Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  omef Structured version   Visualization version   GIF version

Theorem omef 45789
Description: An outer measure is a function that maps to nonnegative extended reals. (Contributed by Glauco Siliprandi, 17-Aug-2020.)
Hypotheses
Ref Expression
omef.o (𝜑𝑂 ∈ OutMeas)
omef.x 𝑋 = dom 𝑂
Assertion
Ref Expression
omef (𝜑𝑂:𝒫 𝑋⟶(0[,]+∞))

Proof of Theorem omef
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 omef.o . . . . 5 (𝜑𝑂 ∈ OutMeas)
2 isome 45787 . . . . . 6 (𝑂 ∈ OutMeas → (𝑂 ∈ OutMeas ↔ ((((𝑂:dom 𝑂⟶(0[,]+∞) ∧ dom 𝑂 = 𝒫 dom 𝑂) ∧ (𝑂‘∅) = 0) ∧ ∀𝑦 ∈ 𝒫 dom 𝑂𝑧 ∈ 𝒫 𝑦(𝑂𝑧) ≤ (𝑂𝑦)) ∧ ∀𝑦 ∈ 𝒫 dom 𝑂(𝑦 ≼ ω → (𝑂 𝑦) ≤ (Σ^‘(𝑂𝑦))))))
31, 2syl 17 . . . . 5 (𝜑 → (𝑂 ∈ OutMeas ↔ ((((𝑂:dom 𝑂⟶(0[,]+∞) ∧ dom 𝑂 = 𝒫 dom 𝑂) ∧ (𝑂‘∅) = 0) ∧ ∀𝑦 ∈ 𝒫 dom 𝑂𝑧 ∈ 𝒫 𝑦(𝑂𝑧) ≤ (𝑂𝑦)) ∧ ∀𝑦 ∈ 𝒫 dom 𝑂(𝑦 ≼ ω → (𝑂 𝑦) ≤ (Σ^‘(𝑂𝑦))))))
41, 3mpbid 231 . . . 4 (𝜑 → ((((𝑂:dom 𝑂⟶(0[,]+∞) ∧ dom 𝑂 = 𝒫 dom 𝑂) ∧ (𝑂‘∅) = 0) ∧ ∀𝑦 ∈ 𝒫 dom 𝑂𝑧 ∈ 𝒫 𝑦(𝑂𝑧) ≤ (𝑂𝑦)) ∧ ∀𝑦 ∈ 𝒫 dom 𝑂(𝑦 ≼ ω → (𝑂 𝑦) ≤ (Σ^‘(𝑂𝑦)))))
54simplld 765 . . 3 (𝜑 → ((𝑂:dom 𝑂⟶(0[,]+∞) ∧ dom 𝑂 = 𝒫 dom 𝑂) ∧ (𝑂‘∅) = 0))
65simplld 765 . 2 (𝜑𝑂:dom 𝑂⟶(0[,]+∞))
7 omef.x . . . . 5 𝑋 = dom 𝑂
87pweqi 4613 . . . 4 𝒫 𝑋 = 𝒫 dom 𝑂
9 simp-4r 781 . . . . 5 (((((𝑂:dom 𝑂⟶(0[,]+∞) ∧ dom 𝑂 = 𝒫 dom 𝑂) ∧ (𝑂‘∅) = 0) ∧ ∀𝑦 ∈ 𝒫 dom 𝑂𝑧 ∈ 𝒫 𝑦(𝑂𝑧) ≤ (𝑂𝑦)) ∧ ∀𝑦 ∈ 𝒫 dom 𝑂(𝑦 ≼ ω → (𝑂 𝑦) ≤ (Σ^‘(𝑂𝑦)))) → dom 𝑂 = 𝒫 dom 𝑂)
104, 9syl 17 . . . 4 (𝜑 → dom 𝑂 = 𝒫 dom 𝑂)
118, 10eqtr4id 2785 . . 3 (𝜑 → 𝒫 𝑋 = dom 𝑂)
1211feq2d 6697 . 2 (𝜑 → (𝑂:𝒫 𝑋⟶(0[,]+∞) ↔ 𝑂:dom 𝑂⟶(0[,]+∞)))
136, 12mpbird 257 1 (𝜑𝑂:𝒫 𝑋⟶(0[,]+∞))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395   = wceq 1533  wcel 2098  wral 3055  c0 4317  𝒫 cpw 4597   cuni 4902   class class class wbr 5141  dom cdm 5669  cres 5671  wf 6533  cfv 6537  (class class class)co 7405  ωcom 7852  cdom 8939  0cc0 11112  +∞cpnf 11249  cle 11253  [,]cicc 13333  Σ^csumge0 45655  OutMeascome 45782
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-ext 2697
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-sb 2060  df-clab 2704  df-cleq 2718  df-clel 2804  df-ral 3056  df-rab 3427  df-v 3470  df-dif 3946  df-un 3948  df-in 3950  df-ss 3960  df-nul 4318  df-if 4524  df-pw 4599  df-sn 4624  df-pr 4626  df-op 4630  df-uni 4903  df-br 5142  df-opab 5204  df-rel 5676  df-cnv 5677  df-co 5678  df-dm 5679  df-rn 5680  df-res 5681  df-iota 6489  df-fun 6539  df-fn 6540  df-f 6541  df-fv 6545  df-ome 45783
This theorem is referenced by:  omecl  45796  omeunle  45809  omeiunle  45810  caratheodory  45821
  Copyright terms: Public domain W3C validator