| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > lltropt | Structured version Visualization version GIF version | ||
| Description: The left options of a surreal are strictly less than the right options of the same surreal. (Contributed by Scott Fenton, 6-Aug-2024.) (Revised by Scott Fenton, 21-Feb-2025.) |
| Ref | Expression |
|---|---|
| lltropt | ⊢ ( L ‘𝐴) <<s ( R ‘𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssltleft 27834 | . . 3 ⊢ (𝐴 ∈ No → ( L ‘𝐴) <<s {𝐴}) | |
| 2 | ssltright 27835 | . . 3 ⊢ (𝐴 ∈ No → {𝐴} <<s ( R ‘𝐴)) | |
| 3 | snnzg 4750 | . . 3 ⊢ (𝐴 ∈ No → {𝐴} ≠ ∅) | |
| 4 | sslttr 27771 | . . 3 ⊢ ((( L ‘𝐴) <<s {𝐴} ∧ {𝐴} <<s ( R ‘𝐴) ∧ {𝐴} ≠ ∅) → ( L ‘𝐴) <<s ( R ‘𝐴)) | |
| 5 | 1, 2, 3, 4 | syl3anc 1373 | . 2 ⊢ (𝐴 ∈ No → ( L ‘𝐴) <<s ( R ‘𝐴)) |
| 6 | 0elpw 5326 | . . . 4 ⊢ ∅ ∈ 𝒫 No | |
| 7 | nulssgt 27762 | . . . 4 ⊢ (∅ ∈ 𝒫 No → ∅ <<s ∅) | |
| 8 | 6, 7 | mp1i 13 | . . 3 ⊢ (¬ 𝐴 ∈ No → ∅ <<s ∅) |
| 9 | leftf 27829 | . . . . . 6 ⊢ L : No ⟶𝒫 No | |
| 10 | 9 | fdmi 6717 | . . . . 5 ⊢ dom L = No |
| 11 | 10 | eleq2i 2826 | . . . 4 ⊢ (𝐴 ∈ dom L ↔ 𝐴 ∈ No ) |
| 12 | ndmfv 6911 | . . . 4 ⊢ (¬ 𝐴 ∈ dom L → ( L ‘𝐴) = ∅) | |
| 13 | 11, 12 | sylnbir 331 | . . 3 ⊢ (¬ 𝐴 ∈ No → ( L ‘𝐴) = ∅) |
| 14 | rightf 27830 | . . . . . 6 ⊢ R : No ⟶𝒫 No | |
| 15 | 14 | fdmi 6717 | . . . . 5 ⊢ dom R = No |
| 16 | 15 | eleq2i 2826 | . . . 4 ⊢ (𝐴 ∈ dom R ↔ 𝐴 ∈ No ) |
| 17 | ndmfv 6911 | . . . 4 ⊢ (¬ 𝐴 ∈ dom R → ( R ‘𝐴) = ∅) | |
| 18 | 16, 17 | sylnbir 331 | . . 3 ⊢ (¬ 𝐴 ∈ No → ( R ‘𝐴) = ∅) |
| 19 | 8, 13, 18 | 3brtr4d 5151 | . 2 ⊢ (¬ 𝐴 ∈ No → ( L ‘𝐴) <<s ( R ‘𝐴)) |
| 20 | 5, 19 | pm2.61i 182 | 1 ⊢ ( L ‘𝐴) <<s ( R ‘𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 = wceq 1540 ∈ wcel 2108 ≠ wne 2932 ∅c0 4308 𝒫 cpw 4575 {csn 4601 class class class wbr 5119 dom cdm 5654 ‘cfv 6531 No csur 27603 <<s csslt 27744 L cleft 27805 R cright 27806 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-rep 5249 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7729 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-ral 3052 df-rex 3061 df-rmo 3359 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-pss 3946 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-tp 4606 df-op 4608 df-uni 4884 df-int 4923 df-iun 4969 df-br 5120 df-opab 5182 df-mpt 5202 df-tr 5230 df-id 5548 df-eprel 5553 df-po 5561 df-so 5562 df-fr 5606 df-we 5608 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-pred 6290 df-ord 6355 df-on 6356 df-suc 6358 df-iota 6484 df-fun 6533 df-fn 6534 df-f 6535 df-f1 6536 df-fo 6537 df-f1o 6538 df-fv 6539 df-riota 7362 df-ov 7408 df-oprab 7409 df-mpo 7410 df-2nd 7989 df-frecs 8280 df-wrecs 8311 df-recs 8385 df-1o 8480 df-2o 8481 df-no 27606 df-slt 27607 df-bday 27608 df-sslt 27745 df-scut 27747 df-made 27807 df-old 27808 df-left 27810 df-right 27811 |
| This theorem is referenced by: madebdaylemlrcut 27862 madebday 27863 scutfo 27868 sltn0 27869 sltlpss 27871 slelss 27872 cutpos 27893 addsproplem2 27929 addsasslem1 27962 addsasslem2 27963 negsproplem2 27987 negsid 27999 mulsproplem5 28075 mulsproplem6 28076 mulsproplem7 28077 mulsproplem8 28078 addsdilem1 28106 mulsasslem1 28118 mulsasslem2 28119 precsexlem11 28171 onscutlt 28217 n0sfincut 28298 halfcut 28385 |
| Copyright terms: Public domain | W3C validator |