Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > ome0 | Structured version Visualization version GIF version |
Description: The outer measure of the empty set is 0 . (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
Ref | Expression |
---|---|
ome0.1 | ⊢ (𝜑 → 𝑂 ∈ OutMeas) |
Ref | Expression |
---|---|
ome0 | ⊢ (𝜑 → (𝑂‘∅) = 0) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ome0.1 | . . . 4 ⊢ (𝜑 → 𝑂 ∈ OutMeas) | |
2 | isome 43922 | . . . . 5 ⊢ (𝑂 ∈ OutMeas → (𝑂 ∈ OutMeas ↔ ((((𝑂:dom 𝑂⟶(0[,]+∞) ∧ dom 𝑂 = 𝒫 ∪ dom 𝑂) ∧ (𝑂‘∅) = 0) ∧ ∀𝑥 ∈ 𝒫 ∪ dom 𝑂∀𝑦 ∈ 𝒫 𝑥(𝑂‘𝑦) ≤ (𝑂‘𝑥)) ∧ ∀𝑥 ∈ 𝒫 dom 𝑂(𝑥 ≼ ω → (𝑂‘∪ 𝑥) ≤ (Σ^‘(𝑂 ↾ 𝑥)))))) | |
3 | 1, 2 | syl 17 | . . . 4 ⊢ (𝜑 → (𝑂 ∈ OutMeas ↔ ((((𝑂:dom 𝑂⟶(0[,]+∞) ∧ dom 𝑂 = 𝒫 ∪ dom 𝑂) ∧ (𝑂‘∅) = 0) ∧ ∀𝑥 ∈ 𝒫 ∪ dom 𝑂∀𝑦 ∈ 𝒫 𝑥(𝑂‘𝑦) ≤ (𝑂‘𝑥)) ∧ ∀𝑥 ∈ 𝒫 dom 𝑂(𝑥 ≼ ω → (𝑂‘∪ 𝑥) ≤ (Σ^‘(𝑂 ↾ 𝑥)))))) |
4 | 1, 3 | mpbid 231 | . . 3 ⊢ (𝜑 → ((((𝑂:dom 𝑂⟶(0[,]+∞) ∧ dom 𝑂 = 𝒫 ∪ dom 𝑂) ∧ (𝑂‘∅) = 0) ∧ ∀𝑥 ∈ 𝒫 ∪ dom 𝑂∀𝑦 ∈ 𝒫 𝑥(𝑂‘𝑦) ≤ (𝑂‘𝑥)) ∧ ∀𝑥 ∈ 𝒫 dom 𝑂(𝑥 ≼ ω → (𝑂‘∪ 𝑥) ≤ (Σ^‘(𝑂 ↾ 𝑥))))) |
5 | 4 | simplld 764 | . 2 ⊢ (𝜑 → ((𝑂:dom 𝑂⟶(0[,]+∞) ∧ dom 𝑂 = 𝒫 ∪ dom 𝑂) ∧ (𝑂‘∅) = 0)) |
6 | 5 | simprd 495 | 1 ⊢ (𝜑 → (𝑂‘∅) = 0) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 = wceq 1539 ∈ wcel 2108 ∀wral 3063 ∅c0 4253 𝒫 cpw 4530 ∪ cuni 4836 class class class wbr 5070 dom cdm 5580 ↾ cres 5582 ⟶wf 6414 ‘cfv 6418 (class class class)co 7255 ωcom 7687 ≼ cdom 8689 0cc0 10802 +∞cpnf 10937 ≤ cle 10941 [,]cicc 13011 Σ^csumge0 43790 OutMeascome 43917 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-ral 3068 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-opab 5133 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-fv 6426 df-ome 43918 |
This theorem is referenced by: caragen0 43934 caragenunidm 43936 caratheodory 43956 |
Copyright terms: Public domain | W3C validator |