Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > caragen0 | Structured version Visualization version GIF version |
Description: The empty set belongs to any Caratheodory's construction. First part of Step (b) in the proof of Theorem 113C of [Fremlin1] p. 19. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
Ref | Expression |
---|---|
caragen0.o | ⊢ (𝜑 → 𝑂 ∈ OutMeas) |
caragen0.s | ⊢ 𝑆 = (CaraGen‘𝑂) |
Ref | Expression |
---|---|
caragen0 | ⊢ (𝜑 → ∅ ∈ 𝑆) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | caragen0.o | . 2 ⊢ (𝜑 → 𝑂 ∈ OutMeas) | |
2 | eqid 2738 | . 2 ⊢ ∪ dom 𝑂 = ∪ dom 𝑂 | |
3 | caragen0.s | . 2 ⊢ 𝑆 = (CaraGen‘𝑂) | |
4 | 0elpw 5262 | . . 3 ⊢ ∅ ∈ 𝒫 ∪ dom 𝑂 | |
5 | 4 | a1i 11 | . 2 ⊢ (𝜑 → ∅ ∈ 𝒫 ∪ dom 𝑂) |
6 | in0 4321 | . . . . . 6 ⊢ (𝑎 ∩ ∅) = ∅ | |
7 | 6 | fveq2i 6739 | . . . . 5 ⊢ (𝑂‘(𝑎 ∩ ∅)) = (𝑂‘∅) |
8 | dif0 4302 | . . . . . 6 ⊢ (𝑎 ∖ ∅) = 𝑎 | |
9 | 8 | fveq2i 6739 | . . . . 5 ⊢ (𝑂‘(𝑎 ∖ ∅)) = (𝑂‘𝑎) |
10 | 7, 9 | oveq12i 7244 | . . . 4 ⊢ ((𝑂‘(𝑎 ∩ ∅)) +𝑒 (𝑂‘(𝑎 ∖ ∅))) = ((𝑂‘∅) +𝑒 (𝑂‘𝑎)) |
11 | 10 | a1i 11 | . . 3 ⊢ ((𝜑 ∧ 𝑎 ∈ 𝒫 ∪ dom 𝑂) → ((𝑂‘(𝑎 ∩ ∅)) +𝑒 (𝑂‘(𝑎 ∖ ∅))) = ((𝑂‘∅) +𝑒 (𝑂‘𝑎))) |
12 | 1 | ome0 43741 | . . . . 5 ⊢ (𝜑 → (𝑂‘∅) = 0) |
13 | 12 | adantr 484 | . . . 4 ⊢ ((𝜑 ∧ 𝑎 ∈ 𝒫 ∪ dom 𝑂) → (𝑂‘∅) = 0) |
14 | 13 | oveq1d 7247 | . . 3 ⊢ ((𝜑 ∧ 𝑎 ∈ 𝒫 ∪ dom 𝑂) → ((𝑂‘∅) +𝑒 (𝑂‘𝑎)) = (0 +𝑒 (𝑂‘𝑎))) |
15 | iccssxr 13043 | . . . . 5 ⊢ (0[,]+∞) ⊆ ℝ* | |
16 | 1 | adantr 484 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑎 ∈ 𝒫 ∪ dom 𝑂) → 𝑂 ∈ OutMeas) |
17 | elpwi 4537 | . . . . . . 7 ⊢ (𝑎 ∈ 𝒫 ∪ dom 𝑂 → 𝑎 ⊆ ∪ dom 𝑂) | |
18 | 17 | adantl 485 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑎 ∈ 𝒫 ∪ dom 𝑂) → 𝑎 ⊆ ∪ dom 𝑂) |
19 | 16, 2, 18 | omecl 43747 | . . . . 5 ⊢ ((𝜑 ∧ 𝑎 ∈ 𝒫 ∪ dom 𝑂) → (𝑂‘𝑎) ∈ (0[,]+∞)) |
20 | 15, 19 | sseldi 3914 | . . . 4 ⊢ ((𝜑 ∧ 𝑎 ∈ 𝒫 ∪ dom 𝑂) → (𝑂‘𝑎) ∈ ℝ*) |
21 | 20 | xaddid2d 42564 | . . 3 ⊢ ((𝜑 ∧ 𝑎 ∈ 𝒫 ∪ dom 𝑂) → (0 +𝑒 (𝑂‘𝑎)) = (𝑂‘𝑎)) |
22 | 11, 14, 21 | 3eqtrd 2782 | . 2 ⊢ ((𝜑 ∧ 𝑎 ∈ 𝒫 ∪ dom 𝑂) → ((𝑂‘(𝑎 ∩ ∅)) +𝑒 (𝑂‘(𝑎 ∖ ∅))) = (𝑂‘𝑎)) |
23 | 1, 2, 3, 5, 22 | carageneld 43746 | 1 ⊢ (𝜑 → ∅ ∈ 𝑆) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 399 = wceq 1543 ∈ wcel 2111 ∖ cdif 3878 ∩ cin 3880 ⊆ wss 3881 ∅c0 4252 𝒫 cpw 4528 ∪ cuni 4834 dom cdm 5566 ‘cfv 6398 (class class class)co 7232 0cc0 10754 +∞cpnf 10889 ℝ*cxr 10891 +𝑒 cxad 12727 [,]cicc 12963 OutMeascome 43733 CaraGenccaragen 43735 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2113 ax-9 2121 ax-10 2142 ax-11 2159 ax-12 2176 ax-ext 2709 ax-sep 5207 ax-nul 5214 ax-pow 5273 ax-pr 5337 ax-un 7542 ax-cnex 10810 ax-resscn 10811 ax-1cn 10812 ax-icn 10813 ax-addcl 10814 ax-addrcl 10815 ax-mulcl 10816 ax-mulrcl 10817 ax-mulcom 10818 ax-addass 10819 ax-mulass 10820 ax-distr 10821 ax-i2m1 10822 ax-1ne0 10823 ax-1rid 10824 ax-rnegex 10825 ax-rrecex 10826 ax-cnre 10827 ax-pre-lttri 10828 ax-pre-lttrn 10829 ax-pre-ltadd 10830 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 df-3or 1090 df-3an 1091 df-tru 1546 df-fal 1556 df-ex 1788 df-nf 1792 df-sb 2072 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2887 df-ne 2942 df-nel 3048 df-ral 3067 df-rex 3068 df-rab 3071 df-v 3423 df-sbc 3710 df-csb 3827 df-dif 3884 df-un 3886 df-in 3888 df-ss 3898 df-nul 4253 df-if 4455 df-pw 4530 df-sn 4557 df-pr 4559 df-op 4563 df-uni 4835 df-iun 4921 df-br 5069 df-opab 5131 df-mpt 5151 df-id 5470 df-po 5483 df-so 5484 df-xp 5572 df-rel 5573 df-cnv 5574 df-co 5575 df-dm 5576 df-rn 5577 df-res 5578 df-ima 5579 df-iota 6356 df-fun 6400 df-fn 6401 df-f 6402 df-f1 6403 df-fo 6404 df-f1o 6405 df-fv 6406 df-ov 7235 df-oprab 7236 df-mpo 7237 df-1st 7780 df-2nd 7781 df-er 8412 df-en 8648 df-dom 8649 df-sdom 8650 df-pnf 10894 df-mnf 10895 df-xr 10896 df-ltxr 10897 df-xadd 12730 df-icc 12967 df-ome 43734 df-caragen 43736 |
This theorem is referenced by: caragenfiiuncl 43759 caragenunicl 43768 caragensal 43769 caratheodory 43772 |
Copyright terms: Public domain | W3C validator |