| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 0sno | Structured version Visualization version GIF version | ||
| Description: Surreal zero is a surreal. (Contributed by Scott Fenton, 7-Aug-2024.) |
| Ref | Expression |
|---|---|
| 0sno | ⊢ 0s ∈ No |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-0s 27769 | . 2 ⊢ 0s = (∅ |s ∅) | |
| 2 | 0elpw 5294 | . . . 4 ⊢ ∅ ∈ 𝒫 No | |
| 3 | nulssgt 27740 | . . . 4 ⊢ (∅ ∈ 𝒫 No → ∅ <<s ∅) | |
| 4 | 2, 3 | ax-mp 5 | . . 3 ⊢ ∅ <<s ∅ |
| 5 | scutcl 27744 | . . 3 ⊢ (∅ <<s ∅ → (∅ |s ∅) ∈ No ) | |
| 6 | 4, 5 | ax-mp 5 | . 2 ⊢ (∅ |s ∅) ∈ No |
| 7 | 1, 6 | eqeltri 2827 | 1 ⊢ 0s ∈ No |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2111 ∅c0 4283 𝒫 cpw 4550 class class class wbr 5091 (class class class)co 7346 No csur 27579 <<s csslt 27721 |s cscut 27723 0s c0s 27767 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5217 ax-sep 5234 ax-nul 5244 ax-pow 5303 ax-pr 5370 ax-un 7668 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3742 df-csb 3851 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-pss 3922 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-tp 4581 df-op 4583 df-uni 4860 df-int 4898 df-br 5092 df-opab 5154 df-mpt 5173 df-tr 5199 df-id 5511 df-eprel 5516 df-po 5524 df-so 5525 df-fr 5569 df-we 5571 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-ord 6309 df-on 6310 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-1o 8385 df-2o 8386 df-no 27582 df-slt 27583 df-bday 27584 df-sslt 27722 df-scut 27724 df-0s 27769 |
| This theorem is referenced by: 1sno 27772 0slt1s 27774 bday1s 27776 cuteq0 27777 cutneg 27778 cuteq1 27779 sgt0ne0 27780 made0 27819 right1s 27842 0elold 27856 addsrid 27908 addslid 27912 addsproplem2 27914 addsfo 27927 sltaddpos1d 27955 sltaddpos2d 27956 addsgt0d 27958 sltp1d 27959 negs0s 27969 negs1s 27970 negsproplem2 27972 negsproplem6 27976 negscl 27979 negsid 27984 negsdi 27993 slt0neg2d 27994 subsfo 28006 negsval2 28007 subsid1 28009 posdifsd 28038 sltsubposd 28039 subsge0d 28040 muls01 28052 mulsrid 28053 mulsproplem2 28057 mulsproplem3 28058 mulsproplem4 28059 mulsproplem5 28060 mulsproplem6 28061 mulsproplem7 28062 mulsproplem8 28063 mulscl 28074 sltmul 28076 slemuld 28078 muls02 28081 mulsgt0 28084 mulsge0d 28086 sltmulneg1d 28116 mulscan2d 28119 slemul1ad 28122 sltmul12ad 28123 muls0ord 28125 precsexlem8 28153 precsexlem9 28154 precsexlem11 28156 recsex 28158 abs0s 28181 abssnid 28182 absmuls 28183 abssge0 28184 abssneg 28186 sleabs 28187 0ons 28194 peano5n0s 28249 n0ssno 28250 0n0s 28259 peano2n0s 28260 dfn0s2 28261 n0sind 28262 n0scut 28263 n0sge0 28267 nnsgt0 28268 elnns2 28270 nnsge1 28272 nnsrecgt0d 28280 seqn0sfn 28287 n0subs 28290 eucliddivs 28302 elzs2 28324 elnnzs 28326 elznns 28327 1p1e2s 28340 twocut 28347 nohalf 28348 pw2recs 28362 pw2gt0divsd 28369 pw2ge0divsd 28370 pw2divsnegd 28373 halfcut 28379 recut 28399 0reno 28400 |
| Copyright terms: Public domain | W3C validator |