![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 0sno | Structured version Visualization version GIF version |
Description: Surreal zero is a surreal. (Contributed by Scott Fenton, 7-Aug-2024.) |
Ref | Expression |
---|---|
0sno | ⊢ 0s ∈ No |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-0s 27887 | . 2 ⊢ 0s = (∅ |s ∅) | |
2 | 0elpw 5374 | . . . 4 ⊢ ∅ ∈ 𝒫 No | |
3 | nulssgt 27861 | . . . 4 ⊢ (∅ ∈ 𝒫 No → ∅ <<s ∅) | |
4 | 2, 3 | ax-mp 5 | . . 3 ⊢ ∅ <<s ∅ |
5 | scutcl 27865 | . . 3 ⊢ (∅ <<s ∅ → (∅ |s ∅) ∈ No ) | |
6 | 4, 5 | ax-mp 5 | . 2 ⊢ (∅ |s ∅) ∈ No |
7 | 1, 6 | eqeltri 2840 | 1 ⊢ 0s ∈ No |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2108 ∅c0 4352 𝒫 cpw 4622 class class class wbr 5166 (class class class)co 7448 No csur 27702 <<s csslt 27843 |s cscut 27845 0s c0s 27885 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-rep 5303 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-rmo 3388 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-tp 4653 df-op 4655 df-uni 4932 df-int 4971 df-br 5167 df-opab 5229 df-mpt 5250 df-tr 5284 df-id 5593 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-we 5654 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-ord 6398 df-on 6399 df-suc 6401 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-riota 7404 df-ov 7451 df-oprab 7452 df-mpo 7453 df-1o 8522 df-2o 8523 df-no 27705 df-slt 27706 df-bday 27707 df-sslt 27844 df-scut 27846 df-0s 27887 |
This theorem is referenced by: 1sno 27890 0slt1s 27892 bday1s 27894 cuteq0 27895 cuteq1 27896 sgt0ne0 27897 made0 27930 right1s 27952 0elold 27965 addsrid 28015 addslid 28019 addsproplem2 28021 addsfo 28034 sltaddpos1d 28062 sltaddpos2d 28063 addsgt0d 28065 sltp1d 28066 negs0s 28076 negs1s 28077 negsproplem2 28079 negsproplem6 28083 negscl 28086 negsid 28091 negsdi 28100 slt0neg2d 28101 subsfo 28113 negsval2 28114 subsid1 28116 posdifsd 28145 sltsubposd 28146 subsge0d 28147 muls01 28156 mulsrid 28157 mulsproplem2 28161 mulsproplem3 28162 mulsproplem4 28163 mulsproplem5 28164 mulsproplem6 28165 mulsproplem7 28166 mulsproplem8 28167 mulscl 28178 sltmul 28180 slemuld 28182 muls02 28185 mulsgt0 28188 mulsge0d 28190 sltmulneg1d 28220 mulscan2d 28223 slemul1ad 28226 sltmul12ad 28227 muls0ord 28229 precsexlem8 28256 precsexlem9 28257 precsexlem11 28259 recsex 28261 abs0s 28284 abssnid 28285 absmuls 28286 abssge0 28287 abssneg 28289 sleabs 28290 0ons 28297 om2noseqlt 28323 peano5n0s 28342 n0ssno 28343 0n0s 28352 peano2n0s 28353 dfn0s2 28354 n0sind 28355 n0scut 28356 n0sge0 28359 nnsgt0 28360 elnns2 28362 nnsge1 28364 nnsrecgt0d 28374 seqn0sfn 28375 n0subs 28378 elzs2 28403 elnnzs 28405 elznns 28406 1p1e2s 28418 nohalf 28425 cutpw2 28435 pw2bday 28436 recut 28446 0reno 28447 |
Copyright terms: Public domain | W3C validator |