| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 0sno | Structured version Visualization version GIF version | ||
| Description: Surreal zero is a surreal. (Contributed by Scott Fenton, 7-Aug-2024.) |
| Ref | Expression |
|---|---|
| 0sno | ⊢ 0s ∈ No |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-0s 27793 | . 2 ⊢ 0s = (∅ |s ∅) | |
| 2 | 0elpw 5331 | . . . 4 ⊢ ∅ ∈ 𝒫 No | |
| 3 | nulssgt 27767 | . . . 4 ⊢ (∅ ∈ 𝒫 No → ∅ <<s ∅) | |
| 4 | 2, 3 | ax-mp 5 | . . 3 ⊢ ∅ <<s ∅ |
| 5 | scutcl 27771 | . . 3 ⊢ (∅ <<s ∅ → (∅ |s ∅) ∈ No ) | |
| 6 | 4, 5 | ax-mp 5 | . 2 ⊢ (∅ |s ∅) ∈ No |
| 7 | 1, 6 | eqeltri 2831 | 1 ⊢ 0s ∈ No |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2109 ∅c0 4313 𝒫 cpw 4580 class class class wbr 5124 (class class class)co 7410 No csur 27608 <<s csslt 27749 |s cscut 27751 0s c0s 27791 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-rep 5254 ax-sep 5271 ax-nul 5281 ax-pow 5340 ax-pr 5407 ax-un 7734 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-ral 3053 df-rex 3062 df-rmo 3364 df-reu 3365 df-rab 3421 df-v 3466 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-pss 3951 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-tp 4611 df-op 4613 df-uni 4889 df-int 4928 df-br 5125 df-opab 5187 df-mpt 5207 df-tr 5235 df-id 5553 df-eprel 5558 df-po 5566 df-so 5567 df-fr 5611 df-we 5613 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-res 5671 df-ima 5672 df-ord 6360 df-on 6361 df-suc 6363 df-iota 6489 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fo 6542 df-f1o 6543 df-fv 6544 df-riota 7367 df-ov 7413 df-oprab 7414 df-mpo 7415 df-1o 8485 df-2o 8486 df-no 27611 df-slt 27612 df-bday 27613 df-sslt 27750 df-scut 27752 df-0s 27793 |
| This theorem is referenced by: 1sno 27796 0slt1s 27798 bday1s 27800 cuteq0 27801 cutneg 27802 cuteq1 27803 sgt0ne0 27804 made0 27842 right1s 27864 0elold 27878 addsrid 27928 addslid 27932 addsproplem2 27934 addsfo 27947 sltaddpos1d 27975 sltaddpos2d 27976 addsgt0d 27978 sltp1d 27979 negs0s 27989 negs1s 27990 negsproplem2 27992 negsproplem6 27996 negscl 27999 negsid 28004 negsdi 28013 slt0neg2d 28014 subsfo 28026 negsval2 28027 subsid1 28029 posdifsd 28058 sltsubposd 28059 subsge0d 28060 muls01 28072 mulsrid 28073 mulsproplem2 28077 mulsproplem3 28078 mulsproplem4 28079 mulsproplem5 28080 mulsproplem6 28081 mulsproplem7 28082 mulsproplem8 28083 mulscl 28094 sltmul 28096 slemuld 28098 muls02 28101 mulsgt0 28104 mulsge0d 28106 sltmulneg1d 28136 mulscan2d 28139 slemul1ad 28142 sltmul12ad 28143 muls0ord 28145 precsexlem8 28173 precsexlem9 28174 precsexlem11 28176 recsex 28178 abs0s 28201 abssnid 28202 absmuls 28203 abssge0 28204 abssneg 28206 sleabs 28207 0ons 28214 peano5n0s 28269 n0ssno 28270 0n0s 28279 peano2n0s 28280 dfn0s2 28281 n0sind 28282 n0scut 28283 n0sge0 28287 nnsgt0 28288 elnns2 28290 nnsge1 28292 nnsrecgt0d 28300 seqn0sfn 28307 n0subs 28310 eucliddivs 28322 elzs2 28344 elnnzs 28346 elznns 28347 1p1e2s 28359 twocut 28366 nohalf 28367 pw2recs 28380 pw2gt0divsd 28385 pw2ge0divsd 28386 pw2divsnegd 28389 halfcut 28390 recut 28404 0reno 28405 |
| Copyright terms: Public domain | W3C validator |