![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 0sno | Structured version Visualization version GIF version |
Description: Surreal zero is a surreal. (Contributed by Scott Fenton, 7-Aug-2024.) |
Ref | Expression |
---|---|
0sno | ⊢ 0s ∈ No |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-0s 27884 | . 2 ⊢ 0s = (∅ |s ∅) | |
2 | 0elpw 5362 | . . . 4 ⊢ ∅ ∈ 𝒫 No | |
3 | nulssgt 27858 | . . . 4 ⊢ (∅ ∈ 𝒫 No → ∅ <<s ∅) | |
4 | 2, 3 | ax-mp 5 | . . 3 ⊢ ∅ <<s ∅ |
5 | scutcl 27862 | . . 3 ⊢ (∅ <<s ∅ → (∅ |s ∅) ∈ No ) | |
6 | 4, 5 | ax-mp 5 | . 2 ⊢ (∅ |s ∅) ∈ No |
7 | 1, 6 | eqeltri 2835 | 1 ⊢ 0s ∈ No |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2106 ∅c0 4339 𝒫 cpw 4605 class class class wbr 5148 (class class class)co 7431 No csur 27699 <<s csslt 27840 |s cscut 27842 0s c0s 27882 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-rep 5285 ax-sep 5302 ax-nul 5312 ax-pow 5371 ax-pr 5438 ax-un 7754 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-ral 3060 df-rex 3069 df-rmo 3378 df-reu 3379 df-rab 3434 df-v 3480 df-sbc 3792 df-csb 3909 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-pss 3983 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-tp 4636 df-op 4638 df-uni 4913 df-int 4952 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5583 df-eprel 5589 df-po 5597 df-so 5598 df-fr 5641 df-we 5643 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-res 5701 df-ima 5702 df-ord 6389 df-on 6390 df-suc 6392 df-iota 6516 df-fun 6565 df-fn 6566 df-f 6567 df-f1 6568 df-fo 6569 df-f1o 6570 df-fv 6571 df-riota 7388 df-ov 7434 df-oprab 7435 df-mpo 7436 df-1o 8505 df-2o 8506 df-no 27702 df-slt 27703 df-bday 27704 df-sslt 27841 df-scut 27843 df-0s 27884 |
This theorem is referenced by: 1sno 27887 0slt1s 27889 bday1s 27891 cuteq0 27892 cuteq1 27893 sgt0ne0 27894 made0 27927 right1s 27949 0elold 27962 addsrid 28012 addslid 28016 addsproplem2 28018 addsfo 28031 sltaddpos1d 28059 sltaddpos2d 28060 addsgt0d 28062 sltp1d 28063 negs0s 28073 negs1s 28074 negsproplem2 28076 negsproplem6 28080 negscl 28083 negsid 28088 negsdi 28097 slt0neg2d 28098 subsfo 28110 negsval2 28111 subsid1 28113 posdifsd 28142 sltsubposd 28143 subsge0d 28144 muls01 28153 mulsrid 28154 mulsproplem2 28158 mulsproplem3 28159 mulsproplem4 28160 mulsproplem5 28161 mulsproplem6 28162 mulsproplem7 28163 mulsproplem8 28164 mulscl 28175 sltmul 28177 slemuld 28179 muls02 28182 mulsgt0 28185 mulsge0d 28187 sltmulneg1d 28217 mulscan2d 28220 slemul1ad 28223 sltmul12ad 28224 muls0ord 28226 precsexlem8 28253 precsexlem9 28254 precsexlem11 28256 recsex 28258 abs0s 28281 abssnid 28282 absmuls 28283 abssge0 28284 abssneg 28286 sleabs 28287 0ons 28294 om2noseqlt 28320 peano5n0s 28339 n0ssno 28340 0n0s 28349 peano2n0s 28350 dfn0s2 28351 n0sind 28352 n0scut 28353 n0sge0 28356 nnsgt0 28357 elnns2 28359 nnsge1 28361 nnsrecgt0d 28371 seqn0sfn 28372 n0subs 28375 elzs2 28400 elnnzs 28402 elznns 28403 1p1e2s 28415 nohalf 28422 cutpw2 28432 pw2bday 28433 recut 28443 0reno 28444 |
Copyright terms: Public domain | W3C validator |