MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  n0sbday Structured version   Visualization version   GIF version

Theorem n0sbday 28251
Description: A non-negative surreal integer has a finite birthday. (Contributed by Scott Fenton, 18-Apr-2025.)
Assertion
Ref Expression
n0sbday (𝐴 ∈ ℕ0s → ( bday 𝐴) ∈ ω)

Proof of Theorem n0sbday
Dummy variables 𝑛 𝑚 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fveq2 6861 . . 3 (𝑚 = 0s → ( bday 𝑚) = ( bday ‘ 0s ))
21eleq1d 2814 . 2 (𝑚 = 0s → (( bday 𝑚) ∈ ω ↔ ( bday ‘ 0s ) ∈ ω))
3 fveq2 6861 . . 3 (𝑚 = 𝑛 → ( bday 𝑚) = ( bday 𝑛))
43eleq1d 2814 . 2 (𝑚 = 𝑛 → (( bday 𝑚) ∈ ω ↔ ( bday 𝑛) ∈ ω))
5 fveq2 6861 . . 3 (𝑚 = (𝑛 +s 1s ) → ( bday 𝑚) = ( bday ‘(𝑛 +s 1s )))
65eleq1d 2814 . 2 (𝑚 = (𝑛 +s 1s ) → (( bday 𝑚) ∈ ω ↔ ( bday ‘(𝑛 +s 1s )) ∈ ω))
7 fveq2 6861 . . 3 (𝑚 = 𝐴 → ( bday 𝑚) = ( bday 𝐴))
87eleq1d 2814 . 2 (𝑚 = 𝐴 → (( bday 𝑚) ∈ ω ↔ ( bday 𝐴) ∈ ω))
9 bday0s 27747 . . 3 ( bday ‘ 0s ) = ∅
10 peano1 7868 . . 3 ∅ ∈ ω
119, 10eqeltri 2825 . 2 ( bday ‘ 0s ) ∈ ω
12 n0scut2 28234 . . . . . . 7 (𝑛 ∈ ℕ0s → (𝑛 +s 1s ) = ({𝑛} |s ∅))
1312fveq2d 6865 . . . . . 6 (𝑛 ∈ ℕ0s → ( bday ‘(𝑛 +s 1s )) = ( bday ‘({𝑛} |s ∅)))
14 n0sno 28223 . . . . . . . 8 (𝑛 ∈ ℕ0s𝑛 No )
15 snelpwi 5406 . . . . . . . 8 (𝑛 No → {𝑛} ∈ 𝒫 No )
16 nulssgt 27717 . . . . . . . 8 ({𝑛} ∈ 𝒫 No → {𝑛} <<s ∅)
1714, 15, 163syl 18 . . . . . . 7 (𝑛 ∈ ℕ0s → {𝑛} <<s ∅)
18 un0 4360 . . . . . . . . . 10 ({𝑛} ∪ ∅) = {𝑛}
1918imaeq2i 6032 . . . . . . . . 9 ( bday “ ({𝑛} ∪ ∅)) = ( bday “ {𝑛})
20 bdayfn 27692 . . . . . . . . . 10 bday Fn No
21 fnsnfv 6943 . . . . . . . . . 10 (( bday Fn No 𝑛 No ) → {( bday 𝑛)} = ( bday “ {𝑛}))
2220, 14, 21sylancr 587 . . . . . . . . 9 (𝑛 ∈ ℕ0s → {( bday 𝑛)} = ( bday “ {𝑛}))
2319, 22eqtr4id 2784 . . . . . . . 8 (𝑛 ∈ ℕ0s → ( bday “ ({𝑛} ∪ ∅)) = {( bday 𝑛)})
24 fvex 6874 . . . . . . . . . 10 ( bday 𝑛) ∈ V
2524sucid 6419 . . . . . . . . 9 ( bday 𝑛) ∈ suc ( bday 𝑛)
26 snssi 4775 . . . . . . . . 9 (( bday 𝑛) ∈ suc ( bday 𝑛) → {( bday 𝑛)} ⊆ suc ( bday 𝑛))
2725, 26ax-mp 5 . . . . . . . 8 {( bday 𝑛)} ⊆ suc ( bday 𝑛)
2823, 27eqsstrdi 3994 . . . . . . 7 (𝑛 ∈ ℕ0s → ( bday “ ({𝑛} ∪ ∅)) ⊆ suc ( bday 𝑛))
29 bdayelon 27695 . . . . . . . . 9 ( bday 𝑛) ∈ On
3029onsuci 7817 . . . . . . . 8 suc ( bday 𝑛) ∈ On
31 scutbdaybnd 27734 . . . . . . . 8 (({𝑛} <<s ∅ ∧ suc ( bday 𝑛) ∈ On ∧ ( bday “ ({𝑛} ∪ ∅)) ⊆ suc ( bday 𝑛)) → ( bday ‘({𝑛} |s ∅)) ⊆ suc ( bday 𝑛))
3230, 31mp3an2 1451 . . . . . . 7 (({𝑛} <<s ∅ ∧ ( bday “ ({𝑛} ∪ ∅)) ⊆ suc ( bday 𝑛)) → ( bday ‘({𝑛} |s ∅)) ⊆ suc ( bday 𝑛))
3317, 28, 32syl2anc 584 . . . . . 6 (𝑛 ∈ ℕ0s → ( bday ‘({𝑛} |s ∅)) ⊆ suc ( bday 𝑛))
3413, 33eqsstrd 3984 . . . . 5 (𝑛 ∈ ℕ0s → ( bday ‘(𝑛 +s 1s )) ⊆ suc ( bday 𝑛))
35 bdayelon 27695 . . . . . 6 ( bday ‘(𝑛 +s 1s )) ∈ On
36 onsssuc 6427 . . . . . 6 ((( bday ‘(𝑛 +s 1s )) ∈ On ∧ suc ( bday 𝑛) ∈ On) → (( bday ‘(𝑛 +s 1s )) ⊆ suc ( bday 𝑛) ↔ ( bday ‘(𝑛 +s 1s )) ∈ suc suc ( bday 𝑛)))
3735, 30, 36mp2an 692 . . . . 5 (( bday ‘(𝑛 +s 1s )) ⊆ suc ( bday 𝑛) ↔ ( bday ‘(𝑛 +s 1s )) ∈ suc suc ( bday 𝑛))
3834, 37sylib 218 . . . 4 (𝑛 ∈ ℕ0s → ( bday ‘(𝑛 +s 1s )) ∈ suc suc ( bday 𝑛))
39 peano2 7869 . . . . 5 (( bday 𝑛) ∈ ω → suc ( bday 𝑛) ∈ ω)
40 peano2 7869 . . . . 5 (suc ( bday 𝑛) ∈ ω → suc suc ( bday 𝑛) ∈ ω)
4139, 40syl 17 . . . 4 (( bday 𝑛) ∈ ω → suc suc ( bday 𝑛) ∈ ω)
42 elnn 7856 . . . 4 ((( bday ‘(𝑛 +s 1s )) ∈ suc suc ( bday 𝑛) ∧ suc suc ( bday 𝑛) ∈ ω) → ( bday ‘(𝑛 +s 1s )) ∈ ω)
4338, 41, 42syl2an 596 . . 3 ((𝑛 ∈ ℕ0s ∧ ( bday 𝑛) ∈ ω) → ( bday ‘(𝑛 +s 1s )) ∈ ω)
4443ex 412 . 2 (𝑛 ∈ ℕ0s → (( bday 𝑛) ∈ ω → ( bday ‘(𝑛 +s 1s )) ∈ ω))
452, 4, 6, 8, 11, 44n0sind 28232 1 (𝐴 ∈ ℕ0s → ( bday 𝐴) ∈ ω)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206   = wceq 1540  wcel 2109  cun 3915  wss 3917  c0 4299  𝒫 cpw 4566  {csn 4592   class class class wbr 5110  cima 5644  Oncon0 6335  suc csuc 6337   Fn wfn 6509  cfv 6514  (class class class)co 7390  ωcom 7845   No csur 27558   bday cbday 27560   <<s csslt 27699   |s cscut 27701   0s c0s 27741   1s c1s 27742   +s cadds 27873  0scnn0s 28213
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-tp 4597  df-op 4599  df-ot 4601  df-uni 4875  df-int 4914  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-se 5595  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-om 7846  df-1st 7971  df-2nd 7972  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-1o 8437  df-2o 8438  df-nadd 8633  df-no 27561  df-slt 27562  df-bday 27563  df-sle 27664  df-sslt 27700  df-scut 27702  df-0s 27743  df-1s 27744  df-made 27762  df-old 27763  df-left 27765  df-right 27766  df-norec 27852  df-norec2 27863  df-adds 27874  df-negs 27934  df-subs 27935  df-n0s 28215
This theorem is referenced by:  n0ssold  28252  onltn0s  28255  bdayn0sf1o  28266  zsbday  28301
  Copyright terms: Public domain W3C validator