Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > caragenunidm | Structured version Visualization version GIF version |
Description: The base set of an outer measure belongs to the sigma-algebra generated by the Caratheodory's construction. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
Ref | Expression |
---|---|
caragenunidm.o | ⊢ (𝜑 → 𝑂 ∈ OutMeas) |
caragenunidm.x | ⊢ 𝑋 = ∪ dom 𝑂 |
caragenunidm.s | ⊢ 𝑆 = (CaraGen‘𝑂) |
Ref | Expression |
---|---|
caragenunidm | ⊢ (𝜑 → 𝑋 ∈ 𝑆) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | caragenunidm.o | . 2 ⊢ (𝜑 → 𝑂 ∈ OutMeas) | |
2 | caragenunidm.x | . 2 ⊢ 𝑋 = ∪ dom 𝑂 | |
3 | caragenunidm.s | . 2 ⊢ 𝑆 = (CaraGen‘𝑂) | |
4 | dmexg 7750 | . . . . 5 ⊢ (𝑂 ∈ OutMeas → dom 𝑂 ∈ V) | |
5 | uniexg 7593 | . . . . 5 ⊢ (dom 𝑂 ∈ V → ∪ dom 𝑂 ∈ V) | |
6 | 1, 4, 5 | 3syl 18 | . . . 4 ⊢ (𝜑 → ∪ dom 𝑂 ∈ V) |
7 | 2, 6 | eqeltrid 2843 | . . 3 ⊢ (𝜑 → 𝑋 ∈ V) |
8 | pwidg 4555 | . . 3 ⊢ (𝑋 ∈ V → 𝑋 ∈ 𝒫 𝑋) | |
9 | 7, 8 | syl 17 | . 2 ⊢ (𝜑 → 𝑋 ∈ 𝒫 𝑋) |
10 | elpwi 4542 | . . . . . . 7 ⊢ (𝑎 ∈ 𝒫 𝑋 → 𝑎 ⊆ 𝑋) | |
11 | df-ss 3904 | . . . . . . . 8 ⊢ (𝑎 ⊆ 𝑋 ↔ (𝑎 ∩ 𝑋) = 𝑎) | |
12 | 11 | biimpi 215 | . . . . . . 7 ⊢ (𝑎 ⊆ 𝑋 → (𝑎 ∩ 𝑋) = 𝑎) |
13 | 10, 12 | syl 17 | . . . . . 6 ⊢ (𝑎 ∈ 𝒫 𝑋 → (𝑎 ∩ 𝑋) = 𝑎) |
14 | 13 | fveq2d 6778 | . . . . 5 ⊢ (𝑎 ∈ 𝒫 𝑋 → (𝑂‘(𝑎 ∩ 𝑋)) = (𝑂‘𝑎)) |
15 | 14 | adantl 482 | . . . 4 ⊢ ((𝜑 ∧ 𝑎 ∈ 𝒫 𝑋) → (𝑂‘(𝑎 ∩ 𝑋)) = (𝑂‘𝑎)) |
16 | ssdif0 4297 | . . . . . . . 8 ⊢ (𝑎 ⊆ 𝑋 ↔ (𝑎 ∖ 𝑋) = ∅) | |
17 | 10, 16 | sylib 217 | . . . . . . 7 ⊢ (𝑎 ∈ 𝒫 𝑋 → (𝑎 ∖ 𝑋) = ∅) |
18 | 17 | fveq2d 6778 | . . . . . 6 ⊢ (𝑎 ∈ 𝒫 𝑋 → (𝑂‘(𝑎 ∖ 𝑋)) = (𝑂‘∅)) |
19 | 18 | adantl 482 | . . . . 5 ⊢ ((𝜑 ∧ 𝑎 ∈ 𝒫 𝑋) → (𝑂‘(𝑎 ∖ 𝑋)) = (𝑂‘∅)) |
20 | 1 | ome0 44035 | . . . . . 6 ⊢ (𝜑 → (𝑂‘∅) = 0) |
21 | 20 | adantr 481 | . . . . 5 ⊢ ((𝜑 ∧ 𝑎 ∈ 𝒫 𝑋) → (𝑂‘∅) = 0) |
22 | 19, 21 | eqtrd 2778 | . . . 4 ⊢ ((𝜑 ∧ 𝑎 ∈ 𝒫 𝑋) → (𝑂‘(𝑎 ∖ 𝑋)) = 0) |
23 | 15, 22 | oveq12d 7293 | . . 3 ⊢ ((𝜑 ∧ 𝑎 ∈ 𝒫 𝑋) → ((𝑂‘(𝑎 ∩ 𝑋)) +𝑒 (𝑂‘(𝑎 ∖ 𝑋))) = ((𝑂‘𝑎) +𝑒 0)) |
24 | iccssxr 13162 | . . . . 5 ⊢ (0[,]+∞) ⊆ ℝ* | |
25 | 1 | adantr 481 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑎 ∈ 𝒫 𝑋) → 𝑂 ∈ OutMeas) |
26 | 10 | adantl 482 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑎 ∈ 𝒫 𝑋) → 𝑎 ⊆ 𝑋) |
27 | 25, 2, 26 | omecl 44041 | . . . . 5 ⊢ ((𝜑 ∧ 𝑎 ∈ 𝒫 𝑋) → (𝑂‘𝑎) ∈ (0[,]+∞)) |
28 | 24, 27 | sselid 3919 | . . . 4 ⊢ ((𝜑 ∧ 𝑎 ∈ 𝒫 𝑋) → (𝑂‘𝑎) ∈ ℝ*) |
29 | 28 | xaddid1d 12977 | . . 3 ⊢ ((𝜑 ∧ 𝑎 ∈ 𝒫 𝑋) → ((𝑂‘𝑎) +𝑒 0) = (𝑂‘𝑎)) |
30 | eqidd 2739 | . . 3 ⊢ ((𝜑 ∧ 𝑎 ∈ 𝒫 𝑋) → (𝑂‘𝑎) = (𝑂‘𝑎)) | |
31 | 23, 29, 30 | 3eqtrd 2782 | . 2 ⊢ ((𝜑 ∧ 𝑎 ∈ 𝒫 𝑋) → ((𝑂‘(𝑎 ∩ 𝑋)) +𝑒 (𝑂‘(𝑎 ∖ 𝑋))) = (𝑂‘𝑎)) |
32 | 1, 2, 3, 9, 31 | carageneld 44040 | 1 ⊢ (𝜑 → 𝑋 ∈ 𝑆) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1539 ∈ wcel 2106 Vcvv 3432 ∖ cdif 3884 ∩ cin 3886 ⊆ wss 3887 ∅c0 4256 𝒫 cpw 4533 ∪ cuni 4839 dom cdm 5589 ‘cfv 6433 (class class class)co 7275 0cc0 10871 +∞cpnf 11006 ℝ*cxr 11008 +𝑒 cxad 12846 [,]cicc 13082 OutMeascome 44027 CaraGenccaragen 44029 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 ax-cnex 10927 ax-resscn 10928 ax-1cn 10929 ax-icn 10930 ax-addcl 10931 ax-addrcl 10932 ax-mulcl 10933 ax-mulrcl 10934 ax-mulcom 10935 ax-addass 10936 ax-mulass 10937 ax-distr 10938 ax-i2m1 10939 ax-1ne0 10940 ax-1rid 10941 ax-rnegex 10942 ax-rrecex 10943 ax-cnre 10944 ax-pre-lttri 10945 ax-pre-lttrn 10946 ax-pre-ltadd 10947 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-iun 4926 df-br 5075 df-opab 5137 df-mpt 5158 df-id 5489 df-po 5503 df-so 5504 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-ov 7278 df-oprab 7279 df-mpo 7280 df-1st 7831 df-2nd 7832 df-er 8498 df-en 8734 df-dom 8735 df-sdom 8736 df-pnf 11011 df-mnf 11012 df-xr 11013 df-ltxr 11014 df-xadd 12849 df-icc 13086 df-ome 44028 df-caragen 44030 |
This theorem is referenced by: caragenuni 44049 rrnmbl 44152 |
Copyright terms: Public domain | W3C validator |