| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 0sno | Structured version Visualization version GIF version | ||
| Description: Surreal zero is a surreal. (Contributed by Scott Fenton, 7-Aug-2024.) |
| Ref | Expression |
|---|---|
| 0sno | ⊢ 0s ∈ No |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-0s 27771 | . 2 ⊢ 0s = (∅ |s ∅) | |
| 2 | 0elpw 5298 | . . . 4 ⊢ ∅ ∈ 𝒫 No | |
| 3 | nulssgt 27742 | . . . 4 ⊢ (∅ ∈ 𝒫 No → ∅ <<s ∅) | |
| 4 | 2, 3 | ax-mp 5 | . . 3 ⊢ ∅ <<s ∅ |
| 5 | scutcl 27746 | . . 3 ⊢ (∅ <<s ∅ → (∅ |s ∅) ∈ No ) | |
| 6 | 4, 5 | ax-mp 5 | . 2 ⊢ (∅ |s ∅) ∈ No |
| 7 | 1, 6 | eqeltri 2829 | 1 ⊢ 0s ∈ No |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2113 ∅c0 4282 𝒫 cpw 4551 class class class wbr 5095 (class class class)co 7354 No csur 27581 <<s csslt 27723 |s cscut 27725 0s c0s 27769 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7676 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-ral 3049 df-rex 3058 df-rmo 3347 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3918 df-nul 4283 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-tp 4582 df-op 4584 df-uni 4861 df-int 4900 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5516 df-eprel 5521 df-po 5529 df-so 5530 df-fr 5574 df-we 5576 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-ord 6316 df-on 6317 df-suc 6319 df-iota 6444 df-fun 6490 df-fn 6491 df-f 6492 df-f1 6493 df-fo 6494 df-f1o 6495 df-fv 6496 df-riota 7311 df-ov 7357 df-oprab 7358 df-mpo 7359 df-1o 8393 df-2o 8394 df-no 27584 df-slt 27585 df-bday 27586 df-sslt 27724 df-scut 27726 df-0s 27771 |
| This theorem is referenced by: 1sno 27774 0slt1s 27776 bday1s 27778 cuteq0 27779 cutneg 27780 cuteq1 27781 sgt0ne0 27782 made0 27821 right1s 27844 0elold 27858 addsrid 27910 addslid 27914 addsproplem2 27916 addsfo 27929 sltaddpos1d 27957 sltaddpos2d 27958 addsgt0d 27960 sltp1d 27961 negs0s 27971 negs1s 27972 negsproplem2 27974 negsproplem6 27978 negscl 27981 negsid 27986 negsdi 27995 slt0neg2d 27996 subsfo 28008 negsval2 28009 subsid1 28011 posdifsd 28040 sltsubposd 28041 subsge0d 28042 muls01 28054 mulsrid 28055 mulsproplem2 28059 mulsproplem3 28060 mulsproplem4 28061 mulsproplem5 28062 mulsproplem6 28063 mulsproplem7 28064 mulsproplem8 28065 mulscl 28076 sltmul 28078 slemuld 28080 muls02 28083 mulsgt0 28086 mulsge0d 28088 sltmulneg1d 28118 mulscan2d 28121 slemul1ad 28124 sltmul12ad 28125 muls0ord 28127 precsexlem8 28155 precsexlem9 28156 precsexlem11 28158 recsex 28160 abs0s 28183 abssnid 28184 absmuls 28185 abssge0 28186 abssneg 28188 sleabs 28189 0ons 28196 peano5n0s 28251 n0ssno 28252 0n0s 28261 peano2n0s 28262 dfn0s2 28263 n0sind 28264 n0scut 28265 n0sge0 28269 nnsgt0 28270 elnns2 28272 nnsge1 28274 nnsrecgt0d 28282 seqn0sfn 28289 n0subs 28292 eucliddivs 28304 elzs2 28326 elnnzs 28328 elznns 28329 1p1e2s 28342 twocut 28349 nohalf 28350 pw2recs 28364 pw2gt0divsd 28371 pw2ge0divsd 28372 pw2divsnegd 28375 halfcut 28381 recut 28401 0reno 28402 |
| Copyright terms: Public domain | W3C validator |