![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > caragen0 | Structured version Visualization version GIF version |
Description: The empty set belongs to any Caratheodory's construction. First part of Step (b) in the proof of Theorem 113C of [Fremlin1] p. 19. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
Ref | Expression |
---|---|
caragen0.o | β’ (π β π β OutMeas) |
caragen0.s | β’ π = (CaraGenβπ) |
Ref | Expression |
---|---|
caragen0 | β’ (π β β β π) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | caragen0.o | . 2 β’ (π β π β OutMeas) | |
2 | eqid 2733 | . 2 β’ βͺ dom π = βͺ dom π | |
3 | caragen0.s | . 2 β’ π = (CaraGenβπ) | |
4 | 0elpw 5355 | . . 3 β’ β β π« βͺ dom π | |
5 | 4 | a1i 11 | . 2 β’ (π β β β π« βͺ dom π) |
6 | in0 4392 | . . . . . 6 β’ (π β© β ) = β | |
7 | 6 | fveq2i 6895 | . . . . 5 β’ (πβ(π β© β )) = (πββ ) |
8 | dif0 4373 | . . . . . 6 β’ (π β β ) = π | |
9 | 8 | fveq2i 6895 | . . . . 5 β’ (πβ(π β β )) = (πβπ) |
10 | 7, 9 | oveq12i 7421 | . . . 4 β’ ((πβ(π β© β )) +π (πβ(π β β ))) = ((πββ ) +π (πβπ)) |
11 | 10 | a1i 11 | . . 3 β’ ((π β§ π β π« βͺ dom π) β ((πβ(π β© β )) +π (πβ(π β β ))) = ((πββ ) +π (πβπ))) |
12 | 1 | ome0 45213 | . . . . 5 β’ (π β (πββ ) = 0) |
13 | 12 | adantr 482 | . . . 4 β’ ((π β§ π β π« βͺ dom π) β (πββ ) = 0) |
14 | 13 | oveq1d 7424 | . . 3 β’ ((π β§ π β π« βͺ dom π) β ((πββ ) +π (πβπ)) = (0 +π (πβπ))) |
15 | iccssxr 13407 | . . . . 5 β’ (0[,]+β) β β* | |
16 | 1 | adantr 482 | . . . . . 6 β’ ((π β§ π β π« βͺ dom π) β π β OutMeas) |
17 | elpwi 4610 | . . . . . . 7 β’ (π β π« βͺ dom π β π β βͺ dom π) | |
18 | 17 | adantl 483 | . . . . . 6 β’ ((π β§ π β π« βͺ dom π) β π β βͺ dom π) |
19 | 16, 2, 18 | omecl 45219 | . . . . 5 β’ ((π β§ π β π« βͺ dom π) β (πβπ) β (0[,]+β)) |
20 | 15, 19 | sselid 3981 | . . . 4 β’ ((π β§ π β π« βͺ dom π) β (πβπ) β β*) |
21 | 20 | xaddlidd 44029 | . . 3 β’ ((π β§ π β π« βͺ dom π) β (0 +π (πβπ)) = (πβπ)) |
22 | 11, 14, 21 | 3eqtrd 2777 | . 2 β’ ((π β§ π β π« βͺ dom π) β ((πβ(π β© β )) +π (πβ(π β β ))) = (πβπ)) |
23 | 1, 2, 3, 5, 22 | carageneld 45218 | 1 β’ (π β β β π) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β§ wa 397 = wceq 1542 β wcel 2107 β cdif 3946 β© cin 3948 β wss 3949 β c0 4323 π« cpw 4603 βͺ cuni 4909 dom cdm 5677 βcfv 6544 (class class class)co 7409 0cc0 11110 +βcpnf 11245 β*cxr 11247 +π cxad 13090 [,]cicc 13327 OutMeascome 45205 CaraGenccaragen 45207 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-sep 5300 ax-nul 5307 ax-pow 5364 ax-pr 5428 ax-un 7725 ax-cnex 11166 ax-resscn 11167 ax-1cn 11168 ax-icn 11169 ax-addcl 11170 ax-addrcl 11171 ax-mulcl 11172 ax-mulrcl 11173 ax-mulcom 11174 ax-addass 11175 ax-mulass 11176 ax-distr 11177 ax-i2m1 11178 ax-1ne0 11179 ax-1rid 11180 ax-rnegex 11181 ax-rrecex 11182 ax-cnre 11183 ax-pre-lttri 11184 ax-pre-lttrn 11185 ax-pre-ltadd 11186 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-rab 3434 df-v 3477 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4910 df-iun 5000 df-br 5150 df-opab 5212 df-mpt 5233 df-id 5575 df-po 5589 df-so 5590 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-res 5689 df-ima 5690 df-iota 6496 df-fun 6546 df-fn 6547 df-f 6548 df-f1 6549 df-fo 6550 df-f1o 6551 df-fv 6552 df-ov 7412 df-oprab 7413 df-mpo 7414 df-1st 7975 df-2nd 7976 df-er 8703 df-en 8940 df-dom 8941 df-sdom 8942 df-pnf 11250 df-mnf 11251 df-xr 11252 df-ltxr 11253 df-xadd 13093 df-icc 13331 df-ome 45206 df-caragen 45208 |
This theorem is referenced by: caragenfiiuncl 45231 caragenunicl 45240 caragensal 45241 caratheodory 45244 |
Copyright terms: Public domain | W3C validator |