| Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > ome0 | Structured version Visualization version GIF version | ||
| Description: The outer measure of the empty set is 0 . (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
| Ref | Expression |
|---|---|
| ome0.1 | ⊢ (𝜑 → 𝑂 ∈ OutMeas) |
| Ref | Expression |
|---|---|
| ome0 | ⊢ (𝜑 → (𝑂‘∅) = 0) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ome0.1 | . . . 4 ⊢ (𝜑 → 𝑂 ∈ OutMeas) | |
| 2 | isome 46619 | . . . . 5 ⊢ (𝑂 ∈ OutMeas → (𝑂 ∈ OutMeas ↔ ((((𝑂:dom 𝑂⟶(0[,]+∞) ∧ dom 𝑂 = 𝒫 ∪ dom 𝑂) ∧ (𝑂‘∅) = 0) ∧ ∀𝑥 ∈ 𝒫 ∪ dom 𝑂∀𝑦 ∈ 𝒫 𝑥(𝑂‘𝑦) ≤ (𝑂‘𝑥)) ∧ ∀𝑥 ∈ 𝒫 dom 𝑂(𝑥 ≼ ω → (𝑂‘∪ 𝑥) ≤ (Σ^‘(𝑂 ↾ 𝑥)))))) | |
| 3 | 1, 2 | syl 17 | . . . 4 ⊢ (𝜑 → (𝑂 ∈ OutMeas ↔ ((((𝑂:dom 𝑂⟶(0[,]+∞) ∧ dom 𝑂 = 𝒫 ∪ dom 𝑂) ∧ (𝑂‘∅) = 0) ∧ ∀𝑥 ∈ 𝒫 ∪ dom 𝑂∀𝑦 ∈ 𝒫 𝑥(𝑂‘𝑦) ≤ (𝑂‘𝑥)) ∧ ∀𝑥 ∈ 𝒫 dom 𝑂(𝑥 ≼ ω → (𝑂‘∪ 𝑥) ≤ (Σ^‘(𝑂 ↾ 𝑥)))))) |
| 4 | 1, 3 | mpbid 232 | . . 3 ⊢ (𝜑 → ((((𝑂:dom 𝑂⟶(0[,]+∞) ∧ dom 𝑂 = 𝒫 ∪ dom 𝑂) ∧ (𝑂‘∅) = 0) ∧ ∀𝑥 ∈ 𝒫 ∪ dom 𝑂∀𝑦 ∈ 𝒫 𝑥(𝑂‘𝑦) ≤ (𝑂‘𝑥)) ∧ ∀𝑥 ∈ 𝒫 dom 𝑂(𝑥 ≼ ω → (𝑂‘∪ 𝑥) ≤ (Σ^‘(𝑂 ↾ 𝑥))))) |
| 5 | 4 | simplld 767 | . 2 ⊢ (𝜑 → ((𝑂:dom 𝑂⟶(0[,]+∞) ∧ dom 𝑂 = 𝒫 ∪ dom 𝑂) ∧ (𝑂‘∅) = 0)) |
| 6 | 5 | simprd 495 | 1 ⊢ (𝜑 → (𝑂‘∅) = 0) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1541 ∈ wcel 2113 ∀wral 3048 ∅c0 4282 𝒫 cpw 4551 ∪ cuni 4860 class class class wbr 5095 dom cdm 5621 ↾ cres 5623 ⟶wf 6484 ‘cfv 6488 (class class class)co 7354 ωcom 7804 ≼ cdom 8875 0cc0 11015 +∞cpnf 11152 ≤ cle 11156 [,]cicc 13252 Σ^csumge0 46487 OutMeascome 46614 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-ext 2705 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2712 df-cleq 2725 df-clel 2808 df-ral 3049 df-rab 3397 df-v 3439 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4283 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-br 5096 df-opab 5158 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-iota 6444 df-fun 6490 df-fn 6491 df-f 6492 df-fv 6496 df-ome 46615 |
| This theorem is referenced by: caragen0 46631 caragenunidm 46633 caratheodory 46653 |
| Copyright terms: Public domain | W3C validator |