| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 1sno | Structured version Visualization version GIF version | ||
| Description: Surreal one is a surreal. (Contributed by Scott Fenton, 7-Aug-2024.) |
| Ref | Expression |
|---|---|
| 1sno | ⊢ 1s ∈ No |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-1s 27794 | . 2 ⊢ 1s = ({ 0s } |s ∅) | |
| 2 | 0sno 27795 | . . . . 5 ⊢ 0s ∈ No | |
| 3 | snelpwi 5423 | . . . . 5 ⊢ ( 0s ∈ No → { 0s } ∈ 𝒫 No ) | |
| 4 | 2, 3 | ax-mp 5 | . . . 4 ⊢ { 0s } ∈ 𝒫 No |
| 5 | nulssgt 27767 | . . . 4 ⊢ ({ 0s } ∈ 𝒫 No → { 0s } <<s ∅) | |
| 6 | 4, 5 | ax-mp 5 | . . 3 ⊢ { 0s } <<s ∅ |
| 7 | scutcl 27771 | . . 3 ⊢ ({ 0s } <<s ∅ → ({ 0s } |s ∅) ∈ No ) | |
| 8 | 6, 7 | ax-mp 5 | . 2 ⊢ ({ 0s } |s ∅) ∈ No |
| 9 | 1, 8 | eqeltri 2831 | 1 ⊢ 1s ∈ No |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2109 ∅c0 4313 𝒫 cpw 4580 {csn 4606 class class class wbr 5124 (class class class)co 7410 No csur 27608 <<s csslt 27749 |s cscut 27751 0s c0s 27791 1s c1s 27792 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-rep 5254 ax-sep 5271 ax-nul 5281 ax-pow 5340 ax-pr 5407 ax-un 7734 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-ral 3053 df-rex 3062 df-rmo 3364 df-reu 3365 df-rab 3421 df-v 3466 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-pss 3951 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-tp 4611 df-op 4613 df-uni 4889 df-int 4928 df-br 5125 df-opab 5187 df-mpt 5207 df-tr 5235 df-id 5553 df-eprel 5558 df-po 5566 df-so 5567 df-fr 5611 df-we 5613 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-res 5671 df-ima 5672 df-ord 6360 df-on 6361 df-suc 6363 df-iota 6489 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fo 6542 df-f1o 6543 df-fv 6544 df-riota 7367 df-ov 7413 df-oprab 7414 df-mpo 7415 df-1o 8485 df-2o 8486 df-no 27611 df-slt 27612 df-bday 27613 df-sslt 27750 df-scut 27752 df-0s 27793 df-1s 27794 |
| This theorem is referenced by: cuteq1 27803 right1s 27864 peano2no 27948 sltp1d 27979 negs1s 27990 sltm1d 28062 mulsrid 28073 mulslid 28102 divs1 28164 precsexlem8 28173 precsexlem9 28174 precsexlem10 28175 precsexlem11 28176 divsrecd 28193 divsdird 28194 1ons 28215 n0scut 28283 n0scut2 28284 n0ons 28285 n0sge0 28287 n0s0suc 28291 nnsge1 28292 n0addscl 28293 n0mulscl 28294 1n0s 28297 nnsrecgt0d 28300 n0sfincut 28303 n0s0m1 28309 n0subs 28310 n0sltp1le 28312 n0sleltp1 28313 n0slem1lt 28314 n0p1nns 28317 dfnns2 28318 nnsind 28319 nn1m1nns 28320 nnm1n0s 28321 eucliddivs 28322 nnzs 28331 0zs 28333 elzn0s 28343 peano5uzs 28349 zscut 28352 1p1e2s 28359 no2times 28360 n0seo 28364 zseo 28365 twocut 28366 nohalf 28367 expsval 28368 exps1 28371 expsp1 28372 expscl 28374 expadds 28377 pw2recs 28380 pw2divsrecd 28387 pw2divsdird 28388 halfcut 28390 addhalfcut 28391 pw2cut 28392 pw2cutp1 28393 zs12bday 28400 recut 28404 0reno 28405 renegscl 28406 readdscl 28407 remulscllem1 28408 remulscl 28410 |
| Copyright terms: Public domain | W3C validator |