![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > omef | Structured version Visualization version GIF version |
Description: An outer measure is a function that maps to nonnegative extended reals. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
Ref | Expression |
---|---|
omef.o | ⊢ (𝜑 → 𝑂 ∈ OutMeas) |
omef.x | ⊢ 𝑋 = ∪ dom 𝑂 |
Ref | Expression |
---|---|
omef | ⊢ (𝜑 → 𝑂:𝒫 𝑋⟶(0[,]+∞)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | omef.o | . . . . 5 ⊢ (𝜑 → 𝑂 ∈ OutMeas) | |
2 | isome 46417 | . . . . . 6 ⊢ (𝑂 ∈ OutMeas → (𝑂 ∈ OutMeas ↔ ((((𝑂:dom 𝑂⟶(0[,]+∞) ∧ dom 𝑂 = 𝒫 ∪ dom 𝑂) ∧ (𝑂‘∅) = 0) ∧ ∀𝑦 ∈ 𝒫 ∪ dom 𝑂∀𝑧 ∈ 𝒫 𝑦(𝑂‘𝑧) ≤ (𝑂‘𝑦)) ∧ ∀𝑦 ∈ 𝒫 dom 𝑂(𝑦 ≼ ω → (𝑂‘∪ 𝑦) ≤ (Σ^‘(𝑂 ↾ 𝑦)))))) | |
3 | 1, 2 | syl 17 | . . . . 5 ⊢ (𝜑 → (𝑂 ∈ OutMeas ↔ ((((𝑂:dom 𝑂⟶(0[,]+∞) ∧ dom 𝑂 = 𝒫 ∪ dom 𝑂) ∧ (𝑂‘∅) = 0) ∧ ∀𝑦 ∈ 𝒫 ∪ dom 𝑂∀𝑧 ∈ 𝒫 𝑦(𝑂‘𝑧) ≤ (𝑂‘𝑦)) ∧ ∀𝑦 ∈ 𝒫 dom 𝑂(𝑦 ≼ ω → (𝑂‘∪ 𝑦) ≤ (Σ^‘(𝑂 ↾ 𝑦)))))) |
4 | 1, 3 | mpbid 232 | . . . 4 ⊢ (𝜑 → ((((𝑂:dom 𝑂⟶(0[,]+∞) ∧ dom 𝑂 = 𝒫 ∪ dom 𝑂) ∧ (𝑂‘∅) = 0) ∧ ∀𝑦 ∈ 𝒫 ∪ dom 𝑂∀𝑧 ∈ 𝒫 𝑦(𝑂‘𝑧) ≤ (𝑂‘𝑦)) ∧ ∀𝑦 ∈ 𝒫 dom 𝑂(𝑦 ≼ ω → (𝑂‘∪ 𝑦) ≤ (Σ^‘(𝑂 ↾ 𝑦))))) |
5 | 4 | simplld 767 | . . 3 ⊢ (𝜑 → ((𝑂:dom 𝑂⟶(0[,]+∞) ∧ dom 𝑂 = 𝒫 ∪ dom 𝑂) ∧ (𝑂‘∅) = 0)) |
6 | 5 | simplld 767 | . 2 ⊢ (𝜑 → 𝑂:dom 𝑂⟶(0[,]+∞)) |
7 | omef.x | . . . . 5 ⊢ 𝑋 = ∪ dom 𝑂 | |
8 | 7 | pweqi 4638 | . . . 4 ⊢ 𝒫 𝑋 = 𝒫 ∪ dom 𝑂 |
9 | simp-4r 783 | . . . . 5 ⊢ (((((𝑂:dom 𝑂⟶(0[,]+∞) ∧ dom 𝑂 = 𝒫 ∪ dom 𝑂) ∧ (𝑂‘∅) = 0) ∧ ∀𝑦 ∈ 𝒫 ∪ dom 𝑂∀𝑧 ∈ 𝒫 𝑦(𝑂‘𝑧) ≤ (𝑂‘𝑦)) ∧ ∀𝑦 ∈ 𝒫 dom 𝑂(𝑦 ≼ ω → (𝑂‘∪ 𝑦) ≤ (Σ^‘(𝑂 ↾ 𝑦)))) → dom 𝑂 = 𝒫 ∪ dom 𝑂) | |
10 | 4, 9 | syl 17 | . . . 4 ⊢ (𝜑 → dom 𝑂 = 𝒫 ∪ dom 𝑂) |
11 | 8, 10 | eqtr4id 2799 | . . 3 ⊢ (𝜑 → 𝒫 𝑋 = dom 𝑂) |
12 | 11 | feq2d 6735 | . 2 ⊢ (𝜑 → (𝑂:𝒫 𝑋⟶(0[,]+∞) ↔ 𝑂:dom 𝑂⟶(0[,]+∞))) |
13 | 6, 12 | mpbird 257 | 1 ⊢ (𝜑 → 𝑂:𝒫 𝑋⟶(0[,]+∞)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1537 ∈ wcel 2108 ∀wral 3067 ∅c0 4352 𝒫 cpw 4622 ∪ cuni 4931 class class class wbr 5166 dom cdm 5700 ↾ cres 5702 ⟶wf 6571 ‘cfv 6575 (class class class)co 7450 ωcom 7905 ≼ cdom 9003 0cc0 11186 +∞cpnf 11323 ≤ cle 11327 [,]cicc 13412 Σ^csumge0 46285 OutMeascome 46412 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-ral 3068 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-opab 5229 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-iota 6527 df-fun 6577 df-fn 6578 df-f 6579 df-fv 6583 df-ome 46413 |
This theorem is referenced by: omecl 46426 omeunle 46439 omeiunle 46440 caratheodory 46451 |
Copyright terms: Public domain | W3C validator |