![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > lltropt | Structured version Visualization version GIF version |
Description: The left options of a surreal are strictly less than the right options of the same surreal. (Contributed by Scott Fenton, 6-Aug-2024.) (Revised by Scott Fenton, 21-Feb-2025.) |
Ref | Expression |
---|---|
lltropt | ⊢ ( L ‘𝐴) <<s ( R ‘𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssltleft 27790 | . . 3 ⊢ (𝐴 ∈ No → ( L ‘𝐴) <<s {𝐴}) | |
2 | ssltright 27791 | . . 3 ⊢ (𝐴 ∈ No → {𝐴} <<s ( R ‘𝐴)) | |
3 | snnzg 4774 | . . 3 ⊢ (𝐴 ∈ No → {𝐴} ≠ ∅) | |
4 | sslttr 27733 | . . 3 ⊢ ((( L ‘𝐴) <<s {𝐴} ∧ {𝐴} <<s ( R ‘𝐴) ∧ {𝐴} ≠ ∅) → ( L ‘𝐴) <<s ( R ‘𝐴)) | |
5 | 1, 2, 3, 4 | syl3anc 1369 | . 2 ⊢ (𝐴 ∈ No → ( L ‘𝐴) <<s ( R ‘𝐴)) |
6 | 0elpw 5350 | . . . 4 ⊢ ∅ ∈ 𝒫 No | |
7 | nulssgt 27724 | . . . 4 ⊢ (∅ ∈ 𝒫 No → ∅ <<s ∅) | |
8 | 6, 7 | mp1i 13 | . . 3 ⊢ (¬ 𝐴 ∈ No → ∅ <<s ∅) |
9 | leftf 27785 | . . . . . 6 ⊢ L : No ⟶𝒫 No | |
10 | 9 | fdmi 6728 | . . . . 5 ⊢ dom L = No |
11 | 10 | eleq2i 2821 | . . . 4 ⊢ (𝐴 ∈ dom L ↔ 𝐴 ∈ No ) |
12 | ndmfv 6926 | . . . 4 ⊢ (¬ 𝐴 ∈ dom L → ( L ‘𝐴) = ∅) | |
13 | 11, 12 | sylnbir 331 | . . 3 ⊢ (¬ 𝐴 ∈ No → ( L ‘𝐴) = ∅) |
14 | rightf 27786 | . . . . . 6 ⊢ R : No ⟶𝒫 No | |
15 | 14 | fdmi 6728 | . . . . 5 ⊢ dom R = No |
16 | 15 | eleq2i 2821 | . . . 4 ⊢ (𝐴 ∈ dom R ↔ 𝐴 ∈ No ) |
17 | ndmfv 6926 | . . . 4 ⊢ (¬ 𝐴 ∈ dom R → ( R ‘𝐴) = ∅) | |
18 | 16, 17 | sylnbir 331 | . . 3 ⊢ (¬ 𝐴 ∈ No → ( R ‘𝐴) = ∅) |
19 | 8, 13, 18 | 3brtr4d 5174 | . 2 ⊢ (¬ 𝐴 ∈ No → ( L ‘𝐴) <<s ( R ‘𝐴)) |
20 | 5, 19 | pm2.61i 182 | 1 ⊢ ( L ‘𝐴) <<s ( R ‘𝐴) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 = wceq 1534 ∈ wcel 2099 ≠ wne 2936 ∅c0 4318 𝒫 cpw 4598 {csn 4624 class class class wbr 5142 dom cdm 5672 ‘cfv 6542 No csur 27566 <<s csslt 27706 L cleft 27765 R cright 27766 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2699 ax-rep 5279 ax-sep 5293 ax-nul 5300 ax-pow 5359 ax-pr 5423 ax-un 7734 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3or 1086 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2530 df-eu 2559 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ne 2937 df-ral 3058 df-rex 3067 df-rmo 3372 df-reu 3373 df-rab 3429 df-v 3472 df-sbc 3776 df-csb 3891 df-dif 3948 df-un 3950 df-in 3952 df-ss 3962 df-pss 3964 df-nul 4319 df-if 4525 df-pw 4600 df-sn 4625 df-pr 4627 df-tp 4629 df-op 4631 df-uni 4904 df-int 4945 df-iun 4993 df-br 5143 df-opab 5205 df-mpt 5226 df-tr 5260 df-id 5570 df-eprel 5576 df-po 5584 df-so 5585 df-fr 5627 df-we 5629 df-xp 5678 df-rel 5679 df-cnv 5680 df-co 5681 df-dm 5682 df-rn 5683 df-res 5684 df-ima 5685 df-pred 6299 df-ord 6366 df-on 6367 df-suc 6369 df-iota 6494 df-fun 6544 df-fn 6545 df-f 6546 df-f1 6547 df-fo 6548 df-f1o 6549 df-fv 6550 df-riota 7370 df-ov 7417 df-oprab 7418 df-mpo 7419 df-2nd 7988 df-frecs 8280 df-wrecs 8311 df-recs 8385 df-1o 8480 df-2o 8481 df-no 27569 df-slt 27570 df-bday 27571 df-sslt 27707 df-scut 27709 df-made 27767 df-old 27768 df-left 27770 df-right 27771 |
This theorem is referenced by: madebdaylemlrcut 27818 madebday 27819 scutfo 27823 sltn0 27824 sltlpss 27826 slelss 27827 cutpos 27846 addsproplem2 27880 addsasslem1 27913 addsasslem2 27914 negsproplem2 27934 negsid 27946 mulsproplem5 28013 mulsproplem6 28014 mulsproplem7 28015 mulsproplem8 28016 addsdilem1 28044 mulsasslem1 28056 mulsasslem2 28057 precsexlem11 28108 |
Copyright terms: Public domain | W3C validator |