| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 1sno | Structured version Visualization version GIF version | ||
| Description: Surreal one is a surreal. (Contributed by Scott Fenton, 7-Aug-2024.) |
| Ref | Expression |
|---|---|
| 1sno | ⊢ 1s ∈ No |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-1s 27769 | . 2 ⊢ 1s = ({ 0s } |s ∅) | |
| 2 | 0sno 27770 | . . . . 5 ⊢ 0s ∈ No | |
| 3 | snelpwi 5383 | . . . . 5 ⊢ ( 0s ∈ No → { 0s } ∈ 𝒫 No ) | |
| 4 | 2, 3 | ax-mp 5 | . . . 4 ⊢ { 0s } ∈ 𝒫 No |
| 5 | nulssgt 27739 | . . . 4 ⊢ ({ 0s } ∈ 𝒫 No → { 0s } <<s ∅) | |
| 6 | 4, 5 | ax-mp 5 | . . 3 ⊢ { 0s } <<s ∅ |
| 7 | scutcl 27743 | . . 3 ⊢ ({ 0s } <<s ∅ → ({ 0s } |s ∅) ∈ No ) | |
| 8 | 6, 7 | ax-mp 5 | . 2 ⊢ ({ 0s } |s ∅) ∈ No |
| 9 | 1, 8 | eqeltri 2827 | 1 ⊢ 1s ∈ No |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2111 ∅c0 4280 𝒫 cpw 4547 {csn 4573 class class class wbr 5089 (class class class)co 7346 No csur 27578 <<s csslt 27720 |s cscut 27722 0s c0s 27766 1s c1s 27767 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5215 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7668 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-tp 4578 df-op 4580 df-uni 4857 df-int 4896 df-br 5090 df-opab 5152 df-mpt 5171 df-tr 5197 df-id 5509 df-eprel 5514 df-po 5522 df-so 5523 df-fr 5567 df-we 5569 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-ord 6309 df-on 6310 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-1o 8385 df-2o 8386 df-no 27581 df-slt 27582 df-bday 27583 df-sslt 27721 df-scut 27723 df-0s 27768 df-1s 27769 |
| This theorem is referenced by: cuteq1 27778 right1s 27841 peano2no 27927 sltp1d 27958 negs1s 27969 sltm1d 28041 mulsrid 28052 mulslid 28081 divs1 28143 precsexlem8 28152 precsexlem9 28153 precsexlem10 28154 precsexlem11 28155 divsrecd 28172 divsdird 28173 1ons 28194 n0scut 28262 n0scut2 28263 n0ons 28264 n0sge0 28266 n0s0suc 28270 nnsge1 28271 n0addscl 28272 n0mulscl 28273 1n0s 28276 nnsrecgt0d 28279 n0sfincut 28282 n0s0m1 28288 n0subs 28289 n0sltp1le 28291 n0sleltp1 28292 n0slem1lt 28293 n0p1nns 28296 dfnns2 28297 nnsind 28298 nn1m1nns 28299 nnm1n0s 28300 eucliddivs 28301 nnzs 28310 0zs 28312 elzn0s 28322 peano5uzs 28328 zscut 28331 1p1e2s 28339 no2times 28340 n0seo 28344 zseo 28345 twocut 28346 nohalf 28347 expsval 28348 exps1 28351 expsp1 28352 expscl 28354 expadds 28358 pw2recs 28361 pw2divsrecd 28370 pw2divsdird 28371 halfcut 28378 addhalfcut 28379 pw2cut 28380 pw2cutp1 28381 pw2cut2 28382 zs12bday 28394 recut 28398 0reno 28399 renegscl 28400 readdscl 28401 remulscllem1 28402 remulscl 28404 |
| Copyright terms: Public domain | W3C validator |