| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 1sno | Structured version Visualization version GIF version | ||
| Description: Surreal one is a surreal. (Contributed by Scott Fenton, 7-Aug-2024.) |
| Ref | Expression |
|---|---|
| 1sno | ⊢ 1s ∈ No |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-1s 27739 | . 2 ⊢ 1s = ({ 0s } |s ∅) | |
| 2 | 0sno 27740 | . . . . 5 ⊢ 0s ∈ No | |
| 3 | snelpwi 5386 | . . . . 5 ⊢ ( 0s ∈ No → { 0s } ∈ 𝒫 No ) | |
| 4 | 2, 3 | ax-mp 5 | . . . 4 ⊢ { 0s } ∈ 𝒫 No |
| 5 | nulssgt 27709 | . . . 4 ⊢ ({ 0s } ∈ 𝒫 No → { 0s } <<s ∅) | |
| 6 | 4, 5 | ax-mp 5 | . . 3 ⊢ { 0s } <<s ∅ |
| 7 | scutcl 27713 | . . 3 ⊢ ({ 0s } <<s ∅ → ({ 0s } |s ∅) ∈ No ) | |
| 8 | 6, 7 | ax-mp 5 | . 2 ⊢ ({ 0s } |s ∅) ∈ No |
| 9 | 1, 8 | eqeltri 2824 | 1 ⊢ 1s ∈ No |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2109 ∅c0 4284 𝒫 cpw 4551 {csn 4577 class class class wbr 5092 (class class class)co 7349 No csur 27549 <<s csslt 27691 |s cscut 27693 0s c0s 27736 1s c1s 27737 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5218 ax-sep 5235 ax-nul 5245 ax-pow 5304 ax-pr 5371 ax-un 7671 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rmo 3343 df-reu 3344 df-rab 3395 df-v 3438 df-sbc 3743 df-csb 3852 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-pss 3923 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-tp 4582 df-op 4584 df-uni 4859 df-int 4897 df-br 5093 df-opab 5155 df-mpt 5174 df-tr 5200 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-ord 6310 df-on 6311 df-suc 6313 df-iota 6438 df-fun 6484 df-fn 6485 df-f 6486 df-f1 6487 df-fo 6488 df-f1o 6489 df-fv 6490 df-riota 7306 df-ov 7352 df-oprab 7353 df-mpo 7354 df-1o 8388 df-2o 8389 df-no 27552 df-slt 27553 df-bday 27554 df-sslt 27692 df-scut 27694 df-0s 27738 df-1s 27739 |
| This theorem is referenced by: cuteq1 27748 right1s 27810 peano2no 27896 sltp1d 27927 negs1s 27938 sltm1d 28010 mulsrid 28021 mulslid 28050 divs1 28112 precsexlem8 28121 precsexlem9 28122 precsexlem10 28123 precsexlem11 28124 divsrecd 28141 divsdird 28142 1ons 28163 n0scut 28231 n0scut2 28232 n0ons 28233 n0sge0 28235 n0s0suc 28239 nnsge1 28240 n0addscl 28241 n0mulscl 28242 1n0s 28245 nnsrecgt0d 28248 n0sfincut 28251 n0s0m1 28257 n0subs 28258 n0sltp1le 28260 n0sleltp1 28261 n0slem1lt 28262 n0p1nns 28265 dfnns2 28266 nnsind 28267 nn1m1nns 28268 nnm1n0s 28269 eucliddivs 28270 nnzs 28279 0zs 28281 elzn0s 28291 peano5uzs 28297 zscut 28300 1p1e2s 28308 no2times 28309 n0seo 28313 zseo 28314 twocut 28315 nohalf 28316 expsval 28317 exps1 28320 expsp1 28321 expscl 28323 expadds 28327 pw2recs 28330 pw2divsrecd 28339 pw2divsdird 28340 halfcut 28346 addhalfcut 28347 pw2cut 28348 pw2cutp1 28349 zs12bday 28361 recut 28365 0reno 28366 renegscl 28367 readdscl 28368 remulscllem1 28369 remulscl 28371 |
| Copyright terms: Public domain | W3C validator |