| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 0sno | Structured version Visualization version GIF version | ||
| Description: Surreal zero is a surreal. (Contributed by Scott Fenton, 7-Aug-2024.) |
| Ref | Expression |
|---|---|
| 0sno | ⊢ 0s ∈ No |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-0s 27743 | . 2 ⊢ 0s = (∅ |s ∅) | |
| 2 | 0elpw 5314 | . . . 4 ⊢ ∅ ∈ 𝒫 No | |
| 3 | nulssgt 27717 | . . . 4 ⊢ (∅ ∈ 𝒫 No → ∅ <<s ∅) | |
| 4 | 2, 3 | ax-mp 5 | . . 3 ⊢ ∅ <<s ∅ |
| 5 | scutcl 27721 | . . 3 ⊢ (∅ <<s ∅ → (∅ |s ∅) ∈ No ) | |
| 6 | 4, 5 | ax-mp 5 | . 2 ⊢ (∅ |s ∅) ∈ No |
| 7 | 1, 6 | eqeltri 2825 | 1 ⊢ 0s ∈ No |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2109 ∅c0 4299 𝒫 cpw 4566 class class class wbr 5110 (class class class)co 7390 No csur 27558 <<s csslt 27699 |s cscut 27701 0s c0s 27741 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5237 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-rmo 3356 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-pss 3937 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-tp 4597 df-op 4599 df-uni 4875 df-int 4914 df-br 5111 df-opab 5173 df-mpt 5192 df-tr 5218 df-id 5536 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5594 df-we 5596 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-ord 6338 df-on 6339 df-suc 6341 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-riota 7347 df-ov 7393 df-oprab 7394 df-mpo 7395 df-1o 8437 df-2o 8438 df-no 27561 df-slt 27562 df-bday 27563 df-sslt 27700 df-scut 27702 df-0s 27743 |
| This theorem is referenced by: 1sno 27746 0slt1s 27748 bday1s 27750 cuteq0 27751 cutneg 27752 cuteq1 27753 sgt0ne0 27754 made0 27792 right1s 27814 0elold 27828 addsrid 27878 addslid 27882 addsproplem2 27884 addsfo 27897 sltaddpos1d 27925 sltaddpos2d 27926 addsgt0d 27928 sltp1d 27929 negs0s 27939 negs1s 27940 negsproplem2 27942 negsproplem6 27946 negscl 27949 negsid 27954 negsdi 27963 slt0neg2d 27964 subsfo 27976 negsval2 27977 subsid1 27979 posdifsd 28008 sltsubposd 28009 subsge0d 28010 muls01 28022 mulsrid 28023 mulsproplem2 28027 mulsproplem3 28028 mulsproplem4 28029 mulsproplem5 28030 mulsproplem6 28031 mulsproplem7 28032 mulsproplem8 28033 mulscl 28044 sltmul 28046 slemuld 28048 muls02 28051 mulsgt0 28054 mulsge0d 28056 sltmulneg1d 28086 mulscan2d 28089 slemul1ad 28092 sltmul12ad 28093 muls0ord 28095 precsexlem8 28123 precsexlem9 28124 precsexlem11 28126 recsex 28128 abs0s 28151 abssnid 28152 absmuls 28153 abssge0 28154 abssneg 28156 sleabs 28157 0ons 28164 peano5n0s 28219 n0ssno 28220 0n0s 28229 peano2n0s 28230 dfn0s2 28231 n0sind 28232 n0scut 28233 n0sge0 28237 nnsgt0 28238 elnns2 28240 nnsge1 28242 nnsrecgt0d 28250 seqn0sfn 28257 n0subs 28260 eucliddivs 28272 elzs2 28294 elnnzs 28296 elznns 28297 1p1e2s 28309 twocut 28316 nohalf 28317 pw2recs 28330 pw2gt0divsd 28335 pw2ge0divsd 28336 pw2divsnegd 28339 halfcut 28340 recut 28354 0reno 28355 |
| Copyright terms: Public domain | W3C validator |