![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > caragenunidm | Structured version Visualization version GIF version |
Description: The base set of an outer measure belongs to the sigma-algebra generated by the Caratheodory's construction. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
Ref | Expression |
---|---|
caragenunidm.o | β’ (π β π β OutMeas) |
caragenunidm.x | β’ π = βͺ dom π |
caragenunidm.s | β’ π = (CaraGenβπ) |
Ref | Expression |
---|---|
caragenunidm | β’ (π β π β π) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | caragenunidm.o | . 2 β’ (π β π β OutMeas) | |
2 | caragenunidm.x | . 2 β’ π = βͺ dom π | |
3 | caragenunidm.s | . 2 β’ π = (CaraGenβπ) | |
4 | dmexg 7890 | . . . . 5 β’ (π β OutMeas β dom π β V) | |
5 | uniexg 7726 | . . . . 5 β’ (dom π β V β βͺ dom π β V) | |
6 | 1, 4, 5 | 3syl 18 | . . . 4 β’ (π β βͺ dom π β V) |
7 | 2, 6 | eqeltrid 2837 | . . 3 β’ (π β π β V) |
8 | pwidg 4621 | . . 3 β’ (π β V β π β π« π) | |
9 | 7, 8 | syl 17 | . 2 β’ (π β π β π« π) |
10 | elpwi 4608 | . . . . . . 7 β’ (π β π« π β π β π) | |
11 | df-ss 3964 | . . . . . . . 8 β’ (π β π β (π β© π) = π) | |
12 | 11 | biimpi 215 | . . . . . . 7 β’ (π β π β (π β© π) = π) |
13 | 10, 12 | syl 17 | . . . . . 6 β’ (π β π« π β (π β© π) = π) |
14 | 13 | fveq2d 6892 | . . . . 5 β’ (π β π« π β (πβ(π β© π)) = (πβπ)) |
15 | 14 | adantl 482 | . . . 4 β’ ((π β§ π β π« π) β (πβ(π β© π)) = (πβπ)) |
16 | ssdif0 4362 | . . . . . . . 8 β’ (π β π β (π β π) = β ) | |
17 | 10, 16 | sylib 217 | . . . . . . 7 β’ (π β π« π β (π β π) = β ) |
18 | 17 | fveq2d 6892 | . . . . . 6 β’ (π β π« π β (πβ(π β π)) = (πββ )) |
19 | 18 | adantl 482 | . . . . 5 β’ ((π β§ π β π« π) β (πβ(π β π)) = (πββ )) |
20 | 1 | ome0 45199 | . . . . . 6 β’ (π β (πββ ) = 0) |
21 | 20 | adantr 481 | . . . . 5 β’ ((π β§ π β π« π) β (πββ ) = 0) |
22 | 19, 21 | eqtrd 2772 | . . . 4 β’ ((π β§ π β π« π) β (πβ(π β π)) = 0) |
23 | 15, 22 | oveq12d 7423 | . . 3 β’ ((π β§ π β π« π) β ((πβ(π β© π)) +π (πβ(π β π))) = ((πβπ) +π 0)) |
24 | iccssxr 13403 | . . . . 5 β’ (0[,]+β) β β* | |
25 | 1 | adantr 481 | . . . . . 6 β’ ((π β§ π β π« π) β π β OutMeas) |
26 | 10 | adantl 482 | . . . . . 6 β’ ((π β§ π β π« π) β π β π) |
27 | 25, 2, 26 | omecl 45205 | . . . . 5 β’ ((π β§ π β π« π) β (πβπ) β (0[,]+β)) |
28 | 24, 27 | sselid 3979 | . . . 4 β’ ((π β§ π β π« π) β (πβπ) β β*) |
29 | 28 | xaddridd 13218 | . . 3 β’ ((π β§ π β π« π) β ((πβπ) +π 0) = (πβπ)) |
30 | eqidd 2733 | . . 3 β’ ((π β§ π β π« π) β (πβπ) = (πβπ)) | |
31 | 23, 29, 30 | 3eqtrd 2776 | . 2 β’ ((π β§ π β π« π) β ((πβ(π β© π)) +π (πβ(π β π))) = (πβπ)) |
32 | 1, 2, 3, 9, 31 | carageneld 45204 | 1 β’ (π β π β π) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β§ wa 396 = wceq 1541 β wcel 2106 Vcvv 3474 β cdif 3944 β© cin 3946 β wss 3947 β c0 4321 π« cpw 4601 βͺ cuni 4907 dom cdm 5675 βcfv 6540 (class class class)co 7405 0cc0 11106 +βcpnf 11241 β*cxr 11243 +π cxad 13086 [,]cicc 13323 OutMeascome 45191 CaraGenccaragen 45193 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-sep 5298 ax-nul 5305 ax-pow 5362 ax-pr 5426 ax-un 7721 ax-cnex 11162 ax-resscn 11163 ax-1cn 11164 ax-icn 11165 ax-addcl 11166 ax-addrcl 11167 ax-mulcl 11168 ax-mulrcl 11169 ax-mulcom 11170 ax-addass 11171 ax-mulass 11172 ax-distr 11173 ax-i2m1 11174 ax-1ne0 11175 ax-1rid 11176 ax-rnegex 11177 ax-rrecex 11178 ax-cnre 11179 ax-pre-lttri 11180 ax-pre-lttrn 11181 ax-pre-ltadd 11182 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rab 3433 df-v 3476 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4322 df-if 4528 df-pw 4603 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-iun 4998 df-br 5148 df-opab 5210 df-mpt 5231 df-id 5573 df-po 5587 df-so 5588 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-res 5687 df-ima 5688 df-iota 6492 df-fun 6542 df-fn 6543 df-f 6544 df-f1 6545 df-fo 6546 df-f1o 6547 df-fv 6548 df-ov 7408 df-oprab 7409 df-mpo 7410 df-1st 7971 df-2nd 7972 df-er 8699 df-en 8936 df-dom 8937 df-sdom 8938 df-pnf 11246 df-mnf 11247 df-xr 11248 df-ltxr 11249 df-xadd 13089 df-icc 13327 df-ome 45192 df-caragen 45194 |
This theorem is referenced by: caragenuni 45213 rrnmbl 45316 |
Copyright terms: Public domain | W3C validator |