Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  caragenunidm Structured version   Visualization version   GIF version

Theorem caragenunidm 44046
Description: The base set of an outer measure belongs to the sigma-algebra generated by the Caratheodory's construction. (Contributed by Glauco Siliprandi, 17-Aug-2020.)
Hypotheses
Ref Expression
caragenunidm.o (𝜑𝑂 ∈ OutMeas)
caragenunidm.x 𝑋 = dom 𝑂
caragenunidm.s 𝑆 = (CaraGen‘𝑂)
Assertion
Ref Expression
caragenunidm (𝜑𝑋𝑆)

Proof of Theorem caragenunidm
Dummy variable 𝑎 is distinct from all other variables.
StepHypRef Expression
1 caragenunidm.o . 2 (𝜑𝑂 ∈ OutMeas)
2 caragenunidm.x . 2 𝑋 = dom 𝑂
3 caragenunidm.s . 2 𝑆 = (CaraGen‘𝑂)
4 dmexg 7750 . . . . 5 (𝑂 ∈ OutMeas → dom 𝑂 ∈ V)
5 uniexg 7593 . . . . 5 (dom 𝑂 ∈ V → dom 𝑂 ∈ V)
61, 4, 53syl 18 . . . 4 (𝜑 dom 𝑂 ∈ V)
72, 6eqeltrid 2843 . . 3 (𝜑𝑋 ∈ V)
8 pwidg 4555 . . 3 (𝑋 ∈ V → 𝑋 ∈ 𝒫 𝑋)
97, 8syl 17 . 2 (𝜑𝑋 ∈ 𝒫 𝑋)
10 elpwi 4542 . . . . . . 7 (𝑎 ∈ 𝒫 𝑋𝑎𝑋)
11 df-ss 3904 . . . . . . . 8 (𝑎𝑋 ↔ (𝑎𝑋) = 𝑎)
1211biimpi 215 . . . . . . 7 (𝑎𝑋 → (𝑎𝑋) = 𝑎)
1310, 12syl 17 . . . . . 6 (𝑎 ∈ 𝒫 𝑋 → (𝑎𝑋) = 𝑎)
1413fveq2d 6778 . . . . 5 (𝑎 ∈ 𝒫 𝑋 → (𝑂‘(𝑎𝑋)) = (𝑂𝑎))
1514adantl 482 . . . 4 ((𝜑𝑎 ∈ 𝒫 𝑋) → (𝑂‘(𝑎𝑋)) = (𝑂𝑎))
16 ssdif0 4297 . . . . . . . 8 (𝑎𝑋 ↔ (𝑎𝑋) = ∅)
1710, 16sylib 217 . . . . . . 7 (𝑎 ∈ 𝒫 𝑋 → (𝑎𝑋) = ∅)
1817fveq2d 6778 . . . . . 6 (𝑎 ∈ 𝒫 𝑋 → (𝑂‘(𝑎𝑋)) = (𝑂‘∅))
1918adantl 482 . . . . 5 ((𝜑𝑎 ∈ 𝒫 𝑋) → (𝑂‘(𝑎𝑋)) = (𝑂‘∅))
201ome0 44035 . . . . . 6 (𝜑 → (𝑂‘∅) = 0)
2120adantr 481 . . . . 5 ((𝜑𝑎 ∈ 𝒫 𝑋) → (𝑂‘∅) = 0)
2219, 21eqtrd 2778 . . . 4 ((𝜑𝑎 ∈ 𝒫 𝑋) → (𝑂‘(𝑎𝑋)) = 0)
2315, 22oveq12d 7293 . . 3 ((𝜑𝑎 ∈ 𝒫 𝑋) → ((𝑂‘(𝑎𝑋)) +𝑒 (𝑂‘(𝑎𝑋))) = ((𝑂𝑎) +𝑒 0))
24 iccssxr 13162 . . . . 5 (0[,]+∞) ⊆ ℝ*
251adantr 481 . . . . . 6 ((𝜑𝑎 ∈ 𝒫 𝑋) → 𝑂 ∈ OutMeas)
2610adantl 482 . . . . . 6 ((𝜑𝑎 ∈ 𝒫 𝑋) → 𝑎𝑋)
2725, 2, 26omecl 44041 . . . . 5 ((𝜑𝑎 ∈ 𝒫 𝑋) → (𝑂𝑎) ∈ (0[,]+∞))
2824, 27sselid 3919 . . . 4 ((𝜑𝑎 ∈ 𝒫 𝑋) → (𝑂𝑎) ∈ ℝ*)
2928xaddid1d 12977 . . 3 ((𝜑𝑎 ∈ 𝒫 𝑋) → ((𝑂𝑎) +𝑒 0) = (𝑂𝑎))
30 eqidd 2739 . . 3 ((𝜑𝑎 ∈ 𝒫 𝑋) → (𝑂𝑎) = (𝑂𝑎))
3123, 29, 303eqtrd 2782 . 2 ((𝜑𝑎 ∈ 𝒫 𝑋) → ((𝑂‘(𝑎𝑋)) +𝑒 (𝑂‘(𝑎𝑋))) = (𝑂𝑎))
321, 2, 3, 9, 31carageneld 44040 1 (𝜑𝑋𝑆)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1539  wcel 2106  Vcvv 3432  cdif 3884  cin 3886  wss 3887  c0 4256  𝒫 cpw 4533   cuni 4839  dom cdm 5589  cfv 6433  (class class class)co 7275  0cc0 10871  +∞cpnf 11006  *cxr 11008   +𝑒 cxad 12846  [,]cicc 13082  OutMeascome 44027  CaraGenccaragen 44029
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-id 5489  df-po 5503  df-so 5504  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-ov 7278  df-oprab 7279  df-mpo 7280  df-1st 7831  df-2nd 7832  df-er 8498  df-en 8734  df-dom 8735  df-sdom 8736  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-xadd 12849  df-icc 13086  df-ome 44028  df-caragen 44030
This theorem is referenced by:  caragenuni  44049  rrnmbl  44152
  Copyright terms: Public domain W3C validator