-pr 5128 ax-un 7210 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 881 df-3an 1115 df-tru 1662 df-ex 1881 df-nf 1885 df-sb 2070 df-mo 2606 df-eu 2641 df-clab 2813 df-cleq 2819 df-clel 2822 df-nfc 2959 df-ne 3001 df-ral 3123 df-rex 3124 df-reu 3125 df-rab 3127 df-v 3417 df-sbc 3664 df-csb 3759 df-dif 3802 df-un 3804 df-in 3806 df-ss 3813 df-nul 4146 df-if 4308 df-pw 4381 df-sn 4399 df-pr 4401 df-op 4405 df-uni 4660 df-iun 4743 df-br 4875 df-opab 4937 df-mpt 4954 df-id 5251 df-xp 5349 df-rel 5350 df-cnv 5351 df-co 5352 df-dm 5353 df-rn 5354 df-res 5355 df-ima 5356 df-iota 6087 df-fun 6126 df-fn 6127 df-f 6128 df-f1 6129 df-fo 6130 df-f1o 6131 df-fv 6132 df-ov 6909 df-oprab 6910 df-mpt2 6911 df-1st 7429 df-2nd 7430 df-map 8125 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |