Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  caragen0 Structured version   Visualization version   GIF version

Theorem caragen0 43750
Description: The empty set belongs to any Caratheodory's construction. First part of Step (b) in the proof of Theorem 113C of [Fremlin1] p. 19. (Contributed by Glauco Siliprandi, 17-Aug-2020.)
Hypotheses
Ref Expression
caragen0.o (𝜑𝑂 ∈ OutMeas)
caragen0.s 𝑆 = (CaraGen‘𝑂)
Assertion
Ref Expression
caragen0 (𝜑 → ∅ ∈ 𝑆)

Proof of Theorem caragen0
Dummy variable 𝑎 is distinct from all other variables.
StepHypRef Expression
1 caragen0.o . 2 (𝜑𝑂 ∈ OutMeas)
2 eqid 2738 . 2 dom 𝑂 = dom 𝑂
3 caragen0.s . 2 𝑆 = (CaraGen‘𝑂)
4 0elpw 5262 . . 3 ∅ ∈ 𝒫 dom 𝑂
54a1i 11 . 2 (𝜑 → ∅ ∈ 𝒫 dom 𝑂)
6 in0 4321 . . . . . 6 (𝑎 ∩ ∅) = ∅
76fveq2i 6739 . . . . 5 (𝑂‘(𝑎 ∩ ∅)) = (𝑂‘∅)
8 dif0 4302 . . . . . 6 (𝑎 ∖ ∅) = 𝑎
98fveq2i 6739 . . . . 5 (𝑂‘(𝑎 ∖ ∅)) = (𝑂𝑎)
107, 9oveq12i 7244 . . . 4 ((𝑂‘(𝑎 ∩ ∅)) +𝑒 (𝑂‘(𝑎 ∖ ∅))) = ((𝑂‘∅) +𝑒 (𝑂𝑎))
1110a1i 11 . . 3 ((𝜑𝑎 ∈ 𝒫 dom 𝑂) → ((𝑂‘(𝑎 ∩ ∅)) +𝑒 (𝑂‘(𝑎 ∖ ∅))) = ((𝑂‘∅) +𝑒 (𝑂𝑎)))
121ome0 43741 . . . . 5 (𝜑 → (𝑂‘∅) = 0)
1312adantr 484 . . . 4 ((𝜑𝑎 ∈ 𝒫 dom 𝑂) → (𝑂‘∅) = 0)
1413oveq1d 7247 . . 3 ((𝜑𝑎 ∈ 𝒫 dom 𝑂) → ((𝑂‘∅) +𝑒 (𝑂𝑎)) = (0 +𝑒 (𝑂𝑎)))
15 iccssxr 13043 . . . . 5 (0[,]+∞) ⊆ ℝ*
161adantr 484 . . . . . 6 ((𝜑𝑎 ∈ 𝒫 dom 𝑂) → 𝑂 ∈ OutMeas)
17 elpwi 4537 . . . . . . 7 (𝑎 ∈ 𝒫 dom 𝑂𝑎 dom 𝑂)
1817adantl 485 . . . . . 6 ((𝜑𝑎 ∈ 𝒫 dom 𝑂) → 𝑎 dom 𝑂)
1916, 2, 18omecl 43747 . . . . 5 ((𝜑𝑎 ∈ 𝒫 dom 𝑂) → (𝑂𝑎) ∈ (0[,]+∞))
2015, 19sseldi 3914 . . . 4 ((𝜑𝑎 ∈ 𝒫 dom 𝑂) → (𝑂𝑎) ∈ ℝ*)
2120xaddid2d 42564 . . 3 ((𝜑𝑎 ∈ 𝒫 dom 𝑂) → (0 +𝑒 (𝑂𝑎)) = (𝑂𝑎))
2211, 14, 213eqtrd 2782 . 2 ((𝜑𝑎 ∈ 𝒫 dom 𝑂) → ((𝑂‘(𝑎 ∩ ∅)) +𝑒 (𝑂‘(𝑎 ∖ ∅))) = (𝑂𝑎))
231, 2, 3, 5, 22carageneld 43746 1 (𝜑 → ∅ ∈ 𝑆)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399   = wceq 1543  wcel 2111  cdif 3878  cin 3880  wss 3881  c0 4252  𝒫 cpw 4528   cuni 4834  dom cdm 5566  cfv 6398  (class class class)co 7232  0cc0 10754  +∞cpnf 10889  *cxr 10891   +𝑒 cxad 12727  [,]cicc 12963  OutMeascome 43733  CaraGenccaragen 43735
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2159  ax-12 2176  ax-ext 2709  ax-sep 5207  ax-nul 5214  ax-pow 5273  ax-pr 5337  ax-un 7542  ax-cnex 10810  ax-resscn 10811  ax-1cn 10812  ax-icn 10813  ax-addcl 10814  ax-addrcl 10815  ax-mulcl 10816  ax-mulrcl 10817  ax-mulcom 10818  ax-addass 10819  ax-mulass 10820  ax-distr 10821  ax-i2m1 10822  ax-1ne0 10823  ax-1rid 10824  ax-rnegex 10825  ax-rrecex 10826  ax-cnre 10827  ax-pre-lttri 10828  ax-pre-lttrn 10829  ax-pre-ltadd 10830
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3or 1090  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2072  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2887  df-ne 2942  df-nel 3048  df-ral 3067  df-rex 3068  df-rab 3071  df-v 3423  df-sbc 3710  df-csb 3827  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-nul 4253  df-if 4455  df-pw 4530  df-sn 4557  df-pr 4559  df-op 4563  df-uni 4835  df-iun 4921  df-br 5069  df-opab 5131  df-mpt 5151  df-id 5470  df-po 5483  df-so 5484  df-xp 5572  df-rel 5573  df-cnv 5574  df-co 5575  df-dm 5576  df-rn 5577  df-res 5578  df-ima 5579  df-iota 6356  df-fun 6400  df-fn 6401  df-f 6402  df-f1 6403  df-fo 6404  df-f1o 6405  df-fv 6406  df-ov 7235  df-oprab 7236  df-mpo 7237  df-1st 7780  df-2nd 7781  df-er 8412  df-en 8648  df-dom 8649  df-sdom 8650  df-pnf 10894  df-mnf 10895  df-xr 10896  df-ltxr 10897  df-xadd 12730  df-icc 12967  df-ome 43734  df-caragen 43736
This theorem is referenced by:  caragenfiiuncl  43759  caragenunicl  43768  caragensal  43769  caratheodory  43772
  Copyright terms: Public domain W3C validator