| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > lltropt | Structured version Visualization version GIF version | ||
| Description: The left options of a surreal are strictly less than the right options of the same surreal. (Contributed by Scott Fenton, 6-Aug-2024.) (Revised by Scott Fenton, 21-Feb-2025.) |
| Ref | Expression |
|---|---|
| lltropt | ⊢ ( L ‘𝐴) <<s ( R ‘𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssltleft 27782 | . . 3 ⊢ (𝐴 ∈ No → ( L ‘𝐴) <<s {𝐴}) | |
| 2 | ssltright 27783 | . . 3 ⊢ (𝐴 ∈ No → {𝐴} <<s ( R ‘𝐴)) | |
| 3 | snnzg 4738 | . . 3 ⊢ (𝐴 ∈ No → {𝐴} ≠ ∅) | |
| 4 | sslttr 27719 | . . 3 ⊢ ((( L ‘𝐴) <<s {𝐴} ∧ {𝐴} <<s ( R ‘𝐴) ∧ {𝐴} ≠ ∅) → ( L ‘𝐴) <<s ( R ‘𝐴)) | |
| 5 | 1, 2, 3, 4 | syl3anc 1373 | . 2 ⊢ (𝐴 ∈ No → ( L ‘𝐴) <<s ( R ‘𝐴)) |
| 6 | 0elpw 5311 | . . . 4 ⊢ ∅ ∈ 𝒫 No | |
| 7 | nulssgt 27710 | . . . 4 ⊢ (∅ ∈ 𝒫 No → ∅ <<s ∅) | |
| 8 | 6, 7 | mp1i 13 | . . 3 ⊢ (¬ 𝐴 ∈ No → ∅ <<s ∅) |
| 9 | leftf 27777 | . . . . . 6 ⊢ L : No ⟶𝒫 No | |
| 10 | 9 | fdmi 6699 | . . . . 5 ⊢ dom L = No |
| 11 | 10 | eleq2i 2820 | . . . 4 ⊢ (𝐴 ∈ dom L ↔ 𝐴 ∈ No ) |
| 12 | ndmfv 6893 | . . . 4 ⊢ (¬ 𝐴 ∈ dom L → ( L ‘𝐴) = ∅) | |
| 13 | 11, 12 | sylnbir 331 | . . 3 ⊢ (¬ 𝐴 ∈ No → ( L ‘𝐴) = ∅) |
| 14 | rightf 27778 | . . . . . 6 ⊢ R : No ⟶𝒫 No | |
| 15 | 14 | fdmi 6699 | . . . . 5 ⊢ dom R = No |
| 16 | 15 | eleq2i 2820 | . . . 4 ⊢ (𝐴 ∈ dom R ↔ 𝐴 ∈ No ) |
| 17 | ndmfv 6893 | . . . 4 ⊢ (¬ 𝐴 ∈ dom R → ( R ‘𝐴) = ∅) | |
| 18 | 16, 17 | sylnbir 331 | . . 3 ⊢ (¬ 𝐴 ∈ No → ( R ‘𝐴) = ∅) |
| 19 | 8, 13, 18 | 3brtr4d 5139 | . 2 ⊢ (¬ 𝐴 ∈ No → ( L ‘𝐴) <<s ( R ‘𝐴)) |
| 20 | 5, 19 | pm2.61i 182 | 1 ⊢ ( L ‘𝐴) <<s ( R ‘𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 = wceq 1540 ∈ wcel 2109 ≠ wne 2925 ∅c0 4296 𝒫 cpw 4563 {csn 4589 class class class wbr 5107 dom cdm 5638 ‘cfv 6511 No csur 27551 <<s csslt 27692 L cleft 27753 R cright 27754 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5234 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rmo 3354 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-tp 4594 df-op 4596 df-uni 4872 df-int 4911 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6274 df-ord 6335 df-on 6336 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-riota 7344 df-ov 7390 df-oprab 7391 df-mpo 7392 df-2nd 7969 df-frecs 8260 df-wrecs 8291 df-recs 8340 df-1o 8434 df-2o 8435 df-no 27554 df-slt 27555 df-bday 27556 df-sslt 27693 df-scut 27695 df-made 27755 df-old 27756 df-left 27758 df-right 27759 |
| This theorem is referenced by: madebdaylemlrcut 27810 madebday 27811 scutfo 27816 sltn0 27817 sltlpss 27819 slelss 27820 cutpos 27841 addsproplem2 27877 addsasslem1 27910 addsasslem2 27911 negsproplem2 27935 negsid 27947 mulsproplem5 28023 mulsproplem6 28024 mulsproplem7 28025 mulsproplem8 28026 addsdilem1 28054 mulsasslem1 28066 mulsasslem2 28067 precsexlem11 28119 onscutlt 28165 n0sfincut 28246 halfcut 28333 |
| Copyright terms: Public domain | W3C validator |