![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > omef | Structured version Visualization version GIF version |
Description: An outer measure is a function that maps to nonnegative extended reals. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
Ref | Expression |
---|---|
omef.o | ⊢ (𝜑 → 𝑂 ∈ OutMeas) |
omef.x | ⊢ 𝑋 = ∪ dom 𝑂 |
Ref | Expression |
---|---|
omef | ⊢ (𝜑 → 𝑂:𝒫 𝑋⟶(0[,]+∞)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | omef.o | . . . . 5 ⊢ (𝜑 → 𝑂 ∈ OutMeas) | |
2 | isome 45210 | . . . . . 6 ⊢ (𝑂 ∈ OutMeas → (𝑂 ∈ OutMeas ↔ ((((𝑂:dom 𝑂⟶(0[,]+∞) ∧ dom 𝑂 = 𝒫 ∪ dom 𝑂) ∧ (𝑂‘∅) = 0) ∧ ∀𝑦 ∈ 𝒫 ∪ dom 𝑂∀𝑧 ∈ 𝒫 𝑦(𝑂‘𝑧) ≤ (𝑂‘𝑦)) ∧ ∀𝑦 ∈ 𝒫 dom 𝑂(𝑦 ≼ ω → (𝑂‘∪ 𝑦) ≤ (Σ^‘(𝑂 ↾ 𝑦)))))) | |
3 | 1, 2 | syl 17 | . . . . 5 ⊢ (𝜑 → (𝑂 ∈ OutMeas ↔ ((((𝑂:dom 𝑂⟶(0[,]+∞) ∧ dom 𝑂 = 𝒫 ∪ dom 𝑂) ∧ (𝑂‘∅) = 0) ∧ ∀𝑦 ∈ 𝒫 ∪ dom 𝑂∀𝑧 ∈ 𝒫 𝑦(𝑂‘𝑧) ≤ (𝑂‘𝑦)) ∧ ∀𝑦 ∈ 𝒫 dom 𝑂(𝑦 ≼ ω → (𝑂‘∪ 𝑦) ≤ (Σ^‘(𝑂 ↾ 𝑦)))))) |
4 | 1, 3 | mpbid 231 | . . . 4 ⊢ (𝜑 → ((((𝑂:dom 𝑂⟶(0[,]+∞) ∧ dom 𝑂 = 𝒫 ∪ dom 𝑂) ∧ (𝑂‘∅) = 0) ∧ ∀𝑦 ∈ 𝒫 ∪ dom 𝑂∀𝑧 ∈ 𝒫 𝑦(𝑂‘𝑧) ≤ (𝑂‘𝑦)) ∧ ∀𝑦 ∈ 𝒫 dom 𝑂(𝑦 ≼ ω → (𝑂‘∪ 𝑦) ≤ (Σ^‘(𝑂 ↾ 𝑦))))) |
5 | 4 | simplld 767 | . . 3 ⊢ (𝜑 → ((𝑂:dom 𝑂⟶(0[,]+∞) ∧ dom 𝑂 = 𝒫 ∪ dom 𝑂) ∧ (𝑂‘∅) = 0)) |
6 | 5 | simplld 767 | . 2 ⊢ (𝜑 → 𝑂:dom 𝑂⟶(0[,]+∞)) |
7 | omef.x | . . . . 5 ⊢ 𝑋 = ∪ dom 𝑂 | |
8 | 7 | pweqi 4619 | . . . 4 ⊢ 𝒫 𝑋 = 𝒫 ∪ dom 𝑂 |
9 | simp-4r 783 | . . . . 5 ⊢ (((((𝑂:dom 𝑂⟶(0[,]+∞) ∧ dom 𝑂 = 𝒫 ∪ dom 𝑂) ∧ (𝑂‘∅) = 0) ∧ ∀𝑦 ∈ 𝒫 ∪ dom 𝑂∀𝑧 ∈ 𝒫 𝑦(𝑂‘𝑧) ≤ (𝑂‘𝑦)) ∧ ∀𝑦 ∈ 𝒫 dom 𝑂(𝑦 ≼ ω → (𝑂‘∪ 𝑦) ≤ (Σ^‘(𝑂 ↾ 𝑦)))) → dom 𝑂 = 𝒫 ∪ dom 𝑂) | |
10 | 4, 9 | syl 17 | . . . 4 ⊢ (𝜑 → dom 𝑂 = 𝒫 ∪ dom 𝑂) |
11 | 8, 10 | eqtr4id 2792 | . . 3 ⊢ (𝜑 → 𝒫 𝑋 = dom 𝑂) |
12 | 11 | feq2d 6704 | . 2 ⊢ (𝜑 → (𝑂:𝒫 𝑋⟶(0[,]+∞) ↔ 𝑂:dom 𝑂⟶(0[,]+∞))) |
13 | 6, 12 | mpbird 257 | 1 ⊢ (𝜑 → 𝑂:𝒫 𝑋⟶(0[,]+∞)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 397 = wceq 1542 ∈ wcel 2107 ∀wral 3062 ∅c0 4323 𝒫 cpw 4603 ∪ cuni 4909 class class class wbr 5149 dom cdm 5677 ↾ cres 5679 ⟶wf 6540 ‘cfv 6544 (class class class)co 7409 ωcom 7855 ≼ cdom 8937 0cc0 11110 +∞cpnf 11245 ≤ cle 11249 [,]cicc 13327 Σ^csumge0 45078 OutMeascome 45205 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-ext 2704 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-sb 2069 df-clab 2711 df-cleq 2725 df-clel 2811 df-ral 3063 df-rab 3434 df-v 3477 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4910 df-br 5150 df-opab 5212 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-res 5689 df-iota 6496 df-fun 6546 df-fn 6547 df-f 6548 df-fv 6552 df-ome 45206 |
This theorem is referenced by: omecl 45219 omeunle 45232 omeiunle 45233 caratheodory 45244 |
Copyright terms: Public domain | W3C validator |