| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 1sno | Structured version Visualization version GIF version | ||
| Description: Surreal one is a surreal. (Contributed by Scott Fenton, 7-Aug-2024.) |
| Ref | Expression |
|---|---|
| 1sno | ⊢ 1s ∈ No |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-1s 27774 | . 2 ⊢ 1s = ({ 0s } |s ∅) | |
| 2 | 0sno 27775 | . . . . 5 ⊢ 0s ∈ No | |
| 3 | snelpwi 5398 | . . . . 5 ⊢ ( 0s ∈ No → { 0s } ∈ 𝒫 No ) | |
| 4 | 2, 3 | ax-mp 5 | . . . 4 ⊢ { 0s } ∈ 𝒫 No |
| 5 | nulssgt 27744 | . . . 4 ⊢ ({ 0s } ∈ 𝒫 No → { 0s } <<s ∅) | |
| 6 | 4, 5 | ax-mp 5 | . . 3 ⊢ { 0s } <<s ∅ |
| 7 | scutcl 27748 | . . 3 ⊢ ({ 0s } <<s ∅ → ({ 0s } |s ∅) ∈ No ) | |
| 8 | 6, 7 | ax-mp 5 | . 2 ⊢ ({ 0s } |s ∅) ∈ No |
| 9 | 1, 8 | eqeltri 2824 | 1 ⊢ 1s ∈ No |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2109 ∅c0 4292 𝒫 cpw 4559 {csn 4585 class class class wbr 5102 (class class class)co 7369 No csur 27584 <<s csslt 27726 |s cscut 27728 0s c0s 27771 1s c1s 27772 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5229 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rmo 3351 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3931 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-tp 4590 df-op 4592 df-uni 4868 df-int 4907 df-br 5103 df-opab 5165 df-mpt 5184 df-tr 5210 df-id 5526 df-eprel 5531 df-po 5539 df-so 5540 df-fr 5584 df-we 5586 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-ord 6323 df-on 6324 df-suc 6326 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-riota 7326 df-ov 7372 df-oprab 7373 df-mpo 7374 df-1o 8411 df-2o 8412 df-no 27587 df-slt 27588 df-bday 27589 df-sslt 27727 df-scut 27729 df-0s 27773 df-1s 27774 |
| This theorem is referenced by: cuteq1 27783 right1s 27845 peano2no 27931 sltp1d 27962 negs1s 27973 sltm1d 28045 mulsrid 28056 mulslid 28085 divs1 28147 precsexlem8 28156 precsexlem9 28157 precsexlem10 28158 precsexlem11 28159 divsrecd 28176 divsdird 28177 1ons 28198 n0scut 28266 n0scut2 28267 n0ons 28268 n0sge0 28270 n0s0suc 28274 nnsge1 28275 n0addscl 28276 n0mulscl 28277 1n0s 28280 nnsrecgt0d 28283 n0sfincut 28286 n0s0m1 28292 n0subs 28293 n0sltp1le 28295 n0sleltp1 28296 n0slem1lt 28297 n0p1nns 28300 dfnns2 28301 nnsind 28302 nn1m1nns 28303 nnm1n0s 28304 eucliddivs 28305 nnzs 28314 0zs 28316 elzn0s 28326 peano5uzs 28332 zscut 28335 1p1e2s 28343 no2times 28344 n0seo 28348 zseo 28349 twocut 28350 nohalf 28351 expsval 28352 exps1 28355 expsp1 28356 expscl 28358 expadds 28362 pw2recs 28365 pw2divsrecd 28374 pw2divsdird 28375 halfcut 28381 addhalfcut 28382 pw2cut 28383 pw2cutp1 28384 zs12bday 28396 recut 28400 0reno 28401 renegscl 28402 readdscl 28403 remulscllem1 28404 remulscl 28406 |
| Copyright terms: Public domain | W3C validator |