![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 1sno | Structured version Visualization version GIF version |
Description: Surreal one is a surreal. (Contributed by Scott Fenton, 7-Aug-2024.) |
Ref | Expression |
---|---|
1sno | ⊢ 1s ∈ No |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-1s 27888 | . 2 ⊢ 1s = ({ 0s } |s ∅) | |
2 | 0sno 27889 | . . . . 5 ⊢ 0s ∈ No | |
3 | snelpwi 5463 | . . . . 5 ⊢ ( 0s ∈ No → { 0s } ∈ 𝒫 No ) | |
4 | 2, 3 | ax-mp 5 | . . . 4 ⊢ { 0s } ∈ 𝒫 No |
5 | nulssgt 27861 | . . . 4 ⊢ ({ 0s } ∈ 𝒫 No → { 0s } <<s ∅) | |
6 | 4, 5 | ax-mp 5 | . . 3 ⊢ { 0s } <<s ∅ |
7 | scutcl 27865 | . . 3 ⊢ ({ 0s } <<s ∅ → ({ 0s } |s ∅) ∈ No ) | |
8 | 6, 7 | ax-mp 5 | . 2 ⊢ ({ 0s } |s ∅) ∈ No |
9 | 1, 8 | eqeltri 2840 | 1 ⊢ 1s ∈ No |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2108 ∅c0 4352 𝒫 cpw 4622 {csn 4648 class class class wbr 5166 (class class class)co 7448 No csur 27702 <<s csslt 27843 |s cscut 27845 0s c0s 27885 1s c1s 27886 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-rep 5303 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-rmo 3388 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-tp 4653 df-op 4655 df-uni 4932 df-int 4971 df-br 5167 df-opab 5229 df-mpt 5250 df-tr 5284 df-id 5593 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-we 5654 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-ord 6398 df-on 6399 df-suc 6401 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-riota 7404 df-ov 7451 df-oprab 7452 df-mpo 7453 df-1o 8522 df-2o 8523 df-no 27705 df-slt 27706 df-bday 27707 df-sslt 27844 df-scut 27846 df-0s 27887 df-1s 27888 |
This theorem is referenced by: cuteq1 27896 right1s 27952 peano2no 28035 sltp1d 28066 negs1s 28077 sltm1d 28149 mulsrid 28157 mulslid 28186 divs1 28247 precsexlem8 28256 precsexlem9 28257 precsexlem10 28258 precsexlem11 28259 divsrecd 28276 divsdird 28277 1ons 28298 om2noseqlt 28323 n0scut 28356 n0ons 28357 n0sge0 28359 n0s0suc 28363 nnsge1 28364 n0addscl 28365 n0mulscl 28366 1n0s 28369 n0sbday 28372 nnsrecgt0d 28374 n0s0m1 28377 n0subs 28378 n0p1nns 28379 dfnns2 28380 nnsind 28381 nnzs 28390 0zs 28392 elzn0s 28402 peano5uzs 28408 zscut 28411 1p1e2s 28418 no2times 28419 n0seo 28423 zseo 28424 nohalf 28425 expsval 28426 exps1 28429 expsp1 28430 expscl 28431 cutpw2 28435 pw2bday 28436 addhalfcut 28437 pw2cut 28438 zs12bday 28442 recut 28446 0reno 28447 renegscl 28448 readdscl 28449 remulscllem1 28450 remulscl 28452 |
Copyright terms: Public domain | W3C validator |