Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > ome0 | Structured version Visualization version GIF version |
Description: The outer measure of the empty set is 0 . (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
Ref | Expression |
---|---|
ome0.1 | ⊢ (𝜑 → 𝑂 ∈ OutMeas) |
Ref | Expression |
---|---|
ome0 | ⊢ (𝜑 → (𝑂‘∅) = 0) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ome0.1 | . . . 4 ⊢ (𝜑 → 𝑂 ∈ OutMeas) | |
2 | isome 44288 | . . . . 5 ⊢ (𝑂 ∈ OutMeas → (𝑂 ∈ OutMeas ↔ ((((𝑂:dom 𝑂⟶(0[,]+∞) ∧ dom 𝑂 = 𝒫 ∪ dom 𝑂) ∧ (𝑂‘∅) = 0) ∧ ∀𝑥 ∈ 𝒫 ∪ dom 𝑂∀𝑦 ∈ 𝒫 𝑥(𝑂‘𝑦) ≤ (𝑂‘𝑥)) ∧ ∀𝑥 ∈ 𝒫 dom 𝑂(𝑥 ≼ ω → (𝑂‘∪ 𝑥) ≤ (Σ^‘(𝑂 ↾ 𝑥)))))) | |
3 | 1, 2 | syl 17 | . . . 4 ⊢ (𝜑 → (𝑂 ∈ OutMeas ↔ ((((𝑂:dom 𝑂⟶(0[,]+∞) ∧ dom 𝑂 = 𝒫 ∪ dom 𝑂) ∧ (𝑂‘∅) = 0) ∧ ∀𝑥 ∈ 𝒫 ∪ dom 𝑂∀𝑦 ∈ 𝒫 𝑥(𝑂‘𝑦) ≤ (𝑂‘𝑥)) ∧ ∀𝑥 ∈ 𝒫 dom 𝑂(𝑥 ≼ ω → (𝑂‘∪ 𝑥) ≤ (Σ^‘(𝑂 ↾ 𝑥)))))) |
4 | 1, 3 | mpbid 231 | . . 3 ⊢ (𝜑 → ((((𝑂:dom 𝑂⟶(0[,]+∞) ∧ dom 𝑂 = 𝒫 ∪ dom 𝑂) ∧ (𝑂‘∅) = 0) ∧ ∀𝑥 ∈ 𝒫 ∪ dom 𝑂∀𝑦 ∈ 𝒫 𝑥(𝑂‘𝑦) ≤ (𝑂‘𝑥)) ∧ ∀𝑥 ∈ 𝒫 dom 𝑂(𝑥 ≼ ω → (𝑂‘∪ 𝑥) ≤ (Σ^‘(𝑂 ↾ 𝑥))))) |
5 | 4 | simplld 765 | . 2 ⊢ (𝜑 → ((𝑂:dom 𝑂⟶(0[,]+∞) ∧ dom 𝑂 = 𝒫 ∪ dom 𝑂) ∧ (𝑂‘∅) = 0)) |
6 | 5 | simprd 496 | 1 ⊢ (𝜑 → (𝑂‘∅) = 0) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 = wceq 1540 ∈ wcel 2105 ∀wral 3061 ∅c0 4266 𝒫 cpw 4544 ∪ cuni 4849 class class class wbr 5086 dom cdm 5607 ↾ cres 5609 ⟶wf 6461 ‘cfv 6465 (class class class)co 7316 ωcom 7758 ≼ cdom 8780 0cc0 10950 +∞cpnf 11085 ≤ cle 11089 [,]cicc 13161 Σ^csumge0 44156 OutMeascome 44283 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-ext 2707 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-sb 2067 df-clab 2714 df-cleq 2728 df-clel 2814 df-ral 3062 df-rab 3404 df-v 3442 df-dif 3899 df-un 3901 df-in 3903 df-ss 3913 df-nul 4267 df-if 4471 df-pw 4546 df-sn 4571 df-pr 4573 df-op 4577 df-uni 4850 df-br 5087 df-opab 5149 df-rel 5614 df-cnv 5615 df-co 5616 df-dm 5617 df-rn 5618 df-res 5619 df-iota 6417 df-fun 6467 df-fn 6468 df-f 6469 df-fv 6473 df-ome 44284 |
This theorem is referenced by: caragen0 44300 caragenunidm 44302 caratheodory 44322 |
Copyright terms: Public domain | W3C validator |