MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  n0sbday Structured version   Visualization version   GIF version

Theorem n0sbday 28372
Description: A non-negative surreal integer has a finite birthday. (Contributed by Scott Fenton, 18-Apr-2025.)
Assertion
Ref Expression
n0sbday (𝐴 ∈ ℕ0s → ( bday 𝐴) ∈ ω)

Proof of Theorem n0sbday
Dummy variables 𝑛 𝑚 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fveq2 6920 . . 3 (𝑚 = 0s → ( bday 𝑚) = ( bday ‘ 0s ))
21eleq1d 2829 . 2 (𝑚 = 0s → (( bday 𝑚) ∈ ω ↔ ( bday ‘ 0s ) ∈ ω))
3 fveq2 6920 . . 3 (𝑚 = 𝑛 → ( bday 𝑚) = ( bday 𝑛))
43eleq1d 2829 . 2 (𝑚 = 𝑛 → (( bday 𝑚) ∈ ω ↔ ( bday 𝑛) ∈ ω))
5 fveq2 6920 . . 3 (𝑚 = (𝑛 +s 1s ) → ( bday 𝑚) = ( bday ‘(𝑛 +s 1s )))
65eleq1d 2829 . 2 (𝑚 = (𝑛 +s 1s ) → (( bday 𝑚) ∈ ω ↔ ( bday ‘(𝑛 +s 1s )) ∈ ω))
7 fveq2 6920 . . 3 (𝑚 = 𝐴 → ( bday 𝑚) = ( bday 𝐴))
87eleq1d 2829 . 2 (𝑚 = 𝐴 → (( bday 𝑚) ∈ ω ↔ ( bday 𝐴) ∈ ω))
9 bday0s 27891 . . 3 ( bday ‘ 0s ) = ∅
10 peano1 7927 . . 3 ∅ ∈ ω
119, 10eqeltri 2840 . 2 ( bday ‘ 0s ) ∈ ω
12 peano2n0s 28353 . . . . . . . . 9 (𝑛 ∈ ℕ0s → (𝑛 +s 1s ) ∈ ℕ0s)
13 n0scut 28356 . . . . . . . . 9 ((𝑛 +s 1s ) ∈ ℕ0s → (𝑛 +s 1s ) = ({((𝑛 +s 1s ) -s 1s )} |s ∅))
1412, 13syl 17 . . . . . . . 8 (𝑛 ∈ ℕ0s → (𝑛 +s 1s ) = ({((𝑛 +s 1s ) -s 1s )} |s ∅))
15 n0sno 28346 . . . . . . . . . . 11 (𝑛 ∈ ℕ0s𝑛 No )
16 1sno 27890 . . . . . . . . . . 11 1s No
17 pncans 28120 . . . . . . . . . . 11 ((𝑛 No ∧ 1s No ) → ((𝑛 +s 1s ) -s 1s ) = 𝑛)
1815, 16, 17sylancl 585 . . . . . . . . . 10 (𝑛 ∈ ℕ0s → ((𝑛 +s 1s ) -s 1s ) = 𝑛)
1918sneqd 4660 . . . . . . . . 9 (𝑛 ∈ ℕ0s → {((𝑛 +s 1s ) -s 1s )} = {𝑛})
2019oveq1d 7463 . . . . . . . 8 (𝑛 ∈ ℕ0s → ({((𝑛 +s 1s ) -s 1s )} |s ∅) = ({𝑛} |s ∅))
2114, 20eqtrd 2780 . . . . . . 7 (𝑛 ∈ ℕ0s → (𝑛 +s 1s ) = ({𝑛} |s ∅))
2221fveq2d 6924 . . . . . 6 (𝑛 ∈ ℕ0s → ( bday ‘(𝑛 +s 1s )) = ( bday ‘({𝑛} |s ∅)))
23 snelpwi 5463 . . . . . . . 8 (𝑛 No → {𝑛} ∈ 𝒫 No )
24 nulssgt 27861 . . . . . . . 8 ({𝑛} ∈ 𝒫 No → {𝑛} <<s ∅)
2515, 23, 243syl 18 . . . . . . 7 (𝑛 ∈ ℕ0s → {𝑛} <<s ∅)
26 un0 4417 . . . . . . . . . 10 ({𝑛} ∪ ∅) = {𝑛}
2726imaeq2i 6087 . . . . . . . . 9 ( bday “ ({𝑛} ∪ ∅)) = ( bday “ {𝑛})
28 bdayfn 27836 . . . . . . . . . 10 bday Fn No
29 fnsnfv 7001 . . . . . . . . . 10 (( bday Fn No 𝑛 No ) → {( bday 𝑛)} = ( bday “ {𝑛}))
3028, 15, 29sylancr 586 . . . . . . . . 9 (𝑛 ∈ ℕ0s → {( bday 𝑛)} = ( bday “ {𝑛}))
3127, 30eqtr4id 2799 . . . . . . . 8 (𝑛 ∈ ℕ0s → ( bday “ ({𝑛} ∪ ∅)) = {( bday 𝑛)})
32 fvex 6933 . . . . . . . . . 10 ( bday 𝑛) ∈ V
3332sucid 6477 . . . . . . . . 9 ( bday 𝑛) ∈ suc ( bday 𝑛)
34 snssi 4833 . . . . . . . . 9 (( bday 𝑛) ∈ suc ( bday 𝑛) → {( bday 𝑛)} ⊆ suc ( bday 𝑛))
3533, 34ax-mp 5 . . . . . . . 8 {( bday 𝑛)} ⊆ suc ( bday 𝑛)
3631, 35eqsstrdi 4063 . . . . . . 7 (𝑛 ∈ ℕ0s → ( bday “ ({𝑛} ∪ ∅)) ⊆ suc ( bday 𝑛))
37 bdayelon 27839 . . . . . . . . 9 ( bday 𝑛) ∈ On
3837onsuci 7875 . . . . . . . 8 suc ( bday 𝑛) ∈ On
39 scutbdaybnd 27878 . . . . . . . 8 (({𝑛} <<s ∅ ∧ suc ( bday 𝑛) ∈ On ∧ ( bday “ ({𝑛} ∪ ∅)) ⊆ suc ( bday 𝑛)) → ( bday ‘({𝑛} |s ∅)) ⊆ suc ( bday 𝑛))
4038, 39mp3an2 1449 . . . . . . 7 (({𝑛} <<s ∅ ∧ ( bday “ ({𝑛} ∪ ∅)) ⊆ suc ( bday 𝑛)) → ( bday ‘({𝑛} |s ∅)) ⊆ suc ( bday 𝑛))
4125, 36, 40syl2anc 583 . . . . . 6 (𝑛 ∈ ℕ0s → ( bday ‘({𝑛} |s ∅)) ⊆ suc ( bday 𝑛))
4222, 41eqsstrd 4047 . . . . 5 (𝑛 ∈ ℕ0s → ( bday ‘(𝑛 +s 1s )) ⊆ suc ( bday 𝑛))
43 bdayelon 27839 . . . . . 6 ( bday ‘(𝑛 +s 1s )) ∈ On
44 onsssuc 6485 . . . . . 6 ((( bday ‘(𝑛 +s 1s )) ∈ On ∧ suc ( bday 𝑛) ∈ On) → (( bday ‘(𝑛 +s 1s )) ⊆ suc ( bday 𝑛) ↔ ( bday ‘(𝑛 +s 1s )) ∈ suc suc ( bday 𝑛)))
4543, 38, 44mp2an 691 . . . . 5 (( bday ‘(𝑛 +s 1s )) ⊆ suc ( bday 𝑛) ↔ ( bday ‘(𝑛 +s 1s )) ∈ suc suc ( bday 𝑛))
4642, 45sylib 218 . . . 4 (𝑛 ∈ ℕ0s → ( bday ‘(𝑛 +s 1s )) ∈ suc suc ( bday 𝑛))
47 peano2 7929 . . . . 5 (( bday 𝑛) ∈ ω → suc ( bday 𝑛) ∈ ω)
48 peano2 7929 . . . . 5 (suc ( bday 𝑛) ∈ ω → suc suc ( bday 𝑛) ∈ ω)
4947, 48syl 17 . . . 4 (( bday 𝑛) ∈ ω → suc suc ( bday 𝑛) ∈ ω)
50 elnn 7914 . . . 4 ((( bday ‘(𝑛 +s 1s )) ∈ suc suc ( bday 𝑛) ∧ suc suc ( bday 𝑛) ∈ ω) → ( bday ‘(𝑛 +s 1s )) ∈ ω)
5146, 49, 50syl2an 595 . . 3 ((𝑛 ∈ ℕ0s ∧ ( bday 𝑛) ∈ ω) → ( bday ‘(𝑛 +s 1s )) ∈ ω)
5251ex 412 . 2 (𝑛 ∈ ℕ0s → (( bday 𝑛) ∈ ω → ( bday ‘(𝑛 +s 1s )) ∈ ω))
532, 4, 6, 8, 11, 52n0sind 28355 1 (𝐴 ∈ ℕ0s → ( bday 𝐴) ∈ ω)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206   = wceq 1537  wcel 2108  cun 3974  wss 3976  c0 4352  𝒫 cpw 4622  {csn 4648   class class class wbr 5166  cima 5703  Oncon0 6395  suc csuc 6397   Fn wfn 6568  cfv 6573  (class class class)co 7448  ωcom 7903   No csur 27702   bday cbday 27704   <<s csslt 27843   |s cscut 27845   0s c0s 27885   1s c1s 27886   +s cadds 28010   -s csubs 28070  0scnn0s 28336
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-tp 4653  df-op 4655  df-ot 4657  df-uni 4932  df-int 4971  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-se 5653  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-1st 8030  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-1o 8522  df-2o 8523  df-nadd 8722  df-no 27705  df-slt 27706  df-bday 27707  df-sle 27808  df-sslt 27844  df-scut 27846  df-0s 27887  df-1s 27888  df-made 27904  df-old 27905  df-left 27907  df-right 27908  df-norec 27989  df-norec2 28000  df-adds 28011  df-negs 28071  df-subs 28072  df-n0s 28338
This theorem is referenced by:  n0ssold  28373  zsbday  28410
  Copyright terms: Public domain W3C validator