![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > omef | Structured version Visualization version GIF version |
Description: An outer measure is a function that maps to nonnegative extended reals. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
Ref | Expression |
---|---|
omef.o | ⊢ (𝜑 → 𝑂 ∈ OutMeas) |
omef.x | ⊢ 𝑋 = ∪ dom 𝑂 |
Ref | Expression |
---|---|
omef | ⊢ (𝜑 → 𝑂:𝒫 𝑋⟶(0[,]+∞)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | omef.o | . . . . 5 ⊢ (𝜑 → 𝑂 ∈ OutMeas) | |
2 | isome 41454 | . . . . . 6 ⊢ (𝑂 ∈ OutMeas → (𝑂 ∈ OutMeas ↔ ((((𝑂:dom 𝑂⟶(0[,]+∞) ∧ dom 𝑂 = 𝒫 ∪ dom 𝑂) ∧ (𝑂‘∅) = 0) ∧ ∀𝑦 ∈ 𝒫 ∪ dom 𝑂∀𝑧 ∈ 𝒫 𝑦(𝑂‘𝑧) ≤ (𝑂‘𝑦)) ∧ ∀𝑦 ∈ 𝒫 dom 𝑂(𝑦 ≼ ω → (𝑂‘∪ 𝑦) ≤ (Σ^‘(𝑂 ↾ 𝑦)))))) | |
3 | 1, 2 | syl 17 | . . . . 5 ⊢ (𝜑 → (𝑂 ∈ OutMeas ↔ ((((𝑂:dom 𝑂⟶(0[,]+∞) ∧ dom 𝑂 = 𝒫 ∪ dom 𝑂) ∧ (𝑂‘∅) = 0) ∧ ∀𝑦 ∈ 𝒫 ∪ dom 𝑂∀𝑧 ∈ 𝒫 𝑦(𝑂‘𝑧) ≤ (𝑂‘𝑦)) ∧ ∀𝑦 ∈ 𝒫 dom 𝑂(𝑦 ≼ ω → (𝑂‘∪ 𝑦) ≤ (Σ^‘(𝑂 ↾ 𝑦)))))) |
4 | 1, 3 | mpbid 224 | . . . 4 ⊢ (𝜑 → ((((𝑂:dom 𝑂⟶(0[,]+∞) ∧ dom 𝑂 = 𝒫 ∪ dom 𝑂) ∧ (𝑂‘∅) = 0) ∧ ∀𝑦 ∈ 𝒫 ∪ dom 𝑂∀𝑧 ∈ 𝒫 𝑦(𝑂‘𝑧) ≤ (𝑂‘𝑦)) ∧ ∀𝑦 ∈ 𝒫 dom 𝑂(𝑦 ≼ ω → (𝑂‘∪ 𝑦) ≤ (Σ^‘(𝑂 ↾ 𝑦))))) |
5 | 4 | simplld 785 | . . 3 ⊢ (𝜑 → ((𝑂:dom 𝑂⟶(0[,]+∞) ∧ dom 𝑂 = 𝒫 ∪ dom 𝑂) ∧ (𝑂‘∅) = 0)) |
6 | 5 | simplld 785 | . 2 ⊢ (𝜑 → 𝑂:dom 𝑂⟶(0[,]+∞)) |
7 | simp-4r 804 | . . . . 5 ⊢ (((((𝑂:dom 𝑂⟶(0[,]+∞) ∧ dom 𝑂 = 𝒫 ∪ dom 𝑂) ∧ (𝑂‘∅) = 0) ∧ ∀𝑦 ∈ 𝒫 ∪ dom 𝑂∀𝑧 ∈ 𝒫 𝑦(𝑂‘𝑧) ≤ (𝑂‘𝑦)) ∧ ∀𝑦 ∈ 𝒫 dom 𝑂(𝑦 ≼ ω → (𝑂‘∪ 𝑦) ≤ (Σ^‘(𝑂 ↾ 𝑦)))) → dom 𝑂 = 𝒫 ∪ dom 𝑂) | |
8 | 4, 7 | syl 17 | . . . 4 ⊢ (𝜑 → dom 𝑂 = 𝒫 ∪ dom 𝑂) |
9 | omef.x | . . . . 5 ⊢ 𝑋 = ∪ dom 𝑂 | |
10 | 9 | pweqi 4353 | . . . 4 ⊢ 𝒫 𝑋 = 𝒫 ∪ dom 𝑂 |
11 | 8, 10 | syl6reqr 2852 | . . 3 ⊢ (𝜑 → 𝒫 𝑋 = dom 𝑂) |
12 | 11 | feq2d 6242 | . 2 ⊢ (𝜑 → (𝑂:𝒫 𝑋⟶(0[,]+∞) ↔ 𝑂:dom 𝑂⟶(0[,]+∞))) |
13 | 6, 12 | mpbird 249 | 1 ⊢ (𝜑 → 𝑂:𝒫 𝑋⟶(0[,]+∞)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 198 ∧ wa 385 = wceq 1653 ∈ wcel 2157 ∀wral 3089 ∅c0 4115 𝒫 cpw 4349 ∪ cuni 4628 class class class wbr 4843 dom cdm 5312 ↾ cres 5314 ⟶wf 6097 ‘cfv 6101 (class class class)co 6878 ωcom 7299 ≼ cdom 8193 0cc0 10224 +∞cpnf 10360 ≤ cle 10364 [,]cicc 12427 Σ^csumge0 41322 OutMeascome 41449 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1891 ax-4 1905 ax-5 2006 ax-6 2072 ax-7 2107 ax-9 2166 ax-10 2185 ax-11 2200 ax-12 2213 ax-13 2377 ax-ext 2777 |
This theorem depends on definitions: df-bi 199 df-an 386 df-or 875 df-3an 1110 df-tru 1657 df-ex 1876 df-nf 1880 df-sb 2065 df-clab 2786 df-cleq 2792 df-clel 2795 df-nfc 2930 df-ral 3094 df-rex 3095 df-rab 3098 df-v 3387 df-dif 3772 df-un 3774 df-in 3776 df-ss 3783 df-nul 4116 df-if 4278 df-pw 4351 df-sn 4369 df-pr 4371 df-op 4375 df-uni 4629 df-br 4844 df-opab 4906 df-rel 5319 df-cnv 5320 df-co 5321 df-dm 5322 df-rn 5323 df-res 5324 df-iota 6064 df-fun 6103 df-fn 6104 df-f 6105 df-fv 6109 df-ome 41450 |
This theorem is referenced by: omecl 41463 omeunle 41476 omeiunle 41477 caratheodory 41488 |
Copyright terms: Public domain | W3C validator |