Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  omef Structured version   Visualization version   GIF version

Theorem omef 43924
Description: An outer measure is a function that maps to nonnegative extended reals. (Contributed by Glauco Siliprandi, 17-Aug-2020.)
Hypotheses
Ref Expression
omef.o (𝜑𝑂 ∈ OutMeas)
omef.x 𝑋 = dom 𝑂
Assertion
Ref Expression
omef (𝜑𝑂:𝒫 𝑋⟶(0[,]+∞))

Proof of Theorem omef
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 omef.o . . . . 5 (𝜑𝑂 ∈ OutMeas)
2 isome 43922 . . . . . 6 (𝑂 ∈ OutMeas → (𝑂 ∈ OutMeas ↔ ((((𝑂:dom 𝑂⟶(0[,]+∞) ∧ dom 𝑂 = 𝒫 dom 𝑂) ∧ (𝑂‘∅) = 0) ∧ ∀𝑦 ∈ 𝒫 dom 𝑂𝑧 ∈ 𝒫 𝑦(𝑂𝑧) ≤ (𝑂𝑦)) ∧ ∀𝑦 ∈ 𝒫 dom 𝑂(𝑦 ≼ ω → (𝑂 𝑦) ≤ (Σ^‘(𝑂𝑦))))))
31, 2syl 17 . . . . 5 (𝜑 → (𝑂 ∈ OutMeas ↔ ((((𝑂:dom 𝑂⟶(0[,]+∞) ∧ dom 𝑂 = 𝒫 dom 𝑂) ∧ (𝑂‘∅) = 0) ∧ ∀𝑦 ∈ 𝒫 dom 𝑂𝑧 ∈ 𝒫 𝑦(𝑂𝑧) ≤ (𝑂𝑦)) ∧ ∀𝑦 ∈ 𝒫 dom 𝑂(𝑦 ≼ ω → (𝑂 𝑦) ≤ (Σ^‘(𝑂𝑦))))))
41, 3mpbid 231 . . . 4 (𝜑 → ((((𝑂:dom 𝑂⟶(0[,]+∞) ∧ dom 𝑂 = 𝒫 dom 𝑂) ∧ (𝑂‘∅) = 0) ∧ ∀𝑦 ∈ 𝒫 dom 𝑂𝑧 ∈ 𝒫 𝑦(𝑂𝑧) ≤ (𝑂𝑦)) ∧ ∀𝑦 ∈ 𝒫 dom 𝑂(𝑦 ≼ ω → (𝑂 𝑦) ≤ (Σ^‘(𝑂𝑦)))))
54simplld 764 . . 3 (𝜑 → ((𝑂:dom 𝑂⟶(0[,]+∞) ∧ dom 𝑂 = 𝒫 dom 𝑂) ∧ (𝑂‘∅) = 0))
65simplld 764 . 2 (𝜑𝑂:dom 𝑂⟶(0[,]+∞))
7 omef.x . . . . 5 𝑋 = dom 𝑂
87pweqi 4548 . . . 4 𝒫 𝑋 = 𝒫 dom 𝑂
9 simp-4r 780 . . . . 5 (((((𝑂:dom 𝑂⟶(0[,]+∞) ∧ dom 𝑂 = 𝒫 dom 𝑂) ∧ (𝑂‘∅) = 0) ∧ ∀𝑦 ∈ 𝒫 dom 𝑂𝑧 ∈ 𝒫 𝑦(𝑂𝑧) ≤ (𝑂𝑦)) ∧ ∀𝑦 ∈ 𝒫 dom 𝑂(𝑦 ≼ ω → (𝑂 𝑦) ≤ (Σ^‘(𝑂𝑦)))) → dom 𝑂 = 𝒫 dom 𝑂)
104, 9syl 17 . . . 4 (𝜑 → dom 𝑂 = 𝒫 dom 𝑂)
118, 10eqtr4id 2798 . . 3 (𝜑 → 𝒫 𝑋 = dom 𝑂)
1211feq2d 6570 . 2 (𝜑 → (𝑂:𝒫 𝑋⟶(0[,]+∞) ↔ 𝑂:dom 𝑂⟶(0[,]+∞)))
136, 12mpbird 256 1 (𝜑𝑂:𝒫 𝑋⟶(0[,]+∞))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395   = wceq 1539  wcel 2108  wral 3063  c0 4253  𝒫 cpw 4530   cuni 4836   class class class wbr 5070  dom cdm 5580  cres 5582  wf 6414  cfv 6418  (class class class)co 7255  ωcom 7687  cdom 8689  0cc0 10802  +∞cpnf 10937  cle 10941  [,]cicc 13011  Σ^csumge0 43790  OutMeascome 43917
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-sb 2069  df-clab 2716  df-cleq 2730  df-clel 2817  df-ral 3068  df-rab 3072  df-v 3424  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-br 5071  df-opab 5133  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-fv 6426  df-ome 43918
This theorem is referenced by:  omecl  43931  omeunle  43944  omeiunle  43945  caratheodory  43956
  Copyright terms: Public domain W3C validator