| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > lltropt | Structured version Visualization version GIF version | ||
| Description: The left options of a surreal are strictly less than the right options of the same surreal. (Contributed by Scott Fenton, 6-Aug-2024.) (Revised by Scott Fenton, 21-Feb-2025.) |
| Ref | Expression |
|---|---|
| lltropt | ⊢ ( L ‘𝐴) <<s ( R ‘𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssltleft 27810 | . . 3 ⊢ (𝐴 ∈ No → ( L ‘𝐴) <<s {𝐴}) | |
| 2 | ssltright 27811 | . . 3 ⊢ (𝐴 ∈ No → {𝐴} <<s ( R ‘𝐴)) | |
| 3 | snnzg 4722 | . . 3 ⊢ (𝐴 ∈ No → {𝐴} ≠ ∅) | |
| 4 | sslttr 27743 | . . 3 ⊢ ((( L ‘𝐴) <<s {𝐴} ∧ {𝐴} <<s ( R ‘𝐴) ∧ {𝐴} ≠ ∅) → ( L ‘𝐴) <<s ( R ‘𝐴)) | |
| 5 | 1, 2, 3, 4 | syl3anc 1373 | . 2 ⊢ (𝐴 ∈ No → ( L ‘𝐴) <<s ( R ‘𝐴)) |
| 6 | 0elpw 5289 | . . . 4 ⊢ ∅ ∈ 𝒫 No | |
| 7 | nulssgt 27734 | . . . 4 ⊢ (∅ ∈ 𝒫 No → ∅ <<s ∅) | |
| 8 | 6, 7 | mp1i 13 | . . 3 ⊢ (¬ 𝐴 ∈ No → ∅ <<s ∅) |
| 9 | leftf 27805 | . . . . . 6 ⊢ L : No ⟶𝒫 No | |
| 10 | 9 | fdmi 6657 | . . . . 5 ⊢ dom L = No |
| 11 | 10 | eleq2i 2823 | . . . 4 ⊢ (𝐴 ∈ dom L ↔ 𝐴 ∈ No ) |
| 12 | ndmfv 6849 | . . . 4 ⊢ (¬ 𝐴 ∈ dom L → ( L ‘𝐴) = ∅) | |
| 13 | 11, 12 | sylnbir 331 | . . 3 ⊢ (¬ 𝐴 ∈ No → ( L ‘𝐴) = ∅) |
| 14 | rightf 27806 | . . . . . 6 ⊢ R : No ⟶𝒫 No | |
| 15 | 14 | fdmi 6657 | . . . . 5 ⊢ dom R = No |
| 16 | 15 | eleq2i 2823 | . . . 4 ⊢ (𝐴 ∈ dom R ↔ 𝐴 ∈ No ) |
| 17 | ndmfv 6849 | . . . 4 ⊢ (¬ 𝐴 ∈ dom R → ( R ‘𝐴) = ∅) | |
| 18 | 16, 17 | sylnbir 331 | . . 3 ⊢ (¬ 𝐴 ∈ No → ( R ‘𝐴) = ∅) |
| 19 | 8, 13, 18 | 3brtr4d 5118 | . 2 ⊢ (¬ 𝐴 ∈ No → ( L ‘𝐴) <<s ( R ‘𝐴)) |
| 20 | 5, 19 | pm2.61i 182 | 1 ⊢ ( L ‘𝐴) <<s ( R ‘𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 = wceq 1541 ∈ wcel 2111 ≠ wne 2928 ∅c0 4278 𝒫 cpw 4545 {csn 4571 class class class wbr 5086 dom cdm 5611 ‘cfv 6476 No csur 27573 <<s csslt 27715 L cleft 27781 R cright 27782 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5212 ax-sep 5229 ax-nul 5239 ax-pow 5298 ax-pr 5365 ax-un 7663 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4279 df-if 4471 df-pw 4547 df-sn 4572 df-pr 4574 df-tp 4576 df-op 4578 df-uni 4855 df-int 4893 df-iun 4938 df-br 5087 df-opab 5149 df-mpt 5168 df-tr 5194 df-id 5506 df-eprel 5511 df-po 5519 df-so 5520 df-fr 5564 df-we 5566 df-xp 5617 df-rel 5618 df-cnv 5619 df-co 5620 df-dm 5621 df-rn 5622 df-res 5623 df-ima 5624 df-pred 6243 df-ord 6304 df-on 6305 df-suc 6307 df-iota 6432 df-fun 6478 df-fn 6479 df-f 6480 df-f1 6481 df-fo 6482 df-f1o 6483 df-fv 6484 df-riota 7298 df-ov 7344 df-oprab 7345 df-mpo 7346 df-2nd 7917 df-frecs 8206 df-wrecs 8237 df-recs 8286 df-1o 8380 df-2o 8381 df-no 27576 df-slt 27577 df-bday 27578 df-sslt 27716 df-scut 27718 df-made 27783 df-old 27784 df-left 27786 df-right 27787 |
| This theorem is referenced by: madebdaylemlrcut 27839 madebday 27840 scutfo 27845 sltn0 27846 sltlpss 27848 slelss 27849 bdayiun 27855 cutpos 27872 addsproplem2 27908 addsasslem1 27941 addsasslem2 27942 negsproplem2 27966 negsid 27978 mulsproplem5 28054 mulsproplem6 28055 mulsproplem7 28056 mulsproplem8 28057 addsdilem1 28085 mulsasslem1 28097 mulsasslem2 28098 precsexlem11 28150 onscutlt 28196 n0sfincut 28277 halfcut 28373 |
| Copyright terms: Public domain | W3C validator |