| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 1sno | Structured version Visualization version GIF version | ||
| Description: Surreal one is a surreal. (Contributed by Scott Fenton, 7-Aug-2024.) |
| Ref | Expression |
|---|---|
| 1sno | ⊢ 1s ∈ No |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-1s 27737 | . 2 ⊢ 1s = ({ 0s } |s ∅) | |
| 2 | 0sno 27738 | . . . . 5 ⊢ 0s ∈ No | |
| 3 | snelpwi 5403 | . . . . 5 ⊢ ( 0s ∈ No → { 0s } ∈ 𝒫 No ) | |
| 4 | 2, 3 | ax-mp 5 | . . . 4 ⊢ { 0s } ∈ 𝒫 No |
| 5 | nulssgt 27710 | . . . 4 ⊢ ({ 0s } ∈ 𝒫 No → { 0s } <<s ∅) | |
| 6 | 4, 5 | ax-mp 5 | . . 3 ⊢ { 0s } <<s ∅ |
| 7 | scutcl 27714 | . . 3 ⊢ ({ 0s } <<s ∅ → ({ 0s } |s ∅) ∈ No ) | |
| 8 | 6, 7 | ax-mp 5 | . 2 ⊢ ({ 0s } |s ∅) ∈ No |
| 9 | 1, 8 | eqeltri 2824 | 1 ⊢ 1s ∈ No |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2109 ∅c0 4296 𝒫 cpw 4563 {csn 4589 class class class wbr 5107 (class class class)co 7387 No csur 27551 <<s csslt 27692 |s cscut 27694 0s c0s 27734 1s c1s 27735 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5234 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rmo 3354 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-tp 4594 df-op 4596 df-uni 4872 df-int 4911 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-ord 6335 df-on 6336 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-riota 7344 df-ov 7390 df-oprab 7391 df-mpo 7392 df-1o 8434 df-2o 8435 df-no 27554 df-slt 27555 df-bday 27556 df-sslt 27693 df-scut 27695 df-0s 27736 df-1s 27737 |
| This theorem is referenced by: cuteq1 27746 right1s 27807 peano2no 27891 sltp1d 27922 negs1s 27933 sltm1d 28005 mulsrid 28016 mulslid 28045 divs1 28107 precsexlem8 28116 precsexlem9 28117 precsexlem10 28118 precsexlem11 28119 divsrecd 28136 divsdird 28137 1ons 28158 n0scut 28226 n0scut2 28227 n0ons 28228 n0sge0 28230 n0s0suc 28234 nnsge1 28235 n0addscl 28236 n0mulscl 28237 1n0s 28240 nnsrecgt0d 28243 n0sfincut 28246 n0s0m1 28252 n0subs 28253 n0sltp1le 28255 n0sleltp1 28256 n0slem1lt 28257 n0p1nns 28260 dfnns2 28261 nnsind 28262 nn1m1nns 28263 nnm1n0s 28264 eucliddivs 28265 nnzs 28274 0zs 28276 elzn0s 28286 peano5uzs 28292 zscut 28295 1p1e2s 28302 no2times 28303 n0seo 28307 zseo 28308 twocut 28309 nohalf 28310 expsval 28311 exps1 28314 expsp1 28315 expscl 28317 expadds 28320 pw2recs 28323 pw2divsrecd 28330 pw2divsdird 28331 halfcut 28333 addhalfcut 28334 pw2cut 28335 pw2cutp1 28336 zs12bday 28343 recut 28347 0reno 28348 renegscl 28349 readdscl 28350 remulscllem1 28351 remulscl 28353 |
| Copyright terms: Public domain | W3C validator |