| Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > caragen0 | Structured version Visualization version GIF version | ||
| Description: The empty set belongs to any Caratheodory's construction. First part of Step (b) in the proof of Theorem 113C of [Fremlin1] p. 19. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
| Ref | Expression |
|---|---|
| caragen0.o | ⊢ (𝜑 → 𝑂 ∈ OutMeas) |
| caragen0.s | ⊢ 𝑆 = (CaraGen‘𝑂) |
| Ref | Expression |
|---|---|
| caragen0 | ⊢ (𝜑 → ∅ ∈ 𝑆) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | caragen0.o | . 2 ⊢ (𝜑 → 𝑂 ∈ OutMeas) | |
| 2 | eqid 2730 | . 2 ⊢ ∪ dom 𝑂 = ∪ dom 𝑂 | |
| 3 | caragen0.s | . 2 ⊢ 𝑆 = (CaraGen‘𝑂) | |
| 4 | 0elpw 5314 | . . 3 ⊢ ∅ ∈ 𝒫 ∪ dom 𝑂 | |
| 5 | 4 | a1i 11 | . 2 ⊢ (𝜑 → ∅ ∈ 𝒫 ∪ dom 𝑂) |
| 6 | in0 4361 | . . . . . 6 ⊢ (𝑎 ∩ ∅) = ∅ | |
| 7 | 6 | fveq2i 6864 | . . . . 5 ⊢ (𝑂‘(𝑎 ∩ ∅)) = (𝑂‘∅) |
| 8 | dif0 4344 | . . . . . 6 ⊢ (𝑎 ∖ ∅) = 𝑎 | |
| 9 | 8 | fveq2i 6864 | . . . . 5 ⊢ (𝑂‘(𝑎 ∖ ∅)) = (𝑂‘𝑎) |
| 10 | 7, 9 | oveq12i 7402 | . . . 4 ⊢ ((𝑂‘(𝑎 ∩ ∅)) +𝑒 (𝑂‘(𝑎 ∖ ∅))) = ((𝑂‘∅) +𝑒 (𝑂‘𝑎)) |
| 11 | 10 | a1i 11 | . . 3 ⊢ ((𝜑 ∧ 𝑎 ∈ 𝒫 ∪ dom 𝑂) → ((𝑂‘(𝑎 ∩ ∅)) +𝑒 (𝑂‘(𝑎 ∖ ∅))) = ((𝑂‘∅) +𝑒 (𝑂‘𝑎))) |
| 12 | 1 | ome0 46502 | . . . . 5 ⊢ (𝜑 → (𝑂‘∅) = 0) |
| 13 | 12 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝑎 ∈ 𝒫 ∪ dom 𝑂) → (𝑂‘∅) = 0) |
| 14 | 13 | oveq1d 7405 | . . 3 ⊢ ((𝜑 ∧ 𝑎 ∈ 𝒫 ∪ dom 𝑂) → ((𝑂‘∅) +𝑒 (𝑂‘𝑎)) = (0 +𝑒 (𝑂‘𝑎))) |
| 15 | iccssxr 13398 | . . . . 5 ⊢ (0[,]+∞) ⊆ ℝ* | |
| 16 | 1 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑎 ∈ 𝒫 ∪ dom 𝑂) → 𝑂 ∈ OutMeas) |
| 17 | elpwi 4573 | . . . . . . 7 ⊢ (𝑎 ∈ 𝒫 ∪ dom 𝑂 → 𝑎 ⊆ ∪ dom 𝑂) | |
| 18 | 17 | adantl 481 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑎 ∈ 𝒫 ∪ dom 𝑂) → 𝑎 ⊆ ∪ dom 𝑂) |
| 19 | 16, 2, 18 | omecl 46508 | . . . . 5 ⊢ ((𝜑 ∧ 𝑎 ∈ 𝒫 ∪ dom 𝑂) → (𝑂‘𝑎) ∈ (0[,]+∞)) |
| 20 | 15, 19 | sselid 3947 | . . . 4 ⊢ ((𝜑 ∧ 𝑎 ∈ 𝒫 ∪ dom 𝑂) → (𝑂‘𝑎) ∈ ℝ*) |
| 21 | 20 | xaddlidd 45323 | . . 3 ⊢ ((𝜑 ∧ 𝑎 ∈ 𝒫 ∪ dom 𝑂) → (0 +𝑒 (𝑂‘𝑎)) = (𝑂‘𝑎)) |
| 22 | 11, 14, 21 | 3eqtrd 2769 | . 2 ⊢ ((𝜑 ∧ 𝑎 ∈ 𝒫 ∪ dom 𝑂) → ((𝑂‘(𝑎 ∩ ∅)) +𝑒 (𝑂‘(𝑎 ∖ ∅))) = (𝑂‘𝑎)) |
| 23 | 1, 2, 3, 5, 22 | carageneld 46507 | 1 ⊢ (𝜑 → ∅ ∈ 𝑆) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∖ cdif 3914 ∩ cin 3916 ⊆ wss 3917 ∅c0 4299 𝒫 cpw 4566 ∪ cuni 4874 dom cdm 5641 ‘cfv 6514 (class class class)co 7390 0cc0 11075 +∞cpnf 11212 ℝ*cxr 11214 +𝑒 cxad 13077 [,]cicc 13316 OutMeascome 46494 CaraGenccaragen 46496 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 ax-cnex 11131 ax-resscn 11132 ax-1cn 11133 ax-icn 11134 ax-addcl 11135 ax-addrcl 11136 ax-mulcl 11137 ax-mulrcl 11138 ax-mulcom 11139 ax-addass 11140 ax-mulass 11141 ax-distr 11142 ax-i2m1 11143 ax-1ne0 11144 ax-1rid 11145 ax-rnegex 11146 ax-rrecex 11147 ax-cnre 11148 ax-pre-lttri 11149 ax-pre-lttrn 11150 ax-pre-ltadd 11151 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-iun 4960 df-br 5111 df-opab 5173 df-mpt 5192 df-id 5536 df-po 5549 df-so 5550 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-ov 7393 df-oprab 7394 df-mpo 7395 df-1st 7971 df-2nd 7972 df-er 8674 df-en 8922 df-dom 8923 df-sdom 8924 df-pnf 11217 df-mnf 11218 df-xr 11219 df-ltxr 11220 df-xadd 13080 df-icc 13320 df-ome 46495 df-caragen 46497 |
| This theorem is referenced by: caragenfiiuncl 46520 caragenunicl 46529 caragensal 46530 caratheodory 46533 |
| Copyright terms: Public domain | W3C validator |