MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  n0sbday Structured version   Visualization version   GIF version

Theorem n0sbday 28280
Description: A non-negative surreal integer has a finite birthday. (Contributed by Scott Fenton, 18-Apr-2025.)
Assertion
Ref Expression
n0sbday (𝐴 ∈ ℕ0s → ( bday 𝐴) ∈ ω)

Proof of Theorem n0sbday
Dummy variables 𝑛 𝑚 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fveq2 6822 . . 3 (𝑚 = 0s → ( bday 𝑚) = ( bday ‘ 0s ))
21eleq1d 2816 . 2 (𝑚 = 0s → (( bday 𝑚) ∈ ω ↔ ( bday ‘ 0s ) ∈ ω))
3 fveq2 6822 . . 3 (𝑚 = 𝑛 → ( bday 𝑚) = ( bday 𝑛))
43eleq1d 2816 . 2 (𝑚 = 𝑛 → (( bday 𝑚) ∈ ω ↔ ( bday 𝑛) ∈ ω))
5 fveq2 6822 . . 3 (𝑚 = (𝑛 +s 1s ) → ( bday 𝑚) = ( bday ‘(𝑛 +s 1s )))
65eleq1d 2816 . 2 (𝑚 = (𝑛 +s 1s ) → (( bday 𝑚) ∈ ω ↔ ( bday ‘(𝑛 +s 1s )) ∈ ω))
7 fveq2 6822 . . 3 (𝑚 = 𝐴 → ( bday 𝑚) = ( bday 𝐴))
87eleq1d 2816 . 2 (𝑚 = 𝐴 → (( bday 𝑚) ∈ ω ↔ ( bday 𝐴) ∈ ω))
9 bday0s 27772 . . 3 ( bday ‘ 0s ) = ∅
10 peano1 7819 . . 3 ∅ ∈ ω
119, 10eqeltri 2827 . 2 ( bday ‘ 0s ) ∈ ω
12 n0scut2 28263 . . . . . . 7 (𝑛 ∈ ℕ0s → (𝑛 +s 1s ) = ({𝑛} |s ∅))
1312fveq2d 6826 . . . . . 6 (𝑛 ∈ ℕ0s → ( bday ‘(𝑛 +s 1s )) = ( bday ‘({𝑛} |s ∅)))
14 n0sno 28252 . . . . . . . 8 (𝑛 ∈ ℕ0s𝑛 No )
15 snelpwi 5383 . . . . . . . 8 (𝑛 No → {𝑛} ∈ 𝒫 No )
16 nulssgt 27739 . . . . . . . 8 ({𝑛} ∈ 𝒫 No → {𝑛} <<s ∅)
1714, 15, 163syl 18 . . . . . . 7 (𝑛 ∈ ℕ0s → {𝑛} <<s ∅)
18 un0 4341 . . . . . . . . . 10 ({𝑛} ∪ ∅) = {𝑛}
1918imaeq2i 6006 . . . . . . . . 9 ( bday “ ({𝑛} ∪ ∅)) = ( bday “ {𝑛})
20 bdayfn 27712 . . . . . . . . . 10 bday Fn No
21 fnsnfv 6901 . . . . . . . . . 10 (( bday Fn No 𝑛 No ) → {( bday 𝑛)} = ( bday “ {𝑛}))
2220, 14, 21sylancr 587 . . . . . . . . 9 (𝑛 ∈ ℕ0s → {( bday 𝑛)} = ( bday “ {𝑛}))
2319, 22eqtr4id 2785 . . . . . . . 8 (𝑛 ∈ ℕ0s → ( bday “ ({𝑛} ∪ ∅)) = {( bday 𝑛)})
24 fvex 6835 . . . . . . . . . 10 ( bday 𝑛) ∈ V
2524sucid 6390 . . . . . . . . 9 ( bday 𝑛) ∈ suc ( bday 𝑛)
26 snssi 4757 . . . . . . . . 9 (( bday 𝑛) ∈ suc ( bday 𝑛) → {( bday 𝑛)} ⊆ suc ( bday 𝑛))
2725, 26ax-mp 5 . . . . . . . 8 {( bday 𝑛)} ⊆ suc ( bday 𝑛)
2823, 27eqsstrdi 3974 . . . . . . 7 (𝑛 ∈ ℕ0s → ( bday “ ({𝑛} ∪ ∅)) ⊆ suc ( bday 𝑛))
29 bdayelon 27715 . . . . . . . . 9 ( bday 𝑛) ∈ On
3029onsuci 7769 . . . . . . . 8 suc ( bday 𝑛) ∈ On
31 scutbdaybnd 27756 . . . . . . . 8 (({𝑛} <<s ∅ ∧ suc ( bday 𝑛) ∈ On ∧ ( bday “ ({𝑛} ∪ ∅)) ⊆ suc ( bday 𝑛)) → ( bday ‘({𝑛} |s ∅)) ⊆ suc ( bday 𝑛))
3230, 31mp3an2 1451 . . . . . . 7 (({𝑛} <<s ∅ ∧ ( bday “ ({𝑛} ∪ ∅)) ⊆ suc ( bday 𝑛)) → ( bday ‘({𝑛} |s ∅)) ⊆ suc ( bday 𝑛))
3317, 28, 32syl2anc 584 . . . . . 6 (𝑛 ∈ ℕ0s → ( bday ‘({𝑛} |s ∅)) ⊆ suc ( bday 𝑛))
3413, 33eqsstrd 3964 . . . . 5 (𝑛 ∈ ℕ0s → ( bday ‘(𝑛 +s 1s )) ⊆ suc ( bday 𝑛))
35 bdayelon 27715 . . . . . 6 ( bday ‘(𝑛 +s 1s )) ∈ On
36 onsssuc 6398 . . . . . 6 ((( bday ‘(𝑛 +s 1s )) ∈ On ∧ suc ( bday 𝑛) ∈ On) → (( bday ‘(𝑛 +s 1s )) ⊆ suc ( bday 𝑛) ↔ ( bday ‘(𝑛 +s 1s )) ∈ suc suc ( bday 𝑛)))
3735, 30, 36mp2an 692 . . . . 5 (( bday ‘(𝑛 +s 1s )) ⊆ suc ( bday 𝑛) ↔ ( bday ‘(𝑛 +s 1s )) ∈ suc suc ( bday 𝑛))
3834, 37sylib 218 . . . 4 (𝑛 ∈ ℕ0s → ( bday ‘(𝑛 +s 1s )) ∈ suc suc ( bday 𝑛))
39 peano2 7820 . . . . 5 (( bday 𝑛) ∈ ω → suc ( bday 𝑛) ∈ ω)
40 peano2 7820 . . . . 5 (suc ( bday 𝑛) ∈ ω → suc suc ( bday 𝑛) ∈ ω)
4139, 40syl 17 . . . 4 (( bday 𝑛) ∈ ω → suc suc ( bday 𝑛) ∈ ω)
42 elnn 7807 . . . 4 ((( bday ‘(𝑛 +s 1s )) ∈ suc suc ( bday 𝑛) ∧ suc suc ( bday 𝑛) ∈ ω) → ( bday ‘(𝑛 +s 1s )) ∈ ω)
4338, 41, 42syl2an 596 . . 3 ((𝑛 ∈ ℕ0s ∧ ( bday 𝑛) ∈ ω) → ( bday ‘(𝑛 +s 1s )) ∈ ω)
4443ex 412 . 2 (𝑛 ∈ ℕ0s → (( bday 𝑛) ∈ ω → ( bday ‘(𝑛 +s 1s )) ∈ ω))
452, 4, 6, 8, 11, 44n0sind 28261 1 (𝐴 ∈ ℕ0s → ( bday 𝐴) ∈ ω)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206   = wceq 1541  wcel 2111  cun 3895  wss 3897  c0 4280  𝒫 cpw 4547  {csn 4573   class class class wbr 5089  cima 5617  Oncon0 6306  suc csuc 6308   Fn wfn 6476  cfv 6481  (class class class)co 7346  ωcom 7796   No csur 27578   bday cbday 27580   <<s csslt 27720   |s cscut 27722   0s c0s 27766   1s c1s 27767   +s cadds 27902  0scnn0s 28242
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-tp 4578  df-op 4580  df-ot 4582  df-uni 4857  df-int 4896  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-se 5568  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-om 7797  df-1st 7921  df-2nd 7922  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-1o 8385  df-2o 8386  df-nadd 8581  df-no 27581  df-slt 27582  df-bday 27583  df-sle 27684  df-sslt 27721  df-scut 27723  df-0s 27768  df-1s 27769  df-made 27788  df-old 27789  df-left 27791  df-right 27792  df-norec 27881  df-norec2 27892  df-adds 27903  df-negs 27963  df-subs 27964  df-n0s 28244
This theorem is referenced by:  n0ssold  28281  onltn0s  28284  bdayn0sf1o  28295  zsbday  28330
  Copyright terms: Public domain W3C validator