| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > lltropt | Structured version Visualization version GIF version | ||
| Description: The left options of a surreal are strictly less than the right options of the same surreal. (Contributed by Scott Fenton, 6-Aug-2024.) (Revised by Scott Fenton, 21-Feb-2025.) |
| Ref | Expression |
|---|---|
| lltropt | ⊢ ( L ‘𝐴) <<s ( R ‘𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssltleft 27784 | . . 3 ⊢ (𝐴 ∈ No → ( L ‘𝐴) <<s {𝐴}) | |
| 2 | ssltright 27785 | . . 3 ⊢ (𝐴 ∈ No → {𝐴} <<s ( R ‘𝐴)) | |
| 3 | snnzg 4726 | . . 3 ⊢ (𝐴 ∈ No → {𝐴} ≠ ∅) | |
| 4 | sslttr 27718 | . . 3 ⊢ ((( L ‘𝐴) <<s {𝐴} ∧ {𝐴} <<s ( R ‘𝐴) ∧ {𝐴} ≠ ∅) → ( L ‘𝐴) <<s ( R ‘𝐴)) | |
| 5 | 1, 2, 3, 4 | syl3anc 1373 | . 2 ⊢ (𝐴 ∈ No → ( L ‘𝐴) <<s ( R ‘𝐴)) |
| 6 | 0elpw 5295 | . . . 4 ⊢ ∅ ∈ 𝒫 No | |
| 7 | nulssgt 27709 | . . . 4 ⊢ (∅ ∈ 𝒫 No → ∅ <<s ∅) | |
| 8 | 6, 7 | mp1i 13 | . . 3 ⊢ (¬ 𝐴 ∈ No → ∅ <<s ∅) |
| 9 | leftf 27779 | . . . . . 6 ⊢ L : No ⟶𝒫 No | |
| 10 | 9 | fdmi 6663 | . . . . 5 ⊢ dom L = No |
| 11 | 10 | eleq2i 2820 | . . . 4 ⊢ (𝐴 ∈ dom L ↔ 𝐴 ∈ No ) |
| 12 | ndmfv 6855 | . . . 4 ⊢ (¬ 𝐴 ∈ dom L → ( L ‘𝐴) = ∅) | |
| 13 | 11, 12 | sylnbir 331 | . . 3 ⊢ (¬ 𝐴 ∈ No → ( L ‘𝐴) = ∅) |
| 14 | rightf 27780 | . . . . . 6 ⊢ R : No ⟶𝒫 No | |
| 15 | 14 | fdmi 6663 | . . . . 5 ⊢ dom R = No |
| 16 | 15 | eleq2i 2820 | . . . 4 ⊢ (𝐴 ∈ dom R ↔ 𝐴 ∈ No ) |
| 17 | ndmfv 6855 | . . . 4 ⊢ (¬ 𝐴 ∈ dom R → ( R ‘𝐴) = ∅) | |
| 18 | 16, 17 | sylnbir 331 | . . 3 ⊢ (¬ 𝐴 ∈ No → ( R ‘𝐴) = ∅) |
| 19 | 8, 13, 18 | 3brtr4d 5124 | . 2 ⊢ (¬ 𝐴 ∈ No → ( L ‘𝐴) <<s ( R ‘𝐴)) |
| 20 | 5, 19 | pm2.61i 182 | 1 ⊢ ( L ‘𝐴) <<s ( R ‘𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 = wceq 1540 ∈ wcel 2109 ≠ wne 2925 ∅c0 4284 𝒫 cpw 4551 {csn 4577 class class class wbr 5092 dom cdm 5619 ‘cfv 6482 No csur 27549 <<s csslt 27691 L cleft 27755 R cright 27756 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5218 ax-sep 5235 ax-nul 5245 ax-pow 5304 ax-pr 5371 ax-un 7671 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rmo 3343 df-reu 3344 df-rab 3395 df-v 3438 df-sbc 3743 df-csb 3852 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-pss 3923 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-tp 4582 df-op 4584 df-uni 4859 df-int 4897 df-iun 4943 df-br 5093 df-opab 5155 df-mpt 5174 df-tr 5200 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6249 df-ord 6310 df-on 6311 df-suc 6313 df-iota 6438 df-fun 6484 df-fn 6485 df-f 6486 df-f1 6487 df-fo 6488 df-f1o 6489 df-fv 6490 df-riota 7306 df-ov 7352 df-oprab 7353 df-mpo 7354 df-2nd 7925 df-frecs 8214 df-wrecs 8245 df-recs 8294 df-1o 8388 df-2o 8389 df-no 27552 df-slt 27553 df-bday 27554 df-sslt 27692 df-scut 27694 df-made 27757 df-old 27758 df-left 27760 df-right 27761 |
| This theorem is referenced by: madebdaylemlrcut 27813 madebday 27814 scutfo 27819 sltn0 27820 sltlpss 27822 slelss 27823 bdayiun 27829 cutpos 27846 addsproplem2 27882 addsasslem1 27915 addsasslem2 27916 negsproplem2 27940 negsid 27952 mulsproplem5 28028 mulsproplem6 28029 mulsproplem7 28030 mulsproplem8 28031 addsdilem1 28059 mulsasslem1 28071 mulsasslem2 28072 precsexlem11 28124 onscutlt 28170 n0sfincut 28251 halfcut 28346 |
| Copyright terms: Public domain | W3C validator |