Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ntrclsfveq Structured version   Visualization version   GIF version

Theorem ntrclsfveq 41672
Description: If interior and closure functions are related then equality of a pair of function values is equivalent to equality of a pair of the other function's values. (Contributed by RP, 27-Jun-2021.)
Hypotheses
Ref Expression
ntrcls.o 𝑂 = (𝑖 ∈ V ↦ (𝑘 ∈ (𝒫 𝑖m 𝒫 𝑖) ↦ (𝑗 ∈ 𝒫 𝑖 ↦ (𝑖 ∖ (𝑘‘(𝑖𝑗))))))
ntrcls.d 𝐷 = (𝑂𝐵)
ntrcls.r (𝜑𝐼𝐷𝐾)
ntrclsfv.s (𝜑𝑆 ∈ 𝒫 𝐵)
ntrclsfv.t (𝜑𝑇 ∈ 𝒫 𝐵)
Assertion
Ref Expression
ntrclsfveq (𝜑 → ((𝐼𝑆) = (𝐼𝑇) ↔ (𝐾‘(𝐵𝑆)) = (𝐾‘(𝐵𝑇))))
Distinct variable groups:   𝐵,𝑖,𝑗,𝑘   𝑗,𝐾,𝑘   𝑆,𝑗   𝑇,𝑗   𝜑,𝑖,𝑗,𝑘
Allowed substitution hints:   𝐷(𝑖,𝑗,𝑘)   𝑆(𝑖,𝑘)   𝑇(𝑖,𝑘)   𝐼(𝑖,𝑗,𝑘)   𝐾(𝑖)   𝑂(𝑖,𝑗,𝑘)

Proof of Theorem ntrclsfveq
StepHypRef Expression
1 ntrcls.o . . . 4 𝑂 = (𝑖 ∈ V ↦ (𝑘 ∈ (𝒫 𝑖m 𝒫 𝑖) ↦ (𝑗 ∈ 𝒫 𝑖 ↦ (𝑖 ∖ (𝑘‘(𝑖𝑗))))))
2 ntrcls.d . . . 4 𝐷 = (𝑂𝐵)
3 ntrcls.r . . . 4 (𝜑𝐼𝐷𝐾)
4 ntrclsfv.t . . . 4 (𝜑𝑇 ∈ 𝒫 𝐵)
51, 2, 3, 4ntrclsfv 41669 . . 3 (𝜑 → (𝐼𝑇) = (𝐵 ∖ (𝐾‘(𝐵𝑇))))
65eqeq2d 2749 . 2 (𝜑 → ((𝐼𝑆) = (𝐼𝑇) ↔ (𝐼𝑆) = (𝐵 ∖ (𝐾‘(𝐵𝑇)))))
7 ntrclsfv.s . . 3 (𝜑𝑆 ∈ 𝒫 𝐵)
82, 3ntrclsrcomplex 41645 . . 3 (𝜑 → (𝐵 ∖ (𝐾‘(𝐵𝑇))) ∈ 𝒫 𝐵)
91, 2, 3, 7, 8ntrclsfveq1 41670 . 2 (𝜑 → ((𝐼𝑆) = (𝐵 ∖ (𝐾‘(𝐵𝑇))) ↔ (𝐾‘(𝐵𝑆)) = (𝐵 ∖ (𝐵 ∖ (𝐾‘(𝐵𝑇))))))
101, 2, 3ntrclskex 41664 . . . . . . 7 (𝜑𝐾 ∈ (𝒫 𝐵m 𝒫 𝐵))
11 elmapi 8637 . . . . . . 7 (𝐾 ∈ (𝒫 𝐵m 𝒫 𝐵) → 𝐾:𝒫 𝐵⟶𝒫 𝐵)
1210, 11syl 17 . . . . . 6 (𝜑𝐾:𝒫 𝐵⟶𝒫 𝐵)
132, 3ntrclsrcomplex 41645 . . . . . 6 (𝜑 → (𝐵𝑇) ∈ 𝒫 𝐵)
1412, 13ffvelrnd 6962 . . . . 5 (𝜑 → (𝐾‘(𝐵𝑇)) ∈ 𝒫 𝐵)
1514elpwid 4544 . . . 4 (𝜑 → (𝐾‘(𝐵𝑇)) ⊆ 𝐵)
16 dfss4 4192 . . . 4 ((𝐾‘(𝐵𝑇)) ⊆ 𝐵 ↔ (𝐵 ∖ (𝐵 ∖ (𝐾‘(𝐵𝑇)))) = (𝐾‘(𝐵𝑇)))
1715, 16sylib 217 . . 3 (𝜑 → (𝐵 ∖ (𝐵 ∖ (𝐾‘(𝐵𝑇)))) = (𝐾‘(𝐵𝑇)))
1817eqeq2d 2749 . 2 (𝜑 → ((𝐾‘(𝐵𝑆)) = (𝐵 ∖ (𝐵 ∖ (𝐾‘(𝐵𝑇)))) ↔ (𝐾‘(𝐵𝑆)) = (𝐾‘(𝐵𝑇))))
196, 9, 183bitrd 305 1 (𝜑 → ((𝐼𝑆) = (𝐼𝑇) ↔ (𝐾‘(𝐵𝑆)) = (𝐾‘(𝐵𝑇))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205   = wceq 1539  wcel 2106  Vcvv 3432  cdif 3884  wss 3887  𝒫 cpw 4533   class class class wbr 5074  cmpt 5157  wf 6429  cfv 6433  (class class class)co 7275  m cmap 8615
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-id 5489  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-ov 7278  df-oprab 7279  df-mpo 7280  df-1st 7831  df-2nd 7832  df-map 8617
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator