MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  n0sbday Structured version   Visualization version   GIF version

Theorem n0sbday 28369
Description: A non-negative surreal integer has a finite birthday. (Contributed by Scott Fenton, 18-Apr-2025.)
Assertion
Ref Expression
n0sbday (𝐴 ∈ ℕ0s → ( bday 𝐴) ∈ ω)

Proof of Theorem n0sbday
Dummy variables 𝑛 𝑚 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fveq2 6907 . . 3 (𝑚 = 0s → ( bday 𝑚) = ( bday ‘ 0s ))
21eleq1d 2824 . 2 (𝑚 = 0s → (( bday 𝑚) ∈ ω ↔ ( bday ‘ 0s ) ∈ ω))
3 fveq2 6907 . . 3 (𝑚 = 𝑛 → ( bday 𝑚) = ( bday 𝑛))
43eleq1d 2824 . 2 (𝑚 = 𝑛 → (( bday 𝑚) ∈ ω ↔ ( bday 𝑛) ∈ ω))
5 fveq2 6907 . . 3 (𝑚 = (𝑛 +s 1s ) → ( bday 𝑚) = ( bday ‘(𝑛 +s 1s )))
65eleq1d 2824 . 2 (𝑚 = (𝑛 +s 1s ) → (( bday 𝑚) ∈ ω ↔ ( bday ‘(𝑛 +s 1s )) ∈ ω))
7 fveq2 6907 . . 3 (𝑚 = 𝐴 → ( bday 𝑚) = ( bday 𝐴))
87eleq1d 2824 . 2 (𝑚 = 𝐴 → (( bday 𝑚) ∈ ω ↔ ( bday 𝐴) ∈ ω))
9 bday0s 27888 . . 3 ( bday ‘ 0s ) = ∅
10 peano1 7911 . . 3 ∅ ∈ ω
119, 10eqeltri 2835 . 2 ( bday ‘ 0s ) ∈ ω
12 peano2n0s 28350 . . . . . . . . 9 (𝑛 ∈ ℕ0s → (𝑛 +s 1s ) ∈ ℕ0s)
13 n0scut 28353 . . . . . . . . 9 ((𝑛 +s 1s ) ∈ ℕ0s → (𝑛 +s 1s ) = ({((𝑛 +s 1s ) -s 1s )} |s ∅))
1412, 13syl 17 . . . . . . . 8 (𝑛 ∈ ℕ0s → (𝑛 +s 1s ) = ({((𝑛 +s 1s ) -s 1s )} |s ∅))
15 n0sno 28343 . . . . . . . . . . 11 (𝑛 ∈ ℕ0s𝑛 No )
16 1sno 27887 . . . . . . . . . . 11 1s No
17 pncans 28117 . . . . . . . . . . 11 ((𝑛 No ∧ 1s No ) → ((𝑛 +s 1s ) -s 1s ) = 𝑛)
1815, 16, 17sylancl 586 . . . . . . . . . 10 (𝑛 ∈ ℕ0s → ((𝑛 +s 1s ) -s 1s ) = 𝑛)
1918sneqd 4643 . . . . . . . . 9 (𝑛 ∈ ℕ0s → {((𝑛 +s 1s ) -s 1s )} = {𝑛})
2019oveq1d 7446 . . . . . . . 8 (𝑛 ∈ ℕ0s → ({((𝑛 +s 1s ) -s 1s )} |s ∅) = ({𝑛} |s ∅))
2114, 20eqtrd 2775 . . . . . . 7 (𝑛 ∈ ℕ0s → (𝑛 +s 1s ) = ({𝑛} |s ∅))
2221fveq2d 6911 . . . . . 6 (𝑛 ∈ ℕ0s → ( bday ‘(𝑛 +s 1s )) = ( bday ‘({𝑛} |s ∅)))
23 snelpwi 5454 . . . . . . . 8 (𝑛 No → {𝑛} ∈ 𝒫 No )
24 nulssgt 27858 . . . . . . . 8 ({𝑛} ∈ 𝒫 No → {𝑛} <<s ∅)
2515, 23, 243syl 18 . . . . . . 7 (𝑛 ∈ ℕ0s → {𝑛} <<s ∅)
26 un0 4400 . . . . . . . . . 10 ({𝑛} ∪ ∅) = {𝑛}
2726imaeq2i 6078 . . . . . . . . 9 ( bday “ ({𝑛} ∪ ∅)) = ( bday “ {𝑛})
28 bdayfn 27833 . . . . . . . . . 10 bday Fn No
29 fnsnfv 6988 . . . . . . . . . 10 (( bday Fn No 𝑛 No ) → {( bday 𝑛)} = ( bday “ {𝑛}))
3028, 15, 29sylancr 587 . . . . . . . . 9 (𝑛 ∈ ℕ0s → {( bday 𝑛)} = ( bday “ {𝑛}))
3127, 30eqtr4id 2794 . . . . . . . 8 (𝑛 ∈ ℕ0s → ( bday “ ({𝑛} ∪ ∅)) = {( bday 𝑛)})
32 fvex 6920 . . . . . . . . . 10 ( bday 𝑛) ∈ V
3332sucid 6468 . . . . . . . . 9 ( bday 𝑛) ∈ suc ( bday 𝑛)
34 snssi 4813 . . . . . . . . 9 (( bday 𝑛) ∈ suc ( bday 𝑛) → {( bday 𝑛)} ⊆ suc ( bday 𝑛))
3533, 34ax-mp 5 . . . . . . . 8 {( bday 𝑛)} ⊆ suc ( bday 𝑛)
3631, 35eqsstrdi 4050 . . . . . . 7 (𝑛 ∈ ℕ0s → ( bday “ ({𝑛} ∪ ∅)) ⊆ suc ( bday 𝑛))
37 bdayelon 27836 . . . . . . . . 9 ( bday 𝑛) ∈ On
3837onsuci 7859 . . . . . . . 8 suc ( bday 𝑛) ∈ On
39 scutbdaybnd 27875 . . . . . . . 8 (({𝑛} <<s ∅ ∧ suc ( bday 𝑛) ∈ On ∧ ( bday “ ({𝑛} ∪ ∅)) ⊆ suc ( bday 𝑛)) → ( bday ‘({𝑛} |s ∅)) ⊆ suc ( bday 𝑛))
4038, 39mp3an2 1448 . . . . . . 7 (({𝑛} <<s ∅ ∧ ( bday “ ({𝑛} ∪ ∅)) ⊆ suc ( bday 𝑛)) → ( bday ‘({𝑛} |s ∅)) ⊆ suc ( bday 𝑛))
4125, 36, 40syl2anc 584 . . . . . 6 (𝑛 ∈ ℕ0s → ( bday ‘({𝑛} |s ∅)) ⊆ suc ( bday 𝑛))
4222, 41eqsstrd 4034 . . . . 5 (𝑛 ∈ ℕ0s → ( bday ‘(𝑛 +s 1s )) ⊆ suc ( bday 𝑛))
43 bdayelon 27836 . . . . . 6 ( bday ‘(𝑛 +s 1s )) ∈ On
44 onsssuc 6476 . . . . . 6 ((( bday ‘(𝑛 +s 1s )) ∈ On ∧ suc ( bday 𝑛) ∈ On) → (( bday ‘(𝑛 +s 1s )) ⊆ suc ( bday 𝑛) ↔ ( bday ‘(𝑛 +s 1s )) ∈ suc suc ( bday 𝑛)))
4543, 38, 44mp2an 692 . . . . 5 (( bday ‘(𝑛 +s 1s )) ⊆ suc ( bday 𝑛) ↔ ( bday ‘(𝑛 +s 1s )) ∈ suc suc ( bday 𝑛))
4642, 45sylib 218 . . . 4 (𝑛 ∈ ℕ0s → ( bday ‘(𝑛 +s 1s )) ∈ suc suc ( bday 𝑛))
47 peano2 7913 . . . . 5 (( bday 𝑛) ∈ ω → suc ( bday 𝑛) ∈ ω)
48 peano2 7913 . . . . 5 (suc ( bday 𝑛) ∈ ω → suc suc ( bday 𝑛) ∈ ω)
4947, 48syl 17 . . . 4 (( bday 𝑛) ∈ ω → suc suc ( bday 𝑛) ∈ ω)
50 elnn 7898 . . . 4 ((( bday ‘(𝑛 +s 1s )) ∈ suc suc ( bday 𝑛) ∧ suc suc ( bday 𝑛) ∈ ω) → ( bday ‘(𝑛 +s 1s )) ∈ ω)
5146, 49, 50syl2an 596 . . 3 ((𝑛 ∈ ℕ0s ∧ ( bday 𝑛) ∈ ω) → ( bday ‘(𝑛 +s 1s )) ∈ ω)
5251ex 412 . 2 (𝑛 ∈ ℕ0s → (( bday 𝑛) ∈ ω → ( bday ‘(𝑛 +s 1s )) ∈ ω))
532, 4, 6, 8, 11, 52n0sind 28352 1 (𝐴 ∈ ℕ0s → ( bday 𝐴) ∈ ω)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206   = wceq 1537  wcel 2106  cun 3961  wss 3963  c0 4339  𝒫 cpw 4605  {csn 4631   class class class wbr 5148  cima 5692  Oncon0 6386  suc csuc 6388   Fn wfn 6558  cfv 6563  (class class class)co 7431  ωcom 7887   No csur 27699   bday cbday 27701   <<s csslt 27840   |s cscut 27842   0s c0s 27882   1s c1s 27883   +s cadds 28007   -s csubs 28067  0scnn0s 28333
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-rep 5285  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-ral 3060  df-rex 3069  df-rmo 3378  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-tp 4636  df-op 4638  df-ot 4640  df-uni 4913  df-int 4952  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-se 5642  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8013  df-2nd 8014  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-rdg 8449  df-1o 8505  df-2o 8506  df-nadd 8703  df-no 27702  df-slt 27703  df-bday 27704  df-sle 27805  df-sslt 27841  df-scut 27843  df-0s 27884  df-1s 27885  df-made 27901  df-old 27902  df-left 27904  df-right 27905  df-norec 27986  df-norec2 27997  df-adds 28008  df-negs 28068  df-subs 28069  df-n0s 28335
This theorem is referenced by:  n0ssold  28370  zsbday  28407
  Copyright terms: Public domain W3C validator