| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 0sno | Structured version Visualization version GIF version | ||
| Description: Surreal zero is a surreal. (Contributed by Scott Fenton, 7-Aug-2024.) |
| Ref | Expression |
|---|---|
| 0sno | ⊢ 0s ∈ No |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-0s 27756 | . 2 ⊢ 0s = (∅ |s ∅) | |
| 2 | 0elpw 5298 | . . . 4 ⊢ ∅ ∈ 𝒫 No | |
| 3 | nulssgt 27727 | . . . 4 ⊢ (∅ ∈ 𝒫 No → ∅ <<s ∅) | |
| 4 | 2, 3 | ax-mp 5 | . . 3 ⊢ ∅ <<s ∅ |
| 5 | scutcl 27731 | . . 3 ⊢ (∅ <<s ∅ → (∅ |s ∅) ∈ No ) | |
| 6 | 4, 5 | ax-mp 5 | . 2 ⊢ (∅ |s ∅) ∈ No |
| 7 | 1, 6 | eqeltri 2824 | 1 ⊢ 0s ∈ No |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2109 ∅c0 4286 𝒫 cpw 4553 class class class wbr 5095 (class class class)co 7353 No csur 27567 <<s csslt 27709 |s cscut 27711 0s c0s 27754 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7675 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rmo 3345 df-reu 3346 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-pss 3925 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-tp 4584 df-op 4586 df-uni 4862 df-int 4900 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5518 df-eprel 5523 df-po 5531 df-so 5532 df-fr 5576 df-we 5578 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-ord 6314 df-on 6315 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-riota 7310 df-ov 7356 df-oprab 7357 df-mpo 7358 df-1o 8395 df-2o 8396 df-no 27570 df-slt 27571 df-bday 27572 df-sslt 27710 df-scut 27712 df-0s 27756 |
| This theorem is referenced by: 1sno 27759 0slt1s 27761 bday1s 27763 cuteq0 27764 cutneg 27765 cuteq1 27766 sgt0ne0 27767 made0 27805 right1s 27828 0elold 27842 addsrid 27894 addslid 27898 addsproplem2 27900 addsfo 27913 sltaddpos1d 27941 sltaddpos2d 27942 addsgt0d 27944 sltp1d 27945 negs0s 27955 negs1s 27956 negsproplem2 27958 negsproplem6 27962 negscl 27965 negsid 27970 negsdi 27979 slt0neg2d 27980 subsfo 27992 negsval2 27993 subsid1 27995 posdifsd 28024 sltsubposd 28025 subsge0d 28026 muls01 28038 mulsrid 28039 mulsproplem2 28043 mulsproplem3 28044 mulsproplem4 28045 mulsproplem5 28046 mulsproplem6 28047 mulsproplem7 28048 mulsproplem8 28049 mulscl 28060 sltmul 28062 slemuld 28064 muls02 28067 mulsgt0 28070 mulsge0d 28072 sltmulneg1d 28102 mulscan2d 28105 slemul1ad 28108 sltmul12ad 28109 muls0ord 28111 precsexlem8 28139 precsexlem9 28140 precsexlem11 28142 recsex 28144 abs0s 28167 abssnid 28168 absmuls 28169 abssge0 28170 abssneg 28172 sleabs 28173 0ons 28180 peano5n0s 28235 n0ssno 28236 0n0s 28245 peano2n0s 28246 dfn0s2 28247 n0sind 28248 n0scut 28249 n0sge0 28253 nnsgt0 28254 elnns2 28256 nnsge1 28258 nnsrecgt0d 28266 seqn0sfn 28273 n0subs 28276 eucliddivs 28288 elzs2 28310 elnnzs 28312 elznns 28313 1p1e2s 28326 twocut 28333 nohalf 28334 pw2recs 28348 pw2gt0divsd 28355 pw2ge0divsd 28356 pw2divsnegd 28359 halfcut 28364 recut 28383 0reno 28384 |
| Copyright terms: Public domain | W3C validator |