| Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > caragenunidm | Structured version Visualization version GIF version | ||
| Description: The base set of an outer measure belongs to the sigma-algebra generated by the Caratheodory's construction. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
| Ref | Expression |
|---|---|
| caragenunidm.o | ⊢ (𝜑 → 𝑂 ∈ OutMeas) |
| caragenunidm.x | ⊢ 𝑋 = ∪ dom 𝑂 |
| caragenunidm.s | ⊢ 𝑆 = (CaraGen‘𝑂) |
| Ref | Expression |
|---|---|
| caragenunidm | ⊢ (𝜑 → 𝑋 ∈ 𝑆) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | caragenunidm.o | . 2 ⊢ (𝜑 → 𝑂 ∈ OutMeas) | |
| 2 | caragenunidm.x | . 2 ⊢ 𝑋 = ∪ dom 𝑂 | |
| 3 | caragenunidm.s | . 2 ⊢ 𝑆 = (CaraGen‘𝑂) | |
| 4 | dmexg 7831 | . . . . 5 ⊢ (𝑂 ∈ OutMeas → dom 𝑂 ∈ V) | |
| 5 | uniexg 7673 | . . . . 5 ⊢ (dom 𝑂 ∈ V → ∪ dom 𝑂 ∈ V) | |
| 6 | 1, 4, 5 | 3syl 18 | . . . 4 ⊢ (𝜑 → ∪ dom 𝑂 ∈ V) |
| 7 | 2, 6 | eqeltrid 2835 | . . 3 ⊢ (𝜑 → 𝑋 ∈ V) |
| 8 | pwidg 4567 | . . 3 ⊢ (𝑋 ∈ V → 𝑋 ∈ 𝒫 𝑋) | |
| 9 | 7, 8 | syl 17 | . 2 ⊢ (𝜑 → 𝑋 ∈ 𝒫 𝑋) |
| 10 | elpwi 4554 | . . . . . . 7 ⊢ (𝑎 ∈ 𝒫 𝑋 → 𝑎 ⊆ 𝑋) | |
| 11 | dfss2 3915 | . . . . . . . 8 ⊢ (𝑎 ⊆ 𝑋 ↔ (𝑎 ∩ 𝑋) = 𝑎) | |
| 12 | 11 | biimpi 216 | . . . . . . 7 ⊢ (𝑎 ⊆ 𝑋 → (𝑎 ∩ 𝑋) = 𝑎) |
| 13 | 10, 12 | syl 17 | . . . . . 6 ⊢ (𝑎 ∈ 𝒫 𝑋 → (𝑎 ∩ 𝑋) = 𝑎) |
| 14 | 13 | fveq2d 6826 | . . . . 5 ⊢ (𝑎 ∈ 𝒫 𝑋 → (𝑂‘(𝑎 ∩ 𝑋)) = (𝑂‘𝑎)) |
| 15 | 14 | adantl 481 | . . . 4 ⊢ ((𝜑 ∧ 𝑎 ∈ 𝒫 𝑋) → (𝑂‘(𝑎 ∩ 𝑋)) = (𝑂‘𝑎)) |
| 16 | ssdif0 4313 | . . . . . . . 8 ⊢ (𝑎 ⊆ 𝑋 ↔ (𝑎 ∖ 𝑋) = ∅) | |
| 17 | 10, 16 | sylib 218 | . . . . . . 7 ⊢ (𝑎 ∈ 𝒫 𝑋 → (𝑎 ∖ 𝑋) = ∅) |
| 18 | 17 | fveq2d 6826 | . . . . . 6 ⊢ (𝑎 ∈ 𝒫 𝑋 → (𝑂‘(𝑎 ∖ 𝑋)) = (𝑂‘∅)) |
| 19 | 18 | adantl 481 | . . . . 5 ⊢ ((𝜑 ∧ 𝑎 ∈ 𝒫 𝑋) → (𝑂‘(𝑎 ∖ 𝑋)) = (𝑂‘∅)) |
| 20 | 1 | ome0 46594 | . . . . . 6 ⊢ (𝜑 → (𝑂‘∅) = 0) |
| 21 | 20 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ 𝑎 ∈ 𝒫 𝑋) → (𝑂‘∅) = 0) |
| 22 | 19, 21 | eqtrd 2766 | . . . 4 ⊢ ((𝜑 ∧ 𝑎 ∈ 𝒫 𝑋) → (𝑂‘(𝑎 ∖ 𝑋)) = 0) |
| 23 | 15, 22 | oveq12d 7364 | . . 3 ⊢ ((𝜑 ∧ 𝑎 ∈ 𝒫 𝑋) → ((𝑂‘(𝑎 ∩ 𝑋)) +𝑒 (𝑂‘(𝑎 ∖ 𝑋))) = ((𝑂‘𝑎) +𝑒 0)) |
| 24 | iccssxr 13330 | . . . . 5 ⊢ (0[,]+∞) ⊆ ℝ* | |
| 25 | 1 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑎 ∈ 𝒫 𝑋) → 𝑂 ∈ OutMeas) |
| 26 | 10 | adantl 481 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑎 ∈ 𝒫 𝑋) → 𝑎 ⊆ 𝑋) |
| 27 | 25, 2, 26 | omecl 46600 | . . . . 5 ⊢ ((𝜑 ∧ 𝑎 ∈ 𝒫 𝑋) → (𝑂‘𝑎) ∈ (0[,]+∞)) |
| 28 | 24, 27 | sselid 3927 | . . . 4 ⊢ ((𝜑 ∧ 𝑎 ∈ 𝒫 𝑋) → (𝑂‘𝑎) ∈ ℝ*) |
| 29 | 28 | xaddridd 13142 | . . 3 ⊢ ((𝜑 ∧ 𝑎 ∈ 𝒫 𝑋) → ((𝑂‘𝑎) +𝑒 0) = (𝑂‘𝑎)) |
| 30 | eqidd 2732 | . . 3 ⊢ ((𝜑 ∧ 𝑎 ∈ 𝒫 𝑋) → (𝑂‘𝑎) = (𝑂‘𝑎)) | |
| 31 | 23, 29, 30 | 3eqtrd 2770 | . 2 ⊢ ((𝜑 ∧ 𝑎 ∈ 𝒫 𝑋) → ((𝑂‘(𝑎 ∩ 𝑋)) +𝑒 (𝑂‘(𝑎 ∖ 𝑋))) = (𝑂‘𝑎)) |
| 32 | 1, 2, 3, 9, 31 | carageneld 46599 | 1 ⊢ (𝜑 → 𝑋 ∈ 𝑆) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2111 Vcvv 3436 ∖ cdif 3894 ∩ cin 3896 ⊆ wss 3897 ∅c0 4280 𝒫 cpw 4547 ∪ cuni 4856 dom cdm 5614 ‘cfv 6481 (class class class)co 7346 0cc0 11006 +∞cpnf 11143 ℝ*cxr 11145 +𝑒 cxad 13009 [,]cicc 13248 OutMeascome 46586 CaraGenccaragen 46588 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7668 ax-cnex 11062 ax-resscn 11063 ax-1cn 11064 ax-icn 11065 ax-addcl 11066 ax-addrcl 11067 ax-mulcl 11068 ax-mulrcl 11069 ax-mulcom 11070 ax-addass 11071 ax-mulass 11072 ax-distr 11073 ax-i2m1 11074 ax-1ne0 11075 ax-1rid 11076 ax-rnegex 11077 ax-rrecex 11078 ax-cnre 11079 ax-pre-lttri 11080 ax-pre-lttrn 11081 ax-pre-ltadd 11082 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-iun 4941 df-br 5090 df-opab 5152 df-mpt 5171 df-id 5509 df-po 5522 df-so 5523 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-ov 7349 df-oprab 7350 df-mpo 7351 df-1st 7921 df-2nd 7922 df-er 8622 df-en 8870 df-dom 8871 df-sdom 8872 df-pnf 11148 df-mnf 11149 df-xr 11150 df-ltxr 11151 df-xadd 13012 df-icc 13252 df-ome 46587 df-caragen 46589 |
| This theorem is referenced by: caragenuni 46608 rrnmbl 46711 |
| Copyright terms: Public domain | W3C validator |