| Step | Hyp | Ref
| Expression |
| 1 | | fveq2 6881 |
. . 3
⊢ (𝑚 = 0s → ( bday ‘𝑚) = ( bday
‘ 0s )) |
| 2 | 1 | eleq1d 2820 |
. 2
⊢ (𝑚 = 0s → (( bday ‘𝑚) ∈ ω ↔ ( bday ‘ 0s ) ∈
ω)) |
| 3 | | fveq2 6881 |
. . 3
⊢ (𝑚 = 𝑛 → ( bday
‘𝑚) = ( bday ‘𝑛)) |
| 4 | 3 | eleq1d 2820 |
. 2
⊢ (𝑚 = 𝑛 → (( bday
‘𝑚) ∈
ω ↔ ( bday ‘𝑛) ∈ ω)) |
| 5 | | fveq2 6881 |
. . 3
⊢ (𝑚 = (𝑛 +s 1s ) → ( bday ‘𝑚) = ( bday
‘(𝑛
+s 1s ))) |
| 6 | 5 | eleq1d 2820 |
. 2
⊢ (𝑚 = (𝑛 +s 1s ) → (( bday ‘𝑚) ∈ ω ↔ ( bday ‘(𝑛 +s 1s )) ∈
ω)) |
| 7 | | fveq2 6881 |
. . 3
⊢ (𝑚 = 𝐴 → ( bday
‘𝑚) = ( bday ‘𝐴)) |
| 8 | 7 | eleq1d 2820 |
. 2
⊢ (𝑚 = 𝐴 → (( bday
‘𝑚) ∈
ω ↔ ( bday ‘𝐴) ∈ ω)) |
| 9 | | bday0s 27797 |
. . 3
⊢ ( bday ‘ 0s ) = ∅ |
| 10 | | peano1 7889 |
. . 3
⊢ ∅
∈ ω |
| 11 | 9, 10 | eqeltri 2831 |
. 2
⊢ ( bday ‘ 0s ) ∈
ω |
| 12 | | n0scut2 28284 |
. . . . . . 7
⊢ (𝑛 ∈ ℕ0s
→ (𝑛 +s
1s ) = ({𝑛} |s
∅)) |
| 13 | 12 | fveq2d 6885 |
. . . . . 6
⊢ (𝑛 ∈ ℕ0s
→ ( bday ‘(𝑛 +s 1s )) = ( bday ‘({𝑛} |s ∅))) |
| 14 | | n0sno 28273 |
. . . . . . . 8
⊢ (𝑛 ∈ ℕ0s
→ 𝑛 ∈ No ) |
| 15 | | snelpwi 5423 |
. . . . . . . 8
⊢ (𝑛 ∈
No → {𝑛}
∈ 𝒫 No ) |
| 16 | | nulssgt 27767 |
. . . . . . . 8
⊢ ({𝑛} ∈ 𝒫 No → {𝑛} <<s ∅) |
| 17 | 14, 15, 16 | 3syl 18 |
. . . . . . 7
⊢ (𝑛 ∈ ℕ0s
→ {𝑛} <<s
∅) |
| 18 | | un0 4374 |
. . . . . . . . . 10
⊢ ({𝑛} ∪ ∅) = {𝑛} |
| 19 | 18 | imaeq2i 6050 |
. . . . . . . . 9
⊢ ( bday “ ({𝑛} ∪ ∅)) = (
bday “ {𝑛}) |
| 20 | | bdayfn 27742 |
. . . . . . . . . 10
⊢ bday Fn No
|
| 21 | | fnsnfv 6963 |
. . . . . . . . . 10
⊢ (( bday Fn No ∧ 𝑛 ∈
No ) → {( bday ‘𝑛)} = (
bday “ {𝑛})) |
| 22 | 20, 14, 21 | sylancr 587 |
. . . . . . . . 9
⊢ (𝑛 ∈ ℕ0s
→ {( bday ‘𝑛)} = ( bday
“ {𝑛})) |
| 23 | 19, 22 | eqtr4id 2790 |
. . . . . . . 8
⊢ (𝑛 ∈ ℕ0s
→ ( bday “ ({𝑛} ∪ ∅)) = {(
bday ‘𝑛)}) |
| 24 | | fvex 6894 |
. . . . . . . . . 10
⊢ ( bday ‘𝑛) ∈ V |
| 25 | 24 | sucid 6441 |
. . . . . . . . 9
⊢ ( bday ‘𝑛) ∈ suc ( bday
‘𝑛) |
| 26 | | snssi 4789 |
. . . . . . . . 9
⊢ (( bday ‘𝑛) ∈ suc ( bday
‘𝑛) →
{( bday ‘𝑛)} ⊆ suc ( bday
‘𝑛)) |
| 27 | 25, 26 | ax-mp 5 |
. . . . . . . 8
⊢ {( bday ‘𝑛)} ⊆ suc ( bday
‘𝑛) |
| 28 | 23, 27 | eqsstrdi 4008 |
. . . . . . 7
⊢ (𝑛 ∈ ℕ0s
→ ( bday “ ({𝑛} ∪ ∅)) ⊆ suc ( bday ‘𝑛)) |
| 29 | | bdayelon 27745 |
. . . . . . . . 9
⊢ ( bday ‘𝑛) ∈ On |
| 30 | 29 | onsuci 7838 |
. . . . . . . 8
⊢ suc
( bday ‘𝑛) ∈ On |
| 31 | | scutbdaybnd 27784 |
. . . . . . . 8
⊢ (({𝑛} <<s ∅ ∧ suc
( bday ‘𝑛) ∈ On ∧ (
bday “ ({𝑛}
∪ ∅)) ⊆ suc ( bday ‘𝑛)) → ( bday ‘({𝑛} |s ∅)) ⊆ suc ( bday ‘𝑛)) |
| 32 | 30, 31 | mp3an2 1451 |
. . . . . . 7
⊢ (({𝑛} <<s ∅ ∧ ( bday “ ({𝑛} ∪ ∅)) ⊆ suc ( bday ‘𝑛)) → ( bday
‘({𝑛} |s
∅)) ⊆ suc ( bday ‘𝑛)) |
| 33 | 17, 28, 32 | syl2anc 584 |
. . . . . 6
⊢ (𝑛 ∈ ℕ0s
→ ( bday ‘({𝑛} |s ∅)) ⊆ suc ( bday ‘𝑛)) |
| 34 | 13, 33 | eqsstrd 3998 |
. . . . 5
⊢ (𝑛 ∈ ℕ0s
→ ( bday ‘(𝑛 +s 1s )) ⊆ suc
( bday ‘𝑛)) |
| 35 | | bdayelon 27745 |
. . . . . 6
⊢ ( bday ‘(𝑛 +s 1s )) ∈
On |
| 36 | | onsssuc 6449 |
. . . . . 6
⊢ ((( bday ‘(𝑛 +s 1s )) ∈ On
∧ suc ( bday ‘𝑛) ∈ On) → ((
bday ‘(𝑛
+s 1s )) ⊆ suc ( bday
‘𝑛) ↔
( bday ‘(𝑛 +s 1s )) ∈ suc
suc ( bday ‘𝑛))) |
| 37 | 35, 30, 36 | mp2an 692 |
. . . . 5
⊢ (( bday ‘(𝑛 +s 1s )) ⊆ suc
( bday ‘𝑛) ↔ ( bday
‘(𝑛
+s 1s )) ∈ suc suc ( bday
‘𝑛)) |
| 38 | 34, 37 | sylib 218 |
. . . 4
⊢ (𝑛 ∈ ℕ0s
→ ( bday ‘(𝑛 +s 1s )) ∈ suc
suc ( bday ‘𝑛)) |
| 39 | | peano2 7891 |
. . . . 5
⊢ (( bday ‘𝑛) ∈ ω → suc ( bday ‘𝑛) ∈ ω) |
| 40 | | peano2 7891 |
. . . . 5
⊢ (suc
( bday ‘𝑛) ∈ ω → suc suc ( bday ‘𝑛) ∈ ω) |
| 41 | 39, 40 | syl 17 |
. . . 4
⊢ (( bday ‘𝑛) ∈ ω → suc suc ( bday ‘𝑛) ∈ ω) |
| 42 | | elnn 7877 |
. . . 4
⊢ ((( bday ‘(𝑛 +s 1s )) ∈ suc
suc ( bday ‘𝑛) ∧ suc suc ( bday
‘𝑛) ∈
ω) → ( bday ‘(𝑛 +s 1s )) ∈
ω) |
| 43 | 38, 41, 42 | syl2an 596 |
. . 3
⊢ ((𝑛 ∈ ℕ0s
∧ ( bday ‘𝑛) ∈ ω) → ( bday ‘(𝑛 +s 1s )) ∈
ω) |
| 44 | 43 | ex 412 |
. 2
⊢ (𝑛 ∈ ℕ0s
→ (( bday ‘𝑛) ∈ ω → ( bday ‘(𝑛 +s 1s )) ∈
ω)) |
| 45 | 2, 4, 6, 8, 11, 44 | n0sind 28282 |
1
⊢ (𝐴 ∈ ℕ0s
→ ( bday ‘𝐴) ∈ ω) |