MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  n0sbday Structured version   Visualization version   GIF version

Theorem n0sbday 28269
Description: A non-negative surreal integer has a finite birthday. (Contributed by Scott Fenton, 18-Apr-2025.)
Assertion
Ref Expression
n0sbday (𝐴 ∈ ℕ0s → ( bday 𝐴) ∈ ω)

Proof of Theorem n0sbday
Dummy variables 𝑛 𝑚 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fveq2 6896 . . 3 (𝑚 = 0s → ( bday 𝑚) = ( bday ‘ 0s ))
21eleq1d 2810 . 2 (𝑚 = 0s → (( bday 𝑚) ∈ ω ↔ ( bday ‘ 0s ) ∈ ω))
3 fveq2 6896 . . 3 (𝑚 = 𝑛 → ( bday 𝑚) = ( bday 𝑛))
43eleq1d 2810 . 2 (𝑚 = 𝑛 → (( bday 𝑚) ∈ ω ↔ ( bday 𝑛) ∈ ω))
5 fveq2 6896 . . 3 (𝑚 = (𝑛 +s 1s ) → ( bday 𝑚) = ( bday ‘(𝑛 +s 1s )))
65eleq1d 2810 . 2 (𝑚 = (𝑛 +s 1s ) → (( bday 𝑚) ∈ ω ↔ ( bday ‘(𝑛 +s 1s )) ∈ ω))
7 fveq2 6896 . . 3 (𝑚 = 𝐴 → ( bday 𝑚) = ( bday 𝐴))
87eleq1d 2810 . 2 (𝑚 = 𝐴 → (( bday 𝑚) ∈ ω ↔ ( bday 𝐴) ∈ ω))
9 bday0s 27807 . . 3 ( bday ‘ 0s ) = ∅
10 peano1 7895 . . 3 ∅ ∈ ω
119, 10eqeltri 2821 . 2 ( bday ‘ 0s ) ∈ ω
12 peano2n0s 28252 . . . . . . . . 9 (𝑛 ∈ ℕ0s → (𝑛 +s 1s ) ∈ ℕ0s)
13 n0scut 28255 . . . . . . . . 9 ((𝑛 +s 1s ) ∈ ℕ0s → (𝑛 +s 1s ) = ({((𝑛 +s 1s ) -s 1s )} |s ∅))
1412, 13syl 17 . . . . . . . 8 (𝑛 ∈ ℕ0s → (𝑛 +s 1s ) = ({((𝑛 +s 1s ) -s 1s )} |s ∅))
15 n0sno 28245 . . . . . . . . . . 11 (𝑛 ∈ ℕ0s𝑛 No )
16 1sno 27806 . . . . . . . . . . 11 1s No
17 pncans 28028 . . . . . . . . . . 11 ((𝑛 No ∧ 1s No ) → ((𝑛 +s 1s ) -s 1s ) = 𝑛)
1815, 16, 17sylancl 584 . . . . . . . . . 10 (𝑛 ∈ ℕ0s → ((𝑛 +s 1s ) -s 1s ) = 𝑛)
1918sneqd 4642 . . . . . . . . 9 (𝑛 ∈ ℕ0s → {((𝑛 +s 1s ) -s 1s )} = {𝑛})
2019oveq1d 7434 . . . . . . . 8 (𝑛 ∈ ℕ0s → ({((𝑛 +s 1s ) -s 1s )} |s ∅) = ({𝑛} |s ∅))
2114, 20eqtrd 2765 . . . . . . 7 (𝑛 ∈ ℕ0s → (𝑛 +s 1s ) = ({𝑛} |s ∅))
2221fveq2d 6900 . . . . . 6 (𝑛 ∈ ℕ0s → ( bday ‘(𝑛 +s 1s )) = ( bday ‘({𝑛} |s ∅)))
23 snelpwi 5445 . . . . . . . 8 (𝑛 No → {𝑛} ∈ 𝒫 No )
24 nulssgt 27777 . . . . . . . 8 ({𝑛} ∈ 𝒫 No → {𝑛} <<s ∅)
2515, 23, 243syl 18 . . . . . . 7 (𝑛 ∈ ℕ0s → {𝑛} <<s ∅)
26 un0 4392 . . . . . . . . . 10 ({𝑛} ∪ ∅) = {𝑛}
2726imaeq2i 6062 . . . . . . . . 9 ( bday “ ({𝑛} ∪ ∅)) = ( bday “ {𝑛})
28 bdayfn 27752 . . . . . . . . . 10 bday Fn No
29 fnsnfv 6976 . . . . . . . . . 10 (( bday Fn No 𝑛 No ) → {( bday 𝑛)} = ( bday “ {𝑛}))
3028, 15, 29sylancr 585 . . . . . . . . 9 (𝑛 ∈ ℕ0s → {( bday 𝑛)} = ( bday “ {𝑛}))
3127, 30eqtr4id 2784 . . . . . . . 8 (𝑛 ∈ ℕ0s → ( bday “ ({𝑛} ∪ ∅)) = {( bday 𝑛)})
32 fvex 6909 . . . . . . . . . 10 ( bday 𝑛) ∈ V
3332sucid 6453 . . . . . . . . 9 ( bday 𝑛) ∈ suc ( bday 𝑛)
34 snssi 4813 . . . . . . . . 9 (( bday 𝑛) ∈ suc ( bday 𝑛) → {( bday 𝑛)} ⊆ suc ( bday 𝑛))
3533, 34ax-mp 5 . . . . . . . 8 {( bday 𝑛)} ⊆ suc ( bday 𝑛)
3631, 35eqsstrdi 4031 . . . . . . 7 (𝑛 ∈ ℕ0s → ( bday “ ({𝑛} ∪ ∅)) ⊆ suc ( bday 𝑛))
37 bdayelon 27755 . . . . . . . . 9 ( bday 𝑛) ∈ On
3837onsuci 7843 . . . . . . . 8 suc ( bday 𝑛) ∈ On
39 scutbdaybnd 27794 . . . . . . . 8 (({𝑛} <<s ∅ ∧ suc ( bday 𝑛) ∈ On ∧ ( bday “ ({𝑛} ∪ ∅)) ⊆ suc ( bday 𝑛)) → ( bday ‘({𝑛} |s ∅)) ⊆ suc ( bday 𝑛))
4038, 39mp3an2 1445 . . . . . . 7 (({𝑛} <<s ∅ ∧ ( bday “ ({𝑛} ∪ ∅)) ⊆ suc ( bday 𝑛)) → ( bday ‘({𝑛} |s ∅)) ⊆ suc ( bday 𝑛))
4125, 36, 40syl2anc 582 . . . . . 6 (𝑛 ∈ ℕ0s → ( bday ‘({𝑛} |s ∅)) ⊆ suc ( bday 𝑛))
4222, 41eqsstrd 4015 . . . . 5 (𝑛 ∈ ℕ0s → ( bday ‘(𝑛 +s 1s )) ⊆ suc ( bday 𝑛))
43 bdayelon 27755 . . . . . 6 ( bday ‘(𝑛 +s 1s )) ∈ On
44 onsssuc 6461 . . . . . 6 ((( bday ‘(𝑛 +s 1s )) ∈ On ∧ suc ( bday 𝑛) ∈ On) → (( bday ‘(𝑛 +s 1s )) ⊆ suc ( bday 𝑛) ↔ ( bday ‘(𝑛 +s 1s )) ∈ suc suc ( bday 𝑛)))
4543, 38, 44mp2an 690 . . . . 5 (( bday ‘(𝑛 +s 1s )) ⊆ suc ( bday 𝑛) ↔ ( bday ‘(𝑛 +s 1s )) ∈ suc suc ( bday 𝑛))
4642, 45sylib 217 . . . 4 (𝑛 ∈ ℕ0s → ( bday ‘(𝑛 +s 1s )) ∈ suc suc ( bday 𝑛))
47 peano2 7897 . . . . 5 (( bday 𝑛) ∈ ω → suc ( bday 𝑛) ∈ ω)
48 peano2 7897 . . . . 5 (suc ( bday 𝑛) ∈ ω → suc suc ( bday 𝑛) ∈ ω)
4947, 48syl 17 . . . 4 (( bday 𝑛) ∈ ω → suc suc ( bday 𝑛) ∈ ω)
50 elnn 7882 . . . 4 ((( bday ‘(𝑛 +s 1s )) ∈ suc suc ( bday 𝑛) ∧ suc suc ( bday 𝑛) ∈ ω) → ( bday ‘(𝑛 +s 1s )) ∈ ω)
5146, 49, 50syl2an 594 . . 3 ((𝑛 ∈ ℕ0s ∧ ( bday 𝑛) ∈ ω) → ( bday ‘(𝑛 +s 1s )) ∈ ω)
5251ex 411 . 2 (𝑛 ∈ ℕ0s → (( bday 𝑛) ∈ ω → ( bday ‘(𝑛 +s 1s )) ∈ ω))
532, 4, 6, 8, 11, 52n0sind 28254 1 (𝐴 ∈ ℕ0s → ( bday 𝐴) ∈ ω)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205   = wceq 1533  wcel 2098  cun 3942  wss 3944  c0 4322  𝒫 cpw 4604  {csn 4630   class class class wbr 5149  cima 5681  Oncon0 6371  suc csuc 6373   Fn wfn 6544  cfv 6549  (class class class)co 7419  ωcom 7871   No csur 27618   bday cbday 27620   <<s csslt 27759   |s cscut 27761   0s c0s 27801   1s c1s 27802   +s cadds 27922   -s csubs 27979  0scnn0s 28235
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-rep 5286  ax-sep 5300  ax-nul 5307  ax-pow 5365  ax-pr 5429  ax-un 7741
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ne 2930  df-ral 3051  df-rex 3060  df-rmo 3363  df-reu 3364  df-rab 3419  df-v 3463  df-sbc 3774  df-csb 3890  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-pss 3964  df-nul 4323  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-tp 4635  df-op 4637  df-ot 4639  df-uni 4910  df-int 4951  df-iun 4999  df-br 5150  df-opab 5212  df-mpt 5233  df-tr 5267  df-id 5576  df-eprel 5582  df-po 5590  df-so 5591  df-fr 5633  df-se 5634  df-we 5635  df-xp 5684  df-rel 5685  df-cnv 5686  df-co 5687  df-dm 5688  df-rn 5689  df-res 5690  df-ima 5691  df-pred 6307  df-ord 6374  df-on 6375  df-lim 6376  df-suc 6377  df-iota 6501  df-fun 6551  df-fn 6552  df-f 6553  df-f1 6554  df-fo 6555  df-f1o 6556  df-fv 6557  df-riota 7375  df-ov 7422  df-oprab 7423  df-mpo 7424  df-om 7872  df-1st 7994  df-2nd 7995  df-frecs 8287  df-wrecs 8318  df-recs 8392  df-rdg 8431  df-1o 8487  df-2o 8488  df-nadd 8687  df-no 27621  df-slt 27622  df-bday 27623  df-sle 27724  df-sslt 27760  df-scut 27762  df-0s 27803  df-1s 27804  df-made 27820  df-old 27821  df-left 27823  df-right 27824  df-norec 27901  df-norec2 27912  df-adds 27923  df-negs 27980  df-subs 27981  df-n0s 28237
This theorem is referenced by:  n0ssold  28270  zsbday  28292
  Copyright terms: Public domain W3C validator