Mathbox for Glauco Siliprandi < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  caragenunidm Structured version   Visualization version   GIF version

Theorem caragenunidm 41649
 Description: The base set of an outer measure belongs to the sigma-algebra generated by the Caratheodory's construction. (Contributed by Glauco Siliprandi, 17-Aug-2020.)
Hypotheses
Ref Expression
caragenunidm.o (𝜑𝑂 ∈ OutMeas)
caragenunidm.x 𝑋 = dom 𝑂
caragenunidm.s 𝑆 = (CaraGen‘𝑂)
Assertion
Ref Expression
caragenunidm (𝜑𝑋𝑆)

Proof of Theorem caragenunidm
Dummy variable 𝑎 is distinct from all other variables.
StepHypRef Expression
1 caragenunidm.o . 2 (𝜑𝑂 ∈ OutMeas)
2 caragenunidm.x . 2 𝑋 = dom 𝑂
3 caragenunidm.s . 2 𝑆 = (CaraGen‘𝑂)
4 dmexg 7375 . . . . 5 (𝑂 ∈ OutMeas → dom 𝑂 ∈ V)
5 uniexg 7232 . . . . 5 (dom 𝑂 ∈ V → dom 𝑂 ∈ V)
61, 4, 53syl 18 . . . 4 (𝜑 dom 𝑂 ∈ V)
72, 6syl5eqel 2863 . . 3 (𝜑𝑋 ∈ V)
8 pwidg 4394 . . 3 (𝑋 ∈ V → 𝑋 ∈ 𝒫 𝑋)
97, 8syl 17 . 2 (𝜑𝑋 ∈ 𝒫 𝑋)
10 elpwi 4389 . . . . . . 7 (𝑎 ∈ 𝒫 𝑋𝑎𝑋)
11 df-ss 3806 . . . . . . . 8 (𝑎𝑋 ↔ (𝑎𝑋) = 𝑎)
1211biimpi 208 . . . . . . 7 (𝑎𝑋 → (𝑎𝑋) = 𝑎)
1310, 12syl 17 . . . . . 6 (𝑎 ∈ 𝒫 𝑋 → (𝑎𝑋) = 𝑎)
1413fveq2d 6450 . . . . 5 (𝑎 ∈ 𝒫 𝑋 → (𝑂‘(𝑎𝑋)) = (𝑂𝑎))
1514adantl 475 . . . 4 ((𝜑𝑎 ∈ 𝒫 𝑋) → (𝑂‘(𝑎𝑋)) = (𝑂𝑎))
16 ssdif0 4172 . . . . . . . 8 (𝑎𝑋 ↔ (𝑎𝑋) = ∅)
1710, 16sylib 210 . . . . . . 7 (𝑎 ∈ 𝒫 𝑋 → (𝑎𝑋) = ∅)
1817fveq2d 6450 . . . . . 6 (𝑎 ∈ 𝒫 𝑋 → (𝑂‘(𝑎𝑋)) = (𝑂‘∅))
1918adantl 475 . . . . 5 ((𝜑𝑎 ∈ 𝒫 𝑋) → (𝑂‘(𝑎𝑋)) = (𝑂‘∅))
201ome0 41638 . . . . . 6 (𝜑 → (𝑂‘∅) = 0)
2120adantr 474 . . . . 5 ((𝜑𝑎 ∈ 𝒫 𝑋) → (𝑂‘∅) = 0)
2219, 21eqtrd 2814 . . . 4 ((𝜑𝑎 ∈ 𝒫 𝑋) → (𝑂‘(𝑎𝑋)) = 0)
2315, 22oveq12d 6940 . . 3 ((𝜑𝑎 ∈ 𝒫 𝑋) → ((𝑂‘(𝑎𝑋)) +𝑒 (𝑂‘(𝑎𝑋))) = ((𝑂𝑎) +𝑒 0))
24 iccssxr 12568 . . . . 5 (0[,]+∞) ⊆ ℝ*
251adantr 474 . . . . . 6 ((𝜑𝑎 ∈ 𝒫 𝑋) → 𝑂 ∈ OutMeas)
2610adantl 475 . . . . . 6 ((𝜑𝑎 ∈ 𝒫 𝑋) → 𝑎𝑋)
2725, 2, 26omecl 41644 . . . . 5 ((𝜑𝑎 ∈ 𝒫 𝑋) → (𝑂𝑎) ∈ (0[,]+∞))
2824, 27sseldi 3819 . . . 4 ((𝜑𝑎 ∈ 𝒫 𝑋) → (𝑂𝑎) ∈ ℝ*)
2928xaddid1d 12386 . . 3 ((𝜑𝑎 ∈ 𝒫 𝑋) → ((𝑂𝑎) +𝑒 0) = (𝑂𝑎))
30 eqidd 2779 . . 3 ((𝜑𝑎 ∈ 𝒫 𝑋) → (𝑂𝑎) = (𝑂𝑎))
3123, 29, 303eqtrd 2818 . 2 ((𝜑𝑎 ∈ 𝒫 𝑋) → ((𝑂‘(𝑎𝑋)) +𝑒 (𝑂‘(𝑎𝑋))) = (𝑂𝑎))
321, 2, 3, 9, 31carageneld 41643 1 (𝜑𝑋𝑆)
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 386   = wceq 1601   ∈ wcel 2107  Vcvv 3398   ∖ cdif 3789   ∩ cin 3791   ⊆ wss 3792  ∅c0 4141  𝒫 cpw 4379  ∪ cuni 4671  dom cdm 5355  ‘cfv 6135  (class class class)co 6922  0cc0 10272  +∞cpnf 10408  ℝ*cxr 10410   +𝑒 cxad 12255  [,]cicc 12490  OutMeascome 41630  CaraGenccaragen 41632 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1839  ax-4 1853  ax-5 1953  ax-6 2021  ax-7 2055  ax-8 2109  ax-9 2116  ax-10 2135  ax-11 2150  ax-12 2163  ax-13 2334  ax-ext 2754  ax-sep 5017  ax-nul 5025  ax-pow 5077  ax-pr 5138  ax-un 7226  ax-cnex 10328  ax-resscn 10329  ax-1cn 10330  ax-icn 10331  ax-addcl 10332  ax-addrcl 10333  ax-mulcl 10334  ax-mulrcl 10335  ax-mulcom 10336  ax-addass 10337  ax-mulass 10338  ax-distr 10339  ax-i2m1 10340  ax-1ne0 10341  ax-1rid 10342  ax-rnegex 10343  ax-rrecex 10344  ax-cnre 10345  ax-pre-lttri 10346  ax-pre-lttrn 10347  ax-pre-ltadd 10348 This theorem depends on definitions:  df-bi 199  df-an 387  df-or 837  df-3or 1072  df-3an 1073  df-tru 1605  df-ex 1824  df-nf 1828  df-sb 2012  df-mo 2551  df-eu 2587  df-clab 2764  df-cleq 2770  df-clel 2774  df-nfc 2921  df-ne 2970  df-nel 3076  df-ral 3095  df-rex 3096  df-rab 3099  df-v 3400  df-sbc 3653  df-csb 3752  df-dif 3795  df-un 3797  df-in 3799  df-ss 3806  df-nul 4142  df-if 4308  df-pw 4381  df-sn 4399  df-pr 4401  df-op 4405  df-uni 4672  df-iun 4755  df-br 4887  df-opab 4949  df-mpt 4966  df-id 5261  df-po 5274  df-so 5275  df-xp 5361  df-rel 5362  df-cnv 5363  df-co 5364  df-dm 5365  df-rn 5366  df-res 5367  df-ima 5368  df-iota 6099  df-fun 6137  df-fn 6138  df-f 6139  df-f1 6140  df-fo 6141  df-f1o 6142  df-fv 6143  df-ov 6925  df-oprab 6926  df-mpt2 6927  df-1st 7445  df-2nd 7446  df-er 8026  df-en 8242  df-dom 8243  df-sdom 8244  df-pnf 10413  df-mnf 10414  df-xr 10415  df-ltxr 10416  df-xadd 12258  df-icc 12494  df-ome 41631  df-caragen 41633 This theorem is referenced by:  caragenuni  41652  rrnmbl  41755
 Copyright terms: Public domain W3C validator