![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > lltropt | Structured version Visualization version GIF version |
Description: The left options of a surreal are strictly less than the right options of the same surreal. (Contributed by Scott Fenton, 6-Aug-2024.) (Revised by Scott Fenton, 21-Feb-2025.) |
Ref | Expression |
---|---|
lltropt | β’ ( L βπ΄) <<s ( R βπ΄) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssltleft 27602 | . . 3 β’ (π΄ β No β ( L βπ΄) <<s {π΄}) | |
2 | ssltright 27603 | . . 3 β’ (π΄ β No β {π΄} <<s ( R βπ΄)) | |
3 | snnzg 4777 | . . 3 β’ (π΄ β No β {π΄} β β ) | |
4 | sslttr 27545 | . . 3 β’ ((( L βπ΄) <<s {π΄} β§ {π΄} <<s ( R βπ΄) β§ {π΄} β β ) β ( L βπ΄) <<s ( R βπ΄)) | |
5 | 1, 2, 3, 4 | syl3anc 1369 | . 2 β’ (π΄ β No β ( L βπ΄) <<s ( R βπ΄)) |
6 | 0elpw 5353 | . . . 4 β’ β β π« No | |
7 | nulssgt 27536 | . . . 4 β’ (β β π« No β β <<s β ) | |
8 | 6, 7 | mp1i 13 | . . 3 β’ (Β¬ π΄ β No β β <<s β ) |
9 | leftf 27597 | . . . . . 6 β’ L : No βΆπ« No | |
10 | 9 | fdmi 6728 | . . . . 5 β’ dom L = No |
11 | 10 | eleq2i 2823 | . . . 4 β’ (π΄ β dom L β π΄ β No ) |
12 | ndmfv 6925 | . . . 4 β’ (Β¬ π΄ β dom L β ( L βπ΄) = β ) | |
13 | 11, 12 | sylnbir 330 | . . 3 β’ (Β¬ π΄ β No β ( L βπ΄) = β ) |
14 | rightf 27598 | . . . . . 6 β’ R : No βΆπ« No | |
15 | 14 | fdmi 6728 | . . . . 5 β’ dom R = No |
16 | 15 | eleq2i 2823 | . . . 4 β’ (π΄ β dom R β π΄ β No ) |
17 | ndmfv 6925 | . . . 4 β’ (Β¬ π΄ β dom R β ( R βπ΄) = β ) | |
18 | 16, 17 | sylnbir 330 | . . 3 β’ (Β¬ π΄ β No β ( R βπ΄) = β ) |
19 | 8, 13, 18 | 3brtr4d 5179 | . 2 β’ (Β¬ π΄ β No β ( L βπ΄) <<s ( R βπ΄)) |
20 | 5, 19 | pm2.61i 182 | 1 β’ ( L βπ΄) <<s ( R βπ΄) |
Colors of variables: wff setvar class |
Syntax hints: Β¬ wn 3 = wceq 1539 β wcel 2104 β wne 2938 β c0 4321 π« cpw 4601 {csn 4627 class class class wbr 5147 dom cdm 5675 βcfv 6542 No csur 27379 <<s csslt 27518 L cleft 27577 R cright 27578 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2701 ax-rep 5284 ax-sep 5298 ax-nul 5305 ax-pow 5362 ax-pr 5426 ax-un 7727 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2532 df-eu 2561 df-clab 2708 df-cleq 2722 df-clel 2808 df-nfc 2883 df-ne 2939 df-ral 3060 df-rex 3069 df-rmo 3374 df-reu 3375 df-rab 3431 df-v 3474 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3966 df-nul 4322 df-if 4528 df-pw 4603 df-sn 4628 df-pr 4630 df-tp 4632 df-op 4634 df-uni 4908 df-int 4950 df-iun 4998 df-br 5148 df-opab 5210 df-mpt 5231 df-tr 5265 df-id 5573 df-eprel 5579 df-po 5587 df-so 5588 df-fr 5630 df-we 5632 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-res 5687 df-ima 5688 df-pred 6299 df-ord 6366 df-on 6367 df-suc 6369 df-iota 6494 df-fun 6544 df-fn 6545 df-f 6546 df-f1 6547 df-fo 6548 df-f1o 6549 df-fv 6550 df-riota 7367 df-ov 7414 df-oprab 7415 df-mpo 7416 df-2nd 7978 df-frecs 8268 df-wrecs 8299 df-recs 8373 df-1o 8468 df-2o 8469 df-no 27382 df-slt 27383 df-bday 27384 df-sslt 27519 df-scut 27521 df-made 27579 df-old 27580 df-left 27582 df-right 27583 |
This theorem is referenced by: madebdaylemlrcut 27630 madebday 27631 scutfo 27635 sltn0 27636 sltlpss 27638 slelss 27639 cutpos 27658 addsproplem2 27692 addsasslem1 27725 addsasslem2 27726 negsproplem2 27742 negsid 27754 mulsproplem5 27815 mulsproplem6 27816 mulsproplem7 27817 mulsproplem8 27818 addsdilem1 27845 mulsasslem1 27857 mulsasslem2 27858 precsexlem11 27902 |
Copyright terms: Public domain | W3C validator |