MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  1sno Structured version   Visualization version   GIF version

Theorem 1sno 27679
Description: Surreal one is a surreal. (Contributed by Scott Fenton, 7-Aug-2024.)
Assertion
Ref Expression
1sno 1s No

Proof of Theorem 1sno
StepHypRef Expression
1 df-1s 27677 . 2 1s = ({ 0s } |s ∅)
2 0sno 27678 . . . . 5 0s No
3 snelpwi 5434 . . . . 5 ( 0s No → { 0s } ∈ 𝒫 No )
42, 3ax-mp 5 . . . 4 { 0s } ∈ 𝒫 No
5 nulssgt 27650 . . . 4 ({ 0s } ∈ 𝒫 No → { 0s } <<s ∅)
64, 5ax-mp 5 . . 3 { 0s } <<s ∅
7 scutcl 27654 . . 3 ({ 0s } <<s ∅ → ({ 0s } |s ∅) ∈ No )
86, 7ax-mp 5 . 2 ({ 0s } |s ∅) ∈ No
91, 8eqeltri 2821 1 1s No
Colors of variables: wff setvar class
Syntax hints:  wcel 2098  c0 4315  𝒫 cpw 4595  {csn 4621   class class class wbr 5139  (class class class)co 7402   No csur 27492   <<s csslt 27632   |s cscut 27634   0s c0s 27674   1s c1s 27675
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2695  ax-rep 5276  ax-sep 5290  ax-nul 5297  ax-pr 5418  ax-un 7719
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2526  df-eu 2555  df-clab 2702  df-cleq 2716  df-clel 2802  df-nfc 2877  df-ne 2933  df-ral 3054  df-rex 3063  df-rmo 3368  df-reu 3369  df-rab 3425  df-v 3468  df-sbc 3771  df-csb 3887  df-dif 3944  df-un 3946  df-in 3948  df-ss 3958  df-pss 3960  df-nul 4316  df-if 4522  df-pw 4597  df-sn 4622  df-pr 4624  df-tp 4626  df-op 4628  df-uni 4901  df-int 4942  df-iun 4990  df-br 5140  df-opab 5202  df-mpt 5223  df-tr 5257  df-id 5565  df-eprel 5571  df-po 5579  df-so 5580  df-fr 5622  df-we 5624  df-xp 5673  df-rel 5674  df-cnv 5675  df-co 5676  df-dm 5677  df-rn 5678  df-res 5679  df-ima 5680  df-ord 6358  df-on 6359  df-suc 6361  df-iota 6486  df-fun 6536  df-fn 6537  df-f 6538  df-f1 6539  df-fo 6540  df-f1o 6541  df-fv 6542  df-riota 7358  df-ov 7405  df-oprab 7406  df-mpo 7407  df-1o 8462  df-2o 8463  df-no 27495  df-slt 27496  df-bday 27497  df-sslt 27633  df-scut 27635  df-0s 27676  df-1s 27677
This theorem is referenced by:  cuteq1  27685  right1s  27741  peano2no  27820  mulsrid  27932  mulslid  27961  divs1  28022  precsexlem8  28031  precsexlem9  28032  precsexlem10  28033  precsexlem11  28034  1ons  28069  om2noseqlt  28091  n0scut  28122  n0ons  28123  n0sge0  28125  n0addscl  28129  n0mulscl  28130  1n0s  28133  n0sbday  28136  nnsrecgt0d  28138  recut  28143  0reno  28144  renegscl  28145  readdscl  28146  remulscllem1  28147  remulscl  28149
  Copyright terms: Public domain W3C validator