| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 0sno | Structured version Visualization version GIF version | ||
| Description: Surreal zero is a surreal. (Contributed by Scott Fenton, 7-Aug-2024.) |
| Ref | Expression |
|---|---|
| 0sno | ⊢ 0s ∈ No |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-0s 27736 | . 2 ⊢ 0s = (∅ |s ∅) | |
| 2 | 0elpw 5311 | . . . 4 ⊢ ∅ ∈ 𝒫 No | |
| 3 | nulssgt 27710 | . . . 4 ⊢ (∅ ∈ 𝒫 No → ∅ <<s ∅) | |
| 4 | 2, 3 | ax-mp 5 | . . 3 ⊢ ∅ <<s ∅ |
| 5 | scutcl 27714 | . . 3 ⊢ (∅ <<s ∅ → (∅ |s ∅) ∈ No ) | |
| 6 | 4, 5 | ax-mp 5 | . 2 ⊢ (∅ |s ∅) ∈ No |
| 7 | 1, 6 | eqeltri 2824 | 1 ⊢ 0s ∈ No |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2109 ∅c0 4296 𝒫 cpw 4563 class class class wbr 5107 (class class class)co 7387 No csur 27551 <<s csslt 27692 |s cscut 27694 0s c0s 27734 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5234 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rmo 3354 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-tp 4594 df-op 4596 df-uni 4872 df-int 4911 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-ord 6335 df-on 6336 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-riota 7344 df-ov 7390 df-oprab 7391 df-mpo 7392 df-1o 8434 df-2o 8435 df-no 27554 df-slt 27555 df-bday 27556 df-sslt 27693 df-scut 27695 df-0s 27736 |
| This theorem is referenced by: 1sno 27739 0slt1s 27741 bday1s 27743 cuteq0 27744 cutneg 27745 cuteq1 27746 sgt0ne0 27747 made0 27785 right1s 27807 0elold 27821 addsrid 27871 addslid 27875 addsproplem2 27877 addsfo 27890 sltaddpos1d 27918 sltaddpos2d 27919 addsgt0d 27921 sltp1d 27922 negs0s 27932 negs1s 27933 negsproplem2 27935 negsproplem6 27939 negscl 27942 negsid 27947 negsdi 27956 slt0neg2d 27957 subsfo 27969 negsval2 27970 subsid1 27972 posdifsd 28001 sltsubposd 28002 subsge0d 28003 muls01 28015 mulsrid 28016 mulsproplem2 28020 mulsproplem3 28021 mulsproplem4 28022 mulsproplem5 28023 mulsproplem6 28024 mulsproplem7 28025 mulsproplem8 28026 mulscl 28037 sltmul 28039 slemuld 28041 muls02 28044 mulsgt0 28047 mulsge0d 28049 sltmulneg1d 28079 mulscan2d 28082 slemul1ad 28085 sltmul12ad 28086 muls0ord 28088 precsexlem8 28116 precsexlem9 28117 precsexlem11 28119 recsex 28121 abs0s 28144 abssnid 28145 absmuls 28146 abssge0 28147 abssneg 28149 sleabs 28150 0ons 28157 peano5n0s 28212 n0ssno 28213 0n0s 28222 peano2n0s 28223 dfn0s2 28224 n0sind 28225 n0scut 28226 n0sge0 28230 nnsgt0 28231 elnns2 28233 nnsge1 28235 nnsrecgt0d 28243 seqn0sfn 28250 n0subs 28253 eucliddivs 28265 elzs2 28287 elnnzs 28289 elznns 28290 1p1e2s 28302 twocut 28309 nohalf 28310 pw2recs 28323 pw2gt0divsd 28328 pw2ge0divsd 28329 pw2divsnegd 28332 halfcut 28333 recut 28347 0reno 28348 |
| Copyright terms: Public domain | W3C validator |