| Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > caragen0 | Structured version Visualization version GIF version | ||
| Description: The empty set belongs to any Caratheodory's construction. First part of Step (b) in the proof of Theorem 113C of [Fremlin1] p. 19. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
| Ref | Expression |
|---|---|
| caragen0.o | ⊢ (𝜑 → 𝑂 ∈ OutMeas) |
| caragen0.s | ⊢ 𝑆 = (CaraGen‘𝑂) |
| Ref | Expression |
|---|---|
| caragen0 | ⊢ (𝜑 → ∅ ∈ 𝑆) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | caragen0.o | . 2 ⊢ (𝜑 → 𝑂 ∈ OutMeas) | |
| 2 | eqid 2736 | . 2 ⊢ ∪ dom 𝑂 = ∪ dom 𝑂 | |
| 3 | caragen0.s | . 2 ⊢ 𝑆 = (CaraGen‘𝑂) | |
| 4 | 0elpw 5331 | . . 3 ⊢ ∅ ∈ 𝒫 ∪ dom 𝑂 | |
| 5 | 4 | a1i 11 | . 2 ⊢ (𝜑 → ∅ ∈ 𝒫 ∪ dom 𝑂) |
| 6 | in0 4375 | . . . . . 6 ⊢ (𝑎 ∩ ∅) = ∅ | |
| 7 | 6 | fveq2i 6884 | . . . . 5 ⊢ (𝑂‘(𝑎 ∩ ∅)) = (𝑂‘∅) |
| 8 | dif0 4358 | . . . . . 6 ⊢ (𝑎 ∖ ∅) = 𝑎 | |
| 9 | 8 | fveq2i 6884 | . . . . 5 ⊢ (𝑂‘(𝑎 ∖ ∅)) = (𝑂‘𝑎) |
| 10 | 7, 9 | oveq12i 7422 | . . . 4 ⊢ ((𝑂‘(𝑎 ∩ ∅)) +𝑒 (𝑂‘(𝑎 ∖ ∅))) = ((𝑂‘∅) +𝑒 (𝑂‘𝑎)) |
| 11 | 10 | a1i 11 | . . 3 ⊢ ((𝜑 ∧ 𝑎 ∈ 𝒫 ∪ dom 𝑂) → ((𝑂‘(𝑎 ∩ ∅)) +𝑒 (𝑂‘(𝑎 ∖ ∅))) = ((𝑂‘∅) +𝑒 (𝑂‘𝑎))) |
| 12 | 1 | ome0 46493 | . . . . 5 ⊢ (𝜑 → (𝑂‘∅) = 0) |
| 13 | 12 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝑎 ∈ 𝒫 ∪ dom 𝑂) → (𝑂‘∅) = 0) |
| 14 | 13 | oveq1d 7425 | . . 3 ⊢ ((𝜑 ∧ 𝑎 ∈ 𝒫 ∪ dom 𝑂) → ((𝑂‘∅) +𝑒 (𝑂‘𝑎)) = (0 +𝑒 (𝑂‘𝑎))) |
| 15 | iccssxr 13452 | . . . . 5 ⊢ (0[,]+∞) ⊆ ℝ* | |
| 16 | 1 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑎 ∈ 𝒫 ∪ dom 𝑂) → 𝑂 ∈ OutMeas) |
| 17 | elpwi 4587 | . . . . . . 7 ⊢ (𝑎 ∈ 𝒫 ∪ dom 𝑂 → 𝑎 ⊆ ∪ dom 𝑂) | |
| 18 | 17 | adantl 481 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑎 ∈ 𝒫 ∪ dom 𝑂) → 𝑎 ⊆ ∪ dom 𝑂) |
| 19 | 16, 2, 18 | omecl 46499 | . . . . 5 ⊢ ((𝜑 ∧ 𝑎 ∈ 𝒫 ∪ dom 𝑂) → (𝑂‘𝑎) ∈ (0[,]+∞)) |
| 20 | 15, 19 | sselid 3961 | . . . 4 ⊢ ((𝜑 ∧ 𝑎 ∈ 𝒫 ∪ dom 𝑂) → (𝑂‘𝑎) ∈ ℝ*) |
| 21 | 20 | xaddlidd 45314 | . . 3 ⊢ ((𝜑 ∧ 𝑎 ∈ 𝒫 ∪ dom 𝑂) → (0 +𝑒 (𝑂‘𝑎)) = (𝑂‘𝑎)) |
| 22 | 11, 14, 21 | 3eqtrd 2775 | . 2 ⊢ ((𝜑 ∧ 𝑎 ∈ 𝒫 ∪ dom 𝑂) → ((𝑂‘(𝑎 ∩ ∅)) +𝑒 (𝑂‘(𝑎 ∖ ∅))) = (𝑂‘𝑎)) |
| 23 | 1, 2, 3, 5, 22 | carageneld 46498 | 1 ⊢ (𝜑 → ∅ ∈ 𝑆) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∖ cdif 3928 ∩ cin 3930 ⊆ wss 3931 ∅c0 4313 𝒫 cpw 4580 ∪ cuni 4888 dom cdm 5659 ‘cfv 6536 (class class class)co 7410 0cc0 11134 +∞cpnf 11271 ℝ*cxr 11273 +𝑒 cxad 13131 [,]cicc 13370 OutMeascome 46485 CaraGenccaragen 46487 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-sep 5271 ax-nul 5281 ax-pow 5340 ax-pr 5407 ax-un 7734 ax-cnex 11190 ax-resscn 11191 ax-1cn 11192 ax-icn 11193 ax-addcl 11194 ax-addrcl 11195 ax-mulcl 11196 ax-mulrcl 11197 ax-mulcom 11198 ax-addass 11199 ax-mulass 11200 ax-distr 11201 ax-i2m1 11202 ax-1ne0 11203 ax-1rid 11204 ax-rnegex 11205 ax-rrecex 11206 ax-cnre 11207 ax-pre-lttri 11208 ax-pre-lttrn 11209 ax-pre-ltadd 11210 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-nel 3038 df-ral 3053 df-rex 3062 df-rab 3421 df-v 3466 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-iun 4974 df-br 5125 df-opab 5187 df-mpt 5207 df-id 5553 df-po 5566 df-so 5567 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-res 5671 df-ima 5672 df-iota 6489 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fo 6542 df-f1o 6543 df-fv 6544 df-ov 7413 df-oprab 7414 df-mpo 7415 df-1st 7993 df-2nd 7994 df-er 8724 df-en 8965 df-dom 8966 df-sdom 8967 df-pnf 11276 df-mnf 11277 df-xr 11278 df-ltxr 11279 df-xadd 13134 df-icc 13374 df-ome 46486 df-caragen 46488 |
| This theorem is referenced by: caragenfiiuncl 46511 caragenunicl 46520 caragensal 46521 caratheodory 46524 |
| Copyright terms: Public domain | W3C validator |