Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  caragenunidm Structured version   Visualization version   GIF version

Theorem caragenunidm 46605
Description: The base set of an outer measure belongs to the sigma-algebra generated by the Caratheodory's construction. (Contributed by Glauco Siliprandi, 17-Aug-2020.)
Hypotheses
Ref Expression
caragenunidm.o (𝜑𝑂 ∈ OutMeas)
caragenunidm.x 𝑋 = dom 𝑂
caragenunidm.s 𝑆 = (CaraGen‘𝑂)
Assertion
Ref Expression
caragenunidm (𝜑𝑋𝑆)

Proof of Theorem caragenunidm
Dummy variable 𝑎 is distinct from all other variables.
StepHypRef Expression
1 caragenunidm.o . 2 (𝜑𝑂 ∈ OutMeas)
2 caragenunidm.x . 2 𝑋 = dom 𝑂
3 caragenunidm.s . 2 𝑆 = (CaraGen‘𝑂)
4 dmexg 7831 . . . . 5 (𝑂 ∈ OutMeas → dom 𝑂 ∈ V)
5 uniexg 7673 . . . . 5 (dom 𝑂 ∈ V → dom 𝑂 ∈ V)
61, 4, 53syl 18 . . . 4 (𝜑 dom 𝑂 ∈ V)
72, 6eqeltrid 2835 . . 3 (𝜑𝑋 ∈ V)
8 pwidg 4567 . . 3 (𝑋 ∈ V → 𝑋 ∈ 𝒫 𝑋)
97, 8syl 17 . 2 (𝜑𝑋 ∈ 𝒫 𝑋)
10 elpwi 4554 . . . . . . 7 (𝑎 ∈ 𝒫 𝑋𝑎𝑋)
11 dfss2 3915 . . . . . . . 8 (𝑎𝑋 ↔ (𝑎𝑋) = 𝑎)
1211biimpi 216 . . . . . . 7 (𝑎𝑋 → (𝑎𝑋) = 𝑎)
1310, 12syl 17 . . . . . 6 (𝑎 ∈ 𝒫 𝑋 → (𝑎𝑋) = 𝑎)
1413fveq2d 6826 . . . . 5 (𝑎 ∈ 𝒫 𝑋 → (𝑂‘(𝑎𝑋)) = (𝑂𝑎))
1514adantl 481 . . . 4 ((𝜑𝑎 ∈ 𝒫 𝑋) → (𝑂‘(𝑎𝑋)) = (𝑂𝑎))
16 ssdif0 4313 . . . . . . . 8 (𝑎𝑋 ↔ (𝑎𝑋) = ∅)
1710, 16sylib 218 . . . . . . 7 (𝑎 ∈ 𝒫 𝑋 → (𝑎𝑋) = ∅)
1817fveq2d 6826 . . . . . 6 (𝑎 ∈ 𝒫 𝑋 → (𝑂‘(𝑎𝑋)) = (𝑂‘∅))
1918adantl 481 . . . . 5 ((𝜑𝑎 ∈ 𝒫 𝑋) → (𝑂‘(𝑎𝑋)) = (𝑂‘∅))
201ome0 46594 . . . . . 6 (𝜑 → (𝑂‘∅) = 0)
2120adantr 480 . . . . 5 ((𝜑𝑎 ∈ 𝒫 𝑋) → (𝑂‘∅) = 0)
2219, 21eqtrd 2766 . . . 4 ((𝜑𝑎 ∈ 𝒫 𝑋) → (𝑂‘(𝑎𝑋)) = 0)
2315, 22oveq12d 7364 . . 3 ((𝜑𝑎 ∈ 𝒫 𝑋) → ((𝑂‘(𝑎𝑋)) +𝑒 (𝑂‘(𝑎𝑋))) = ((𝑂𝑎) +𝑒 0))
24 iccssxr 13330 . . . . 5 (0[,]+∞) ⊆ ℝ*
251adantr 480 . . . . . 6 ((𝜑𝑎 ∈ 𝒫 𝑋) → 𝑂 ∈ OutMeas)
2610adantl 481 . . . . . 6 ((𝜑𝑎 ∈ 𝒫 𝑋) → 𝑎𝑋)
2725, 2, 26omecl 46600 . . . . 5 ((𝜑𝑎 ∈ 𝒫 𝑋) → (𝑂𝑎) ∈ (0[,]+∞))
2824, 27sselid 3927 . . . 4 ((𝜑𝑎 ∈ 𝒫 𝑋) → (𝑂𝑎) ∈ ℝ*)
2928xaddridd 13142 . . 3 ((𝜑𝑎 ∈ 𝒫 𝑋) → ((𝑂𝑎) +𝑒 0) = (𝑂𝑎))
30 eqidd 2732 . . 3 ((𝜑𝑎 ∈ 𝒫 𝑋) → (𝑂𝑎) = (𝑂𝑎))
3123, 29, 303eqtrd 2770 . 2 ((𝜑𝑎 ∈ 𝒫 𝑋) → ((𝑂‘(𝑎𝑋)) +𝑒 (𝑂‘(𝑎𝑋))) = (𝑂𝑎))
321, 2, 3, 9, 31carageneld 46599 1 (𝜑𝑋𝑆)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2111  Vcvv 3436  cdif 3894  cin 3896  wss 3897  c0 4280  𝒫 cpw 4547   cuni 4856  dom cdm 5614  cfv 6481  (class class class)co 7346  0cc0 11006  +∞cpnf 11143  *cxr 11145   +𝑒 cxad 13009  [,]cicc 13248  OutMeascome 46586  CaraGenccaragen 46588
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668  ax-cnex 11062  ax-resscn 11063  ax-1cn 11064  ax-icn 11065  ax-addcl 11066  ax-addrcl 11067  ax-mulcl 11068  ax-mulrcl 11069  ax-mulcom 11070  ax-addass 11071  ax-mulass 11072  ax-distr 11073  ax-i2m1 11074  ax-1ne0 11075  ax-1rid 11076  ax-rnegex 11077  ax-rrecex 11078  ax-cnre 11079  ax-pre-lttri 11080  ax-pre-lttrn 11081  ax-pre-ltadd 11082
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-id 5509  df-po 5522  df-so 5523  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-ov 7349  df-oprab 7350  df-mpo 7351  df-1st 7921  df-2nd 7922  df-er 8622  df-en 8870  df-dom 8871  df-sdom 8872  df-pnf 11148  df-mnf 11149  df-xr 11150  df-ltxr 11151  df-xadd 13012  df-icc 13252  df-ome 46587  df-caragen 46589
This theorem is referenced by:  caragenuni  46608  rrnmbl  46711
  Copyright terms: Public domain W3C validator