MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  n0sbday Structured version   Visualization version   GIF version

Theorem n0sbday 28251
Description: A non-negative surreal integer has a finite birthday. (Contributed by Scott Fenton, 18-Apr-2025.)
Assertion
Ref Expression
n0sbday (𝐴 ∈ ℕ0s → ( bday 𝐴) ∈ ω)

Proof of Theorem n0sbday
Dummy variables 𝑛 𝑚 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fveq2 6822 . . 3 (𝑚 = 0s → ( bday 𝑚) = ( bday ‘ 0s ))
21eleq1d 2813 . 2 (𝑚 = 0s → (( bday 𝑚) ∈ ω ↔ ( bday ‘ 0s ) ∈ ω))
3 fveq2 6822 . . 3 (𝑚 = 𝑛 → ( bday 𝑚) = ( bday 𝑛))
43eleq1d 2813 . 2 (𝑚 = 𝑛 → (( bday 𝑚) ∈ ω ↔ ( bday 𝑛) ∈ ω))
5 fveq2 6822 . . 3 (𝑚 = (𝑛 +s 1s ) → ( bday 𝑚) = ( bday ‘(𝑛 +s 1s )))
65eleq1d 2813 . 2 (𝑚 = (𝑛 +s 1s ) → (( bday 𝑚) ∈ ω ↔ ( bday ‘(𝑛 +s 1s )) ∈ ω))
7 fveq2 6822 . . 3 (𝑚 = 𝐴 → ( bday 𝑚) = ( bday 𝐴))
87eleq1d 2813 . 2 (𝑚 = 𝐴 → (( bday 𝑚) ∈ ω ↔ ( bday 𝐴) ∈ ω))
9 bday0s 27743 . . 3 ( bday ‘ 0s ) = ∅
10 peano1 7822 . . 3 ∅ ∈ ω
119, 10eqeltri 2824 . 2 ( bday ‘ 0s ) ∈ ω
12 n0scut2 28234 . . . . . . 7 (𝑛 ∈ ℕ0s → (𝑛 +s 1s ) = ({𝑛} |s ∅))
1312fveq2d 6826 . . . . . 6 (𝑛 ∈ ℕ0s → ( bday ‘(𝑛 +s 1s )) = ( bday ‘({𝑛} |s ∅)))
14 n0sno 28223 . . . . . . . 8 (𝑛 ∈ ℕ0s𝑛 No )
15 snelpwi 5386 . . . . . . . 8 (𝑛 No → {𝑛} ∈ 𝒫 No )
16 nulssgt 27710 . . . . . . . 8 ({𝑛} ∈ 𝒫 No → {𝑛} <<s ∅)
1714, 15, 163syl 18 . . . . . . 7 (𝑛 ∈ ℕ0s → {𝑛} <<s ∅)
18 un0 4345 . . . . . . . . . 10 ({𝑛} ∪ ∅) = {𝑛}
1918imaeq2i 6009 . . . . . . . . 9 ( bday “ ({𝑛} ∪ ∅)) = ( bday “ {𝑛})
20 bdayfn 27683 . . . . . . . . . 10 bday Fn No
21 fnsnfv 6902 . . . . . . . . . 10 (( bday Fn No 𝑛 No ) → {( bday 𝑛)} = ( bday “ {𝑛}))
2220, 14, 21sylancr 587 . . . . . . . . 9 (𝑛 ∈ ℕ0s → {( bday 𝑛)} = ( bday “ {𝑛}))
2319, 22eqtr4id 2783 . . . . . . . 8 (𝑛 ∈ ℕ0s → ( bday “ ({𝑛} ∪ ∅)) = {( bday 𝑛)})
24 fvex 6835 . . . . . . . . . 10 ( bday 𝑛) ∈ V
2524sucid 6391 . . . . . . . . 9 ( bday 𝑛) ∈ suc ( bday 𝑛)
26 snssi 4759 . . . . . . . . 9 (( bday 𝑛) ∈ suc ( bday 𝑛) → {( bday 𝑛)} ⊆ suc ( bday 𝑛))
2725, 26ax-mp 5 . . . . . . . 8 {( bday 𝑛)} ⊆ suc ( bday 𝑛)
2823, 27eqsstrdi 3980 . . . . . . 7 (𝑛 ∈ ℕ0s → ( bday “ ({𝑛} ∪ ∅)) ⊆ suc ( bday 𝑛))
29 bdayelon 27686 . . . . . . . . 9 ( bday 𝑛) ∈ On
3029onsuci 7772 . . . . . . . 8 suc ( bday 𝑛) ∈ On
31 scutbdaybnd 27727 . . . . . . . 8 (({𝑛} <<s ∅ ∧ suc ( bday 𝑛) ∈ On ∧ ( bday “ ({𝑛} ∪ ∅)) ⊆ suc ( bday 𝑛)) → ( bday ‘({𝑛} |s ∅)) ⊆ suc ( bday 𝑛))
3230, 31mp3an2 1451 . . . . . . 7 (({𝑛} <<s ∅ ∧ ( bday “ ({𝑛} ∪ ∅)) ⊆ suc ( bday 𝑛)) → ( bday ‘({𝑛} |s ∅)) ⊆ suc ( bday 𝑛))
3317, 28, 32syl2anc 584 . . . . . 6 (𝑛 ∈ ℕ0s → ( bday ‘({𝑛} |s ∅)) ⊆ suc ( bday 𝑛))
3413, 33eqsstrd 3970 . . . . 5 (𝑛 ∈ ℕ0s → ( bday ‘(𝑛 +s 1s )) ⊆ suc ( bday 𝑛))
35 bdayelon 27686 . . . . . 6 ( bday ‘(𝑛 +s 1s )) ∈ On
36 onsssuc 6399 . . . . . 6 ((( bday ‘(𝑛 +s 1s )) ∈ On ∧ suc ( bday 𝑛) ∈ On) → (( bday ‘(𝑛 +s 1s )) ⊆ suc ( bday 𝑛) ↔ ( bday ‘(𝑛 +s 1s )) ∈ suc suc ( bday 𝑛)))
3735, 30, 36mp2an 692 . . . . 5 (( bday ‘(𝑛 +s 1s )) ⊆ suc ( bday 𝑛) ↔ ( bday ‘(𝑛 +s 1s )) ∈ suc suc ( bday 𝑛))
3834, 37sylib 218 . . . 4 (𝑛 ∈ ℕ0s → ( bday ‘(𝑛 +s 1s )) ∈ suc suc ( bday 𝑛))
39 peano2 7823 . . . . 5 (( bday 𝑛) ∈ ω → suc ( bday 𝑛) ∈ ω)
40 peano2 7823 . . . . 5 (suc ( bday 𝑛) ∈ ω → suc suc ( bday 𝑛) ∈ ω)
4139, 40syl 17 . . . 4 (( bday 𝑛) ∈ ω → suc suc ( bday 𝑛) ∈ ω)
42 elnn 7810 . . . 4 ((( bday ‘(𝑛 +s 1s )) ∈ suc suc ( bday 𝑛) ∧ suc suc ( bday 𝑛) ∈ ω) → ( bday ‘(𝑛 +s 1s )) ∈ ω)
4338, 41, 42syl2an 596 . . 3 ((𝑛 ∈ ℕ0s ∧ ( bday 𝑛) ∈ ω) → ( bday ‘(𝑛 +s 1s )) ∈ ω)
4443ex 412 . 2 (𝑛 ∈ ℕ0s → (( bday 𝑛) ∈ ω → ( bday ‘(𝑛 +s 1s )) ∈ ω))
452, 4, 6, 8, 11, 44n0sind 28232 1 (𝐴 ∈ ℕ0s → ( bday 𝐴) ∈ ω)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206   = wceq 1540  wcel 2109  cun 3901  wss 3903  c0 4284  𝒫 cpw 4551  {csn 4577   class class class wbr 5092  cima 5622  Oncon0 6307  suc csuc 6309   Fn wfn 6477  cfv 6482  (class class class)co 7349  ωcom 7799   No csur 27549   bday cbday 27551   <<s csslt 27691   |s cscut 27693   0s c0s 27737   1s c1s 27738   +s cadds 27873  0scnn0s 28213
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5218  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rmo 3343  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-pss 3923  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-tp 4582  df-op 4584  df-ot 4586  df-uni 4859  df-int 4897  df-iun 4943  df-br 5093  df-opab 5155  df-mpt 5174  df-tr 5200  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-se 5573  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6249  df-ord 6310  df-on 6311  df-lim 6312  df-suc 6313  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-riota 7306  df-ov 7352  df-oprab 7353  df-mpo 7354  df-om 7800  df-1st 7924  df-2nd 7925  df-frecs 8214  df-wrecs 8245  df-recs 8294  df-rdg 8332  df-1o 8388  df-2o 8389  df-nadd 8584  df-no 27552  df-slt 27553  df-bday 27554  df-sle 27655  df-sslt 27692  df-scut 27694  df-0s 27739  df-1s 27740  df-made 27759  df-old 27760  df-left 27762  df-right 27763  df-norec 27852  df-norec2 27863  df-adds 27874  df-negs 27934  df-subs 27935  df-n0s 28215
This theorem is referenced by:  n0ssold  28252  onltn0s  28255  bdayn0sf1o  28266  zsbday  28301
  Copyright terms: Public domain W3C validator