Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ntrclsfveq Structured version   Visualization version   GIF version

Theorem ntrclsfveq 44024
Description: If interior and closure functions are related then equality of a pair of function values is equivalent to equality of a pair of the other function's values. (Contributed by RP, 27-Jun-2021.)
Hypotheses
Ref Expression
ntrcls.o 𝑂 = (𝑖 ∈ V ↦ (𝑘 ∈ (𝒫 𝑖m 𝒫 𝑖) ↦ (𝑗 ∈ 𝒫 𝑖 ↦ (𝑖 ∖ (𝑘‘(𝑖𝑗))))))
ntrcls.d 𝐷 = (𝑂𝐵)
ntrcls.r (𝜑𝐼𝐷𝐾)
ntrclsfv.s (𝜑𝑆 ∈ 𝒫 𝐵)
ntrclsfv.t (𝜑𝑇 ∈ 𝒫 𝐵)
Assertion
Ref Expression
ntrclsfveq (𝜑 → ((𝐼𝑆) = (𝐼𝑇) ↔ (𝐾‘(𝐵𝑆)) = (𝐾‘(𝐵𝑇))))
Distinct variable groups:   𝐵,𝑖,𝑗,𝑘   𝑗,𝐾,𝑘   𝑆,𝑗   𝑇,𝑗   𝜑,𝑖,𝑗,𝑘
Allowed substitution hints:   𝐷(𝑖,𝑗,𝑘)   𝑆(𝑖,𝑘)   𝑇(𝑖,𝑘)   𝐼(𝑖,𝑗,𝑘)   𝐾(𝑖)   𝑂(𝑖,𝑗,𝑘)

Proof of Theorem ntrclsfveq
StepHypRef Expression
1 ntrcls.o . . . 4 𝑂 = (𝑖 ∈ V ↦ (𝑘 ∈ (𝒫 𝑖m 𝒫 𝑖) ↦ (𝑗 ∈ 𝒫 𝑖 ↦ (𝑖 ∖ (𝑘‘(𝑖𝑗))))))
2 ntrcls.d . . . 4 𝐷 = (𝑂𝐵)
3 ntrcls.r . . . 4 (𝜑𝐼𝐷𝐾)
4 ntrclsfv.t . . . 4 (𝜑𝑇 ∈ 𝒫 𝐵)
51, 2, 3, 4ntrclsfv 44021 . . 3 (𝜑 → (𝐼𝑇) = (𝐵 ∖ (𝐾‘(𝐵𝑇))))
65eqeq2d 2751 . 2 (𝜑 → ((𝐼𝑆) = (𝐼𝑇) ↔ (𝐼𝑆) = (𝐵 ∖ (𝐾‘(𝐵𝑇)))))
7 ntrclsfv.s . . 3 (𝜑𝑆 ∈ 𝒫 𝐵)
82, 3ntrclsrcomplex 43997 . . 3 (𝜑 → (𝐵 ∖ (𝐾‘(𝐵𝑇))) ∈ 𝒫 𝐵)
91, 2, 3, 7, 8ntrclsfveq1 44022 . 2 (𝜑 → ((𝐼𝑆) = (𝐵 ∖ (𝐾‘(𝐵𝑇))) ↔ (𝐾‘(𝐵𝑆)) = (𝐵 ∖ (𝐵 ∖ (𝐾‘(𝐵𝑇))))))
101, 2, 3ntrclskex 44016 . . . . . . 7 (𝜑𝐾 ∈ (𝒫 𝐵m 𝒫 𝐵))
11 elmapi 8907 . . . . . . 7 (𝐾 ∈ (𝒫 𝐵m 𝒫 𝐵) → 𝐾:𝒫 𝐵⟶𝒫 𝐵)
1210, 11syl 17 . . . . . 6 (𝜑𝐾:𝒫 𝐵⟶𝒫 𝐵)
132, 3ntrclsrcomplex 43997 . . . . . 6 (𝜑 → (𝐵𝑇) ∈ 𝒫 𝐵)
1412, 13ffvelcdmd 7119 . . . . 5 (𝜑 → (𝐾‘(𝐵𝑇)) ∈ 𝒫 𝐵)
1514elpwid 4631 . . . 4 (𝜑 → (𝐾‘(𝐵𝑇)) ⊆ 𝐵)
16 dfss4 4288 . . . 4 ((𝐾‘(𝐵𝑇)) ⊆ 𝐵 ↔ (𝐵 ∖ (𝐵 ∖ (𝐾‘(𝐵𝑇)))) = (𝐾‘(𝐵𝑇)))
1715, 16sylib 218 . . 3 (𝜑 → (𝐵 ∖ (𝐵 ∖ (𝐾‘(𝐵𝑇)))) = (𝐾‘(𝐵𝑇)))
1817eqeq2d 2751 . 2 (𝜑 → ((𝐾‘(𝐵𝑆)) = (𝐵 ∖ (𝐵 ∖ (𝐾‘(𝐵𝑇)))) ↔ (𝐾‘(𝐵𝑆)) = (𝐾‘(𝐵𝑇))))
196, 9, 183bitrd 305 1 (𝜑 → ((𝐼𝑆) = (𝐼𝑇) ↔ (𝐾‘(𝐵𝑆)) = (𝐾‘(𝐵𝑇))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206   = wceq 1537  wcel 2108  Vcvv 3488  cdif 3973  wss 3976  𝒫 cpw 4622   class class class wbr 5166  cmpt 5249  wf 6569  cfv 6573  (class class class)co 7448  m cmap 8884
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-ov 7451  df-oprab 7452  df-mpo 7453  df-1st 8030  df-2nd 8031  df-map 8886
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator