![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > caragenunidm | Structured version Visualization version GIF version |
Description: The base set of an outer measure belongs to the sigma-algebra generated by the Caratheodory's construction. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
Ref | Expression |
---|---|
caragenunidm.o | β’ (π β π β OutMeas) |
caragenunidm.x | β’ π = βͺ dom π |
caragenunidm.s | β’ π = (CaraGenβπ) |
Ref | Expression |
---|---|
caragenunidm | β’ (π β π β π) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | caragenunidm.o | . 2 β’ (π β π β OutMeas) | |
2 | caragenunidm.x | . 2 β’ π = βͺ dom π | |
3 | caragenunidm.s | . 2 β’ π = (CaraGenβπ) | |
4 | dmexg 7903 | . . . . 5 β’ (π β OutMeas β dom π β V) | |
5 | uniexg 7740 | . . . . 5 β’ (dom π β V β βͺ dom π β V) | |
6 | 1, 4, 5 | 3syl 18 | . . . 4 β’ (π β βͺ dom π β V) |
7 | 2, 6 | eqeltrid 2829 | . . 3 β’ (π β π β V) |
8 | pwidg 4619 | . . 3 β’ (π β V β π β π« π) | |
9 | 7, 8 | syl 17 | . 2 β’ (π β π β π« π) |
10 | elpwi 4606 | . . . . . . 7 β’ (π β π« π β π β π) | |
11 | dfss2 3959 | . . . . . . . 8 β’ (π β π β (π β© π) = π) | |
12 | 11 | biimpi 215 | . . . . . . 7 β’ (π β π β (π β© π) = π) |
13 | 10, 12 | syl 17 | . . . . . 6 β’ (π β π« π β (π β© π) = π) |
14 | 13 | fveq2d 6894 | . . . . 5 β’ (π β π« π β (πβ(π β© π)) = (πβπ)) |
15 | 14 | adantl 480 | . . . 4 β’ ((π β§ π β π« π) β (πβ(π β© π)) = (πβπ)) |
16 | ssdif0 4360 | . . . . . . . 8 β’ (π β π β (π β π) = β ) | |
17 | 10, 16 | sylib 217 | . . . . . . 7 β’ (π β π« π β (π β π) = β ) |
18 | 17 | fveq2d 6894 | . . . . . 6 β’ (π β π« π β (πβ(π β π)) = (πββ )) |
19 | 18 | adantl 480 | . . . . 5 β’ ((π β§ π β π« π) β (πβ(π β π)) = (πββ )) |
20 | 1 | ome0 45944 | . . . . . 6 β’ (π β (πββ ) = 0) |
21 | 20 | adantr 479 | . . . . 5 β’ ((π β§ π β π« π) β (πββ ) = 0) |
22 | 19, 21 | eqtrd 2765 | . . . 4 β’ ((π β§ π β π« π) β (πβ(π β π)) = 0) |
23 | 15, 22 | oveq12d 7431 | . . 3 β’ ((π β§ π β π« π) β ((πβ(π β© π)) +π (πβ(π β π))) = ((πβπ) +π 0)) |
24 | iccssxr 13434 | . . . . 5 β’ (0[,]+β) β β* | |
25 | 1 | adantr 479 | . . . . . 6 β’ ((π β§ π β π« π) β π β OutMeas) |
26 | 10 | adantl 480 | . . . . . 6 β’ ((π β§ π β π« π) β π β π) |
27 | 25, 2, 26 | omecl 45950 | . . . . 5 β’ ((π β§ π β π« π) β (πβπ) β (0[,]+β)) |
28 | 24, 27 | sselid 3971 | . . . 4 β’ ((π β§ π β π« π) β (πβπ) β β*) |
29 | 28 | xaddridd 13249 | . . 3 β’ ((π β§ π β π« π) β ((πβπ) +π 0) = (πβπ)) |
30 | eqidd 2726 | . . 3 β’ ((π β§ π β π« π) β (πβπ) = (πβπ)) | |
31 | 23, 29, 30 | 3eqtrd 2769 | . 2 β’ ((π β§ π β π« π) β ((πβ(π β© π)) +π (πβ(π β π))) = (πβπ)) |
32 | 1, 2, 3, 9, 31 | carageneld 45949 | 1 β’ (π β π β π) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β§ wa 394 = wceq 1533 β wcel 2098 Vcvv 3463 β cdif 3938 β© cin 3940 β wss 3941 β c0 4319 π« cpw 4599 βͺ cuni 4904 dom cdm 5673 βcfv 6543 (class class class)co 7413 0cc0 11133 +βcpnf 11270 β*cxr 11272 +π cxad 13117 [,]cicc 13354 OutMeascome 45936 CaraGenccaragen 45938 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2696 ax-sep 5295 ax-nul 5302 ax-pow 5360 ax-pr 5424 ax-un 7735 ax-cnex 11189 ax-resscn 11190 ax-1cn 11191 ax-icn 11192 ax-addcl 11193 ax-addrcl 11194 ax-mulcl 11195 ax-mulrcl 11196 ax-mulcom 11197 ax-addass 11198 ax-mulass 11199 ax-distr 11200 ax-i2m1 11201 ax-1ne0 11202 ax-1rid 11203 ax-rnegex 11204 ax-rrecex 11205 ax-cnre 11206 ax-pre-lttri 11207 ax-pre-lttrn 11208 ax-pre-ltadd 11209 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2703 df-cleq 2717 df-clel 2802 df-nfc 2877 df-ne 2931 df-nel 3037 df-ral 3052 df-rex 3061 df-rab 3420 df-v 3465 df-sbc 3771 df-csb 3887 df-dif 3944 df-un 3946 df-in 3948 df-ss 3958 df-nul 4320 df-if 4526 df-pw 4601 df-sn 4626 df-pr 4628 df-op 4632 df-uni 4905 df-iun 4994 df-br 5145 df-opab 5207 df-mpt 5228 df-id 5571 df-po 5585 df-so 5586 df-xp 5679 df-rel 5680 df-cnv 5681 df-co 5682 df-dm 5683 df-rn 5684 df-res 5685 df-ima 5686 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-ov 7416 df-oprab 7417 df-mpo 7418 df-1st 7987 df-2nd 7988 df-er 8718 df-en 8958 df-dom 8959 df-sdom 8960 df-pnf 11275 df-mnf 11276 df-xr 11277 df-ltxr 11278 df-xadd 13120 df-icc 13358 df-ome 45937 df-caragen 45939 |
This theorem is referenced by: caragenuni 45958 rrnmbl 46061 |
Copyright terms: Public domain | W3C validator |