| Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > omef | Structured version Visualization version GIF version | ||
| Description: An outer measure is a function that maps to nonnegative extended reals. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
| Ref | Expression |
|---|---|
| omef.o | ⊢ (𝜑 → 𝑂 ∈ OutMeas) |
| omef.x | ⊢ 𝑋 = ∪ dom 𝑂 |
| Ref | Expression |
|---|---|
| omef | ⊢ (𝜑 → 𝑂:𝒫 𝑋⟶(0[,]+∞)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | omef.o | . . . . 5 ⊢ (𝜑 → 𝑂 ∈ OutMeas) | |
| 2 | isome 46454 | . . . . . 6 ⊢ (𝑂 ∈ OutMeas → (𝑂 ∈ OutMeas ↔ ((((𝑂:dom 𝑂⟶(0[,]+∞) ∧ dom 𝑂 = 𝒫 ∪ dom 𝑂) ∧ (𝑂‘∅) = 0) ∧ ∀𝑦 ∈ 𝒫 ∪ dom 𝑂∀𝑧 ∈ 𝒫 𝑦(𝑂‘𝑧) ≤ (𝑂‘𝑦)) ∧ ∀𝑦 ∈ 𝒫 dom 𝑂(𝑦 ≼ ω → (𝑂‘∪ 𝑦) ≤ (Σ^‘(𝑂 ↾ 𝑦)))))) | |
| 3 | 1, 2 | syl 17 | . . . . 5 ⊢ (𝜑 → (𝑂 ∈ OutMeas ↔ ((((𝑂:dom 𝑂⟶(0[,]+∞) ∧ dom 𝑂 = 𝒫 ∪ dom 𝑂) ∧ (𝑂‘∅) = 0) ∧ ∀𝑦 ∈ 𝒫 ∪ dom 𝑂∀𝑧 ∈ 𝒫 𝑦(𝑂‘𝑧) ≤ (𝑂‘𝑦)) ∧ ∀𝑦 ∈ 𝒫 dom 𝑂(𝑦 ≼ ω → (𝑂‘∪ 𝑦) ≤ (Σ^‘(𝑂 ↾ 𝑦)))))) |
| 4 | 1, 3 | mpbid 232 | . . . 4 ⊢ (𝜑 → ((((𝑂:dom 𝑂⟶(0[,]+∞) ∧ dom 𝑂 = 𝒫 ∪ dom 𝑂) ∧ (𝑂‘∅) = 0) ∧ ∀𝑦 ∈ 𝒫 ∪ dom 𝑂∀𝑧 ∈ 𝒫 𝑦(𝑂‘𝑧) ≤ (𝑂‘𝑦)) ∧ ∀𝑦 ∈ 𝒫 dom 𝑂(𝑦 ≼ ω → (𝑂‘∪ 𝑦) ≤ (Σ^‘(𝑂 ↾ 𝑦))))) |
| 5 | 4 | simplld 767 | . . 3 ⊢ (𝜑 → ((𝑂:dom 𝑂⟶(0[,]+∞) ∧ dom 𝑂 = 𝒫 ∪ dom 𝑂) ∧ (𝑂‘∅) = 0)) |
| 6 | 5 | simplld 767 | . 2 ⊢ (𝜑 → 𝑂:dom 𝑂⟶(0[,]+∞)) |
| 7 | omef.x | . . . . 5 ⊢ 𝑋 = ∪ dom 𝑂 | |
| 8 | 7 | pweqi 4598 | . . . 4 ⊢ 𝒫 𝑋 = 𝒫 ∪ dom 𝑂 |
| 9 | simp-4r 783 | . . . . 5 ⊢ (((((𝑂:dom 𝑂⟶(0[,]+∞) ∧ dom 𝑂 = 𝒫 ∪ dom 𝑂) ∧ (𝑂‘∅) = 0) ∧ ∀𝑦 ∈ 𝒫 ∪ dom 𝑂∀𝑧 ∈ 𝒫 𝑦(𝑂‘𝑧) ≤ (𝑂‘𝑦)) ∧ ∀𝑦 ∈ 𝒫 dom 𝑂(𝑦 ≼ ω → (𝑂‘∪ 𝑦) ≤ (Σ^‘(𝑂 ↾ 𝑦)))) → dom 𝑂 = 𝒫 ∪ dom 𝑂) | |
| 10 | 4, 9 | syl 17 | . . . 4 ⊢ (𝜑 → dom 𝑂 = 𝒫 ∪ dom 𝑂) |
| 11 | 8, 10 | eqtr4id 2788 | . . 3 ⊢ (𝜑 → 𝒫 𝑋 = dom 𝑂) |
| 12 | 11 | feq2d 6703 | . 2 ⊢ (𝜑 → (𝑂:𝒫 𝑋⟶(0[,]+∞) ↔ 𝑂:dom 𝑂⟶(0[,]+∞))) |
| 13 | 6, 12 | mpbird 257 | 1 ⊢ (𝜑 → 𝑂:𝒫 𝑋⟶(0[,]+∞)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1539 ∈ wcel 2107 ∀wral 3050 ∅c0 4315 𝒫 cpw 4582 ∪ cuni 4889 class class class wbr 5125 dom cdm 5667 ↾ cres 5669 ⟶wf 6538 ‘cfv 6542 (class class class)co 7414 ωcom 7870 ≼ cdom 8966 0cc0 11138 +∞cpnf 11275 ≤ cle 11279 [,]cicc 13373 Σ^csumge0 46322 OutMeascome 46449 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-ext 2706 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-sb 2064 df-clab 2713 df-cleq 2726 df-clel 2808 df-ral 3051 df-rab 3421 df-v 3466 df-dif 3936 df-un 3938 df-in 3940 df-ss 3950 df-nul 4316 df-if 4508 df-pw 4584 df-sn 4609 df-pr 4611 df-op 4615 df-uni 4890 df-br 5126 df-opab 5188 df-rel 5674 df-cnv 5675 df-co 5676 df-dm 5677 df-rn 5678 df-res 5679 df-iota 6495 df-fun 6544 df-fn 6545 df-f 6546 df-fv 6550 df-ome 46450 |
| This theorem is referenced by: omecl 46463 omeunle 46476 omeiunle 46477 caratheodory 46488 |
| Copyright terms: Public domain | W3C validator |