Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  caragenunidm Structured version   Visualization version   GIF version

Theorem caragenunidm 46506
Description: The base set of an outer measure belongs to the sigma-algebra generated by the Caratheodory's construction. (Contributed by Glauco Siliprandi, 17-Aug-2020.)
Hypotheses
Ref Expression
caragenunidm.o (𝜑𝑂 ∈ OutMeas)
caragenunidm.x 𝑋 = dom 𝑂
caragenunidm.s 𝑆 = (CaraGen‘𝑂)
Assertion
Ref Expression
caragenunidm (𝜑𝑋𝑆)

Proof of Theorem caragenunidm
Dummy variable 𝑎 is distinct from all other variables.
StepHypRef Expression
1 caragenunidm.o . 2 (𝜑𝑂 ∈ OutMeas)
2 caragenunidm.x . 2 𝑋 = dom 𝑂
3 caragenunidm.s . 2 𝑆 = (CaraGen‘𝑂)
4 dmexg 7877 . . . . 5 (𝑂 ∈ OutMeas → dom 𝑂 ∈ V)
5 uniexg 7716 . . . . 5 (dom 𝑂 ∈ V → dom 𝑂 ∈ V)
61, 4, 53syl 18 . . . 4 (𝜑 dom 𝑂 ∈ V)
72, 6eqeltrid 2832 . . 3 (𝜑𝑋 ∈ V)
8 pwidg 4583 . . 3 (𝑋 ∈ V → 𝑋 ∈ 𝒫 𝑋)
97, 8syl 17 . 2 (𝜑𝑋 ∈ 𝒫 𝑋)
10 elpwi 4570 . . . . . . 7 (𝑎 ∈ 𝒫 𝑋𝑎𝑋)
11 dfss2 3932 . . . . . . . 8 (𝑎𝑋 ↔ (𝑎𝑋) = 𝑎)
1211biimpi 216 . . . . . . 7 (𝑎𝑋 → (𝑎𝑋) = 𝑎)
1310, 12syl 17 . . . . . 6 (𝑎 ∈ 𝒫 𝑋 → (𝑎𝑋) = 𝑎)
1413fveq2d 6862 . . . . 5 (𝑎 ∈ 𝒫 𝑋 → (𝑂‘(𝑎𝑋)) = (𝑂𝑎))
1514adantl 481 . . . 4 ((𝜑𝑎 ∈ 𝒫 𝑋) → (𝑂‘(𝑎𝑋)) = (𝑂𝑎))
16 ssdif0 4329 . . . . . . . 8 (𝑎𝑋 ↔ (𝑎𝑋) = ∅)
1710, 16sylib 218 . . . . . . 7 (𝑎 ∈ 𝒫 𝑋 → (𝑎𝑋) = ∅)
1817fveq2d 6862 . . . . . 6 (𝑎 ∈ 𝒫 𝑋 → (𝑂‘(𝑎𝑋)) = (𝑂‘∅))
1918adantl 481 . . . . 5 ((𝜑𝑎 ∈ 𝒫 𝑋) → (𝑂‘(𝑎𝑋)) = (𝑂‘∅))
201ome0 46495 . . . . . 6 (𝜑 → (𝑂‘∅) = 0)
2120adantr 480 . . . . 5 ((𝜑𝑎 ∈ 𝒫 𝑋) → (𝑂‘∅) = 0)
2219, 21eqtrd 2764 . . . 4 ((𝜑𝑎 ∈ 𝒫 𝑋) → (𝑂‘(𝑎𝑋)) = 0)
2315, 22oveq12d 7405 . . 3 ((𝜑𝑎 ∈ 𝒫 𝑋) → ((𝑂‘(𝑎𝑋)) +𝑒 (𝑂‘(𝑎𝑋))) = ((𝑂𝑎) +𝑒 0))
24 iccssxr 13391 . . . . 5 (0[,]+∞) ⊆ ℝ*
251adantr 480 . . . . . 6 ((𝜑𝑎 ∈ 𝒫 𝑋) → 𝑂 ∈ OutMeas)
2610adantl 481 . . . . . 6 ((𝜑𝑎 ∈ 𝒫 𝑋) → 𝑎𝑋)
2725, 2, 26omecl 46501 . . . . 5 ((𝜑𝑎 ∈ 𝒫 𝑋) → (𝑂𝑎) ∈ (0[,]+∞))
2824, 27sselid 3944 . . . 4 ((𝜑𝑎 ∈ 𝒫 𝑋) → (𝑂𝑎) ∈ ℝ*)
2928xaddridd 13203 . . 3 ((𝜑𝑎 ∈ 𝒫 𝑋) → ((𝑂𝑎) +𝑒 0) = (𝑂𝑎))
30 eqidd 2730 . . 3 ((𝜑𝑎 ∈ 𝒫 𝑋) → (𝑂𝑎) = (𝑂𝑎))
3123, 29, 303eqtrd 2768 . 2 ((𝜑𝑎 ∈ 𝒫 𝑋) → ((𝑂‘(𝑎𝑋)) +𝑒 (𝑂‘(𝑎𝑋))) = (𝑂𝑎))
321, 2, 3, 9, 31carageneld 46500 1 (𝜑𝑋𝑆)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  Vcvv 3447  cdif 3911  cin 3913  wss 3914  c0 4296  𝒫 cpw 4563   cuni 4871  dom cdm 5638  cfv 6511  (class class class)co 7387  0cc0 11068  +∞cpnf 11205  *cxr 11207   +𝑒 cxad 13070  [,]cicc 13309  OutMeascome 46487  CaraGenccaragen 46489
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-id 5533  df-po 5546  df-so 5547  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-ov 7390  df-oprab 7391  df-mpo 7392  df-1st 7968  df-2nd 7969  df-er 8671  df-en 8919  df-dom 8920  df-sdom 8921  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-xadd 13073  df-icc 13313  df-ome 46488  df-caragen 46490
This theorem is referenced by:  caragenuni  46509  rrnmbl  46612
  Copyright terms: Public domain W3C validator