| Step | Hyp | Ref
| Expression |
| 1 | | sseq1 3989 |
. . 3
⊢ (𝑏 = ∅ → (𝑏 ⊆ (𝐶‘𝑛) ↔ ∅ ⊆ (𝐶‘𝑛))) |
| 2 | 1 | rexbidv 3166 |
. 2
⊢ (𝑏 = ∅ → (∃𝑛 ∈ ω 𝑏 ⊆ (𝐶‘𝑛) ↔ ∃𝑛 ∈ ω ∅ ⊆ (𝐶‘𝑛))) |
| 3 | | sseq1 3989 |
. . 3
⊢ (𝑏 = 𝑖 → (𝑏 ⊆ (𝐶‘𝑛) ↔ 𝑖 ⊆ (𝐶‘𝑛))) |
| 4 | 3 | rexbidv 3166 |
. 2
⊢ (𝑏 = 𝑖 → (∃𝑛 ∈ ω 𝑏 ⊆ (𝐶‘𝑛) ↔ ∃𝑛 ∈ ω 𝑖 ⊆ (𝐶‘𝑛))) |
| 5 | | sseq1 3989 |
. . . 4
⊢ (𝑏 = (𝑖 ∪ {𝑥}) → (𝑏 ⊆ (𝐶‘𝑛) ↔ (𝑖 ∪ {𝑥}) ⊆ (𝐶‘𝑛))) |
| 6 | 5 | rexbidv 3166 |
. . 3
⊢ (𝑏 = (𝑖 ∪ {𝑥}) → (∃𝑛 ∈ ω 𝑏 ⊆ (𝐶‘𝑛) ↔ ∃𝑛 ∈ ω (𝑖 ∪ {𝑥}) ⊆ (𝐶‘𝑛))) |
| 7 | | fveq2 6886 |
. . . . 5
⊢ (𝑛 = 𝑚 → (𝐶‘𝑛) = (𝐶‘𝑚)) |
| 8 | 7 | sseq2d 3996 |
. . . 4
⊢ (𝑛 = 𝑚 → ((𝑖 ∪ {𝑥}) ⊆ (𝐶‘𝑛) ↔ (𝑖 ∪ {𝑥}) ⊆ (𝐶‘𝑚))) |
| 9 | 8 | cbvrexvw 3224 |
. . 3
⊢
(∃𝑛 ∈
ω (𝑖 ∪ {𝑥}) ⊆ (𝐶‘𝑛) ↔ ∃𝑚 ∈ ω (𝑖 ∪ {𝑥}) ⊆ (𝐶‘𝑚)) |
| 10 | 6, 9 | bitrdi 287 |
. 2
⊢ (𝑏 = (𝑖 ∪ {𝑥}) → (∃𝑛 ∈ ω 𝑏 ⊆ (𝐶‘𝑛) ↔ ∃𝑚 ∈ ω (𝑖 ∪ {𝑥}) ⊆ (𝐶‘𝑚))) |
| 11 | | sseq1 3989 |
. . 3
⊢ (𝑏 = 𝐴 → (𝑏 ⊆ (𝐶‘𝑛) ↔ 𝐴 ⊆ (𝐶‘𝑛))) |
| 12 | 11 | rexbidv 3166 |
. 2
⊢ (𝑏 = 𝐴 → (∃𝑛 ∈ ω 𝑏 ⊆ (𝐶‘𝑛) ↔ ∃𝑛 ∈ ω 𝐴 ⊆ (𝐶‘𝑛))) |
| 13 | | peano1 7892 |
. . . 4
⊢ ∅
∈ ω |
| 14 | 13 | ne0ii 4324 |
. . 3
⊢ ω
≠ ∅ |
| 15 | | 0ss 4380 |
. . . . 5
⊢ ∅
⊆ (𝐶‘𝑛) |
| 16 | 15 | a1i 11 |
. . . 4
⊢ ((𝜑 ∧ 𝑛 ∈ ω) → ∅ ⊆
(𝐶‘𝑛)) |
| 17 | 16 | reximdva0 4335 |
. . 3
⊢ ((𝜑 ∧ ω ≠ ∅)
→ ∃𝑛 ∈
ω ∅ ⊆ (𝐶‘𝑛)) |
| 18 | 14, 17 | mpan2 691 |
. 2
⊢ (𝜑 → ∃𝑛 ∈ ω ∅ ⊆ (𝐶‘𝑛)) |
| 19 | | simpllr 775 |
. . . . . . . 8
⊢
((((((((𝜑 ∧ 𝑖 ⊆ 𝐴) ∧ 𝑥 ∈ (𝐴 ∖ 𝑖)) ∧ 𝑛 ∈ ω) ∧ 𝑖 ⊆ (𝐶‘𝑛)) ∧ 𝑙 ∈ ω) ∧ 𝑥 ∈ (𝐶‘𝑙)) ∧ 𝑛 ∈ 𝑙) → 𝑙 ∈ ω) |
| 20 | | fveq2 6886 |
. . . . . . . . . 10
⊢ (𝑚 = 𝑙 → (𝐶‘𝑚) = (𝐶‘𝑙)) |
| 21 | 20 | sseq2d 3996 |
. . . . . . . . 9
⊢ (𝑚 = 𝑙 → ((𝑖 ∪ {𝑥}) ⊆ (𝐶‘𝑚) ↔ (𝑖 ∪ {𝑥}) ⊆ (𝐶‘𝑙))) |
| 22 | 21 | adantl 481 |
. . . . . . . 8
⊢
(((((((((𝜑 ∧ 𝑖 ⊆ 𝐴) ∧ 𝑥 ∈ (𝐴 ∖ 𝑖)) ∧ 𝑛 ∈ ω) ∧ 𝑖 ⊆ (𝐶‘𝑛)) ∧ 𝑙 ∈ ω) ∧ 𝑥 ∈ (𝐶‘𝑙)) ∧ 𝑛 ∈ 𝑙) ∧ 𝑚 = 𝑙) → ((𝑖 ∪ {𝑥}) ⊆ (𝐶‘𝑚) ↔ (𝑖 ∪ {𝑥}) ⊆ (𝐶‘𝑙))) |
| 23 | | simp-4r 783 |
. . . . . . . . . 10
⊢
((((((((𝜑 ∧ 𝑖 ⊆ 𝐴) ∧ 𝑥 ∈ (𝐴 ∖ 𝑖)) ∧ 𝑛 ∈ ω) ∧ 𝑖 ⊆ (𝐶‘𝑛)) ∧ 𝑙 ∈ ω) ∧ 𝑥 ∈ (𝐶‘𝑙)) ∧ 𝑛 ∈ 𝑙) → 𝑖 ⊆ (𝐶‘𝑛)) |
| 24 | | constr0.1 |
. . . . . . . . . . . 12
⊢ 𝐶 = rec((𝑠 ∈ V ↦ {𝑥 ∈ ℂ ∣ (∃𝑎 ∈ 𝑠 ∃𝑏 ∈ 𝑠 ∃𝑐 ∈ 𝑠 ∃𝑑 ∈ 𝑠 ∃𝑡 ∈ ℝ ∃𝑟 ∈ ℝ (𝑥 = (𝑎 + (𝑡 · (𝑏 − 𝑎))) ∧ 𝑥 = (𝑐 + (𝑟 · (𝑑 − 𝑐))) ∧
(ℑ‘((∗‘(𝑏 − 𝑎)) · (𝑑 − 𝑐))) ≠ 0) ∨ ∃𝑎 ∈ 𝑠 ∃𝑏 ∈ 𝑠 ∃𝑐 ∈ 𝑠 ∃𝑒 ∈ 𝑠 ∃𝑓 ∈ 𝑠 ∃𝑡 ∈ ℝ (𝑥 = (𝑎 + (𝑡 · (𝑏 − 𝑎))) ∧ (abs‘(𝑥 − 𝑐)) = (abs‘(𝑒 − 𝑓))) ∨ ∃𝑎 ∈ 𝑠 ∃𝑏 ∈ 𝑠 ∃𝑐 ∈ 𝑠 ∃𝑑 ∈ 𝑠 ∃𝑒 ∈ 𝑠 ∃𝑓 ∈ 𝑠 (𝑎 ≠ 𝑑 ∧ (abs‘(𝑥 − 𝑎)) = (abs‘(𝑏 − 𝑐)) ∧ (abs‘(𝑥 − 𝑑)) = (abs‘(𝑒 − 𝑓))))}), {0, 1}) |
| 25 | | nnon 7875 |
. . . . . . . . . . . . 13
⊢ (𝑙 ∈ ω → 𝑙 ∈ On) |
| 26 | 25 | adantr 480 |
. . . . . . . . . . . 12
⊢ ((𝑙 ∈ ω ∧ 𝑛 ∈ 𝑙) → 𝑙 ∈ On) |
| 27 | | simpr 484 |
. . . . . . . . . . . 12
⊢ ((𝑙 ∈ ω ∧ 𝑛 ∈ 𝑙) → 𝑛 ∈ 𝑙) |
| 28 | 24, 26, 27 | constrmon 33724 |
. . . . . . . . . . 11
⊢ ((𝑙 ∈ ω ∧ 𝑛 ∈ 𝑙) → (𝐶‘𝑛) ⊆ (𝐶‘𝑙)) |
| 29 | 19, 28 | sylancom 588 |
. . . . . . . . . 10
⊢
((((((((𝜑 ∧ 𝑖 ⊆ 𝐴) ∧ 𝑥 ∈ (𝐴 ∖ 𝑖)) ∧ 𝑛 ∈ ω) ∧ 𝑖 ⊆ (𝐶‘𝑛)) ∧ 𝑙 ∈ ω) ∧ 𝑥 ∈ (𝐶‘𝑙)) ∧ 𝑛 ∈ 𝑙) → (𝐶‘𝑛) ⊆ (𝐶‘𝑙)) |
| 30 | 23, 29 | sstrd 3974 |
. . . . . . . . 9
⊢
((((((((𝜑 ∧ 𝑖 ⊆ 𝐴) ∧ 𝑥 ∈ (𝐴 ∖ 𝑖)) ∧ 𝑛 ∈ ω) ∧ 𝑖 ⊆ (𝐶‘𝑛)) ∧ 𝑙 ∈ ω) ∧ 𝑥 ∈ (𝐶‘𝑙)) ∧ 𝑛 ∈ 𝑙) → 𝑖 ⊆ (𝐶‘𝑙)) |
| 31 | | simplr 768 |
. . . . . . . . . 10
⊢
((((((((𝜑 ∧ 𝑖 ⊆ 𝐴) ∧ 𝑥 ∈ (𝐴 ∖ 𝑖)) ∧ 𝑛 ∈ ω) ∧ 𝑖 ⊆ (𝐶‘𝑛)) ∧ 𝑙 ∈ ω) ∧ 𝑥 ∈ (𝐶‘𝑙)) ∧ 𝑛 ∈ 𝑙) → 𝑥 ∈ (𝐶‘𝑙)) |
| 32 | 31 | snssd 4789 |
. . . . . . . . 9
⊢
((((((((𝜑 ∧ 𝑖 ⊆ 𝐴) ∧ 𝑥 ∈ (𝐴 ∖ 𝑖)) ∧ 𝑛 ∈ ω) ∧ 𝑖 ⊆ (𝐶‘𝑛)) ∧ 𝑙 ∈ ω) ∧ 𝑥 ∈ (𝐶‘𝑙)) ∧ 𝑛 ∈ 𝑙) → {𝑥} ⊆ (𝐶‘𝑙)) |
| 33 | 30, 32 | unssd 4172 |
. . . . . . . 8
⊢
((((((((𝜑 ∧ 𝑖 ⊆ 𝐴) ∧ 𝑥 ∈ (𝐴 ∖ 𝑖)) ∧ 𝑛 ∈ ω) ∧ 𝑖 ⊆ (𝐶‘𝑛)) ∧ 𝑙 ∈ ω) ∧ 𝑥 ∈ (𝐶‘𝑙)) ∧ 𝑛 ∈ 𝑙) → (𝑖 ∪ {𝑥}) ⊆ (𝐶‘𝑙)) |
| 34 | 19, 22, 33 | rspcedvd 3607 |
. . . . . . 7
⊢
((((((((𝜑 ∧ 𝑖 ⊆ 𝐴) ∧ 𝑥 ∈ (𝐴 ∖ 𝑖)) ∧ 𝑛 ∈ ω) ∧ 𝑖 ⊆ (𝐶‘𝑛)) ∧ 𝑙 ∈ ω) ∧ 𝑥 ∈ (𝐶‘𝑙)) ∧ 𝑛 ∈ 𝑙) → ∃𝑚 ∈ ω (𝑖 ∪ {𝑥}) ⊆ (𝐶‘𝑚)) |
| 35 | | simp-5r 785 |
. . . . . . . 8
⊢
((((((((𝜑 ∧ 𝑖 ⊆ 𝐴) ∧ 𝑥 ∈ (𝐴 ∖ 𝑖)) ∧ 𝑛 ∈ ω) ∧ 𝑖 ⊆ (𝐶‘𝑛)) ∧ 𝑙 ∈ ω) ∧ 𝑥 ∈ (𝐶‘𝑙)) ∧ 𝑙 ∈ 𝑛) → 𝑛 ∈ ω) |
| 36 | | fveq2 6886 |
. . . . . . . . . 10
⊢ (𝑚 = 𝑛 → (𝐶‘𝑚) = (𝐶‘𝑛)) |
| 37 | 36 | sseq2d 3996 |
. . . . . . . . 9
⊢ (𝑚 = 𝑛 → ((𝑖 ∪ {𝑥}) ⊆ (𝐶‘𝑚) ↔ (𝑖 ∪ {𝑥}) ⊆ (𝐶‘𝑛))) |
| 38 | 37 | adantl 481 |
. . . . . . . 8
⊢
(((((((((𝜑 ∧ 𝑖 ⊆ 𝐴) ∧ 𝑥 ∈ (𝐴 ∖ 𝑖)) ∧ 𝑛 ∈ ω) ∧ 𝑖 ⊆ (𝐶‘𝑛)) ∧ 𝑙 ∈ ω) ∧ 𝑥 ∈ (𝐶‘𝑙)) ∧ 𝑙 ∈ 𝑛) ∧ 𝑚 = 𝑛) → ((𝑖 ∪ {𝑥}) ⊆ (𝐶‘𝑚) ↔ (𝑖 ∪ {𝑥}) ⊆ (𝐶‘𝑛))) |
| 39 | | simp-4r 783 |
. . . . . . . . 9
⊢
((((((((𝜑 ∧ 𝑖 ⊆ 𝐴) ∧ 𝑥 ∈ (𝐴 ∖ 𝑖)) ∧ 𝑛 ∈ ω) ∧ 𝑖 ⊆ (𝐶‘𝑛)) ∧ 𝑙 ∈ ω) ∧ 𝑥 ∈ (𝐶‘𝑙)) ∧ 𝑙 ∈ 𝑛) → 𝑖 ⊆ (𝐶‘𝑛)) |
| 40 | | nnon 7875 |
. . . . . . . . . . . . . 14
⊢ (𝑛 ∈ ω → 𝑛 ∈ On) |
| 41 | 40 | adantr 480 |
. . . . . . . . . . . . 13
⊢ ((𝑛 ∈ ω ∧ 𝑙 ∈ 𝑛) → 𝑛 ∈ On) |
| 42 | | simpr 484 |
. . . . . . . . . . . . 13
⊢ ((𝑛 ∈ ω ∧ 𝑙 ∈ 𝑛) → 𝑙 ∈ 𝑛) |
| 43 | 24, 41, 42 | constrmon 33724 |
. . . . . . . . . . . 12
⊢ ((𝑛 ∈ ω ∧ 𝑙 ∈ 𝑛) → (𝐶‘𝑙) ⊆ (𝐶‘𝑛)) |
| 44 | 35, 43 | sylancom 588 |
. . . . . . . . . . 11
⊢
((((((((𝜑 ∧ 𝑖 ⊆ 𝐴) ∧ 𝑥 ∈ (𝐴 ∖ 𝑖)) ∧ 𝑛 ∈ ω) ∧ 𝑖 ⊆ (𝐶‘𝑛)) ∧ 𝑙 ∈ ω) ∧ 𝑥 ∈ (𝐶‘𝑙)) ∧ 𝑙 ∈ 𝑛) → (𝐶‘𝑙) ⊆ (𝐶‘𝑛)) |
| 45 | | simplr 768 |
. . . . . . . . . . 11
⊢
((((((((𝜑 ∧ 𝑖 ⊆ 𝐴) ∧ 𝑥 ∈ (𝐴 ∖ 𝑖)) ∧ 𝑛 ∈ ω) ∧ 𝑖 ⊆ (𝐶‘𝑛)) ∧ 𝑙 ∈ ω) ∧ 𝑥 ∈ (𝐶‘𝑙)) ∧ 𝑙 ∈ 𝑛) → 𝑥 ∈ (𝐶‘𝑙)) |
| 46 | 44, 45 | sseldd 3964 |
. . . . . . . . . 10
⊢
((((((((𝜑 ∧ 𝑖 ⊆ 𝐴) ∧ 𝑥 ∈ (𝐴 ∖ 𝑖)) ∧ 𝑛 ∈ ω) ∧ 𝑖 ⊆ (𝐶‘𝑛)) ∧ 𝑙 ∈ ω) ∧ 𝑥 ∈ (𝐶‘𝑙)) ∧ 𝑙 ∈ 𝑛) → 𝑥 ∈ (𝐶‘𝑛)) |
| 47 | 46 | snssd 4789 |
. . . . . . . . 9
⊢
((((((((𝜑 ∧ 𝑖 ⊆ 𝐴) ∧ 𝑥 ∈ (𝐴 ∖ 𝑖)) ∧ 𝑛 ∈ ω) ∧ 𝑖 ⊆ (𝐶‘𝑛)) ∧ 𝑙 ∈ ω) ∧ 𝑥 ∈ (𝐶‘𝑙)) ∧ 𝑙 ∈ 𝑛) → {𝑥} ⊆ (𝐶‘𝑛)) |
| 48 | 39, 47 | unssd 4172 |
. . . . . . . 8
⊢
((((((((𝜑 ∧ 𝑖 ⊆ 𝐴) ∧ 𝑥 ∈ (𝐴 ∖ 𝑖)) ∧ 𝑛 ∈ ω) ∧ 𝑖 ⊆ (𝐶‘𝑛)) ∧ 𝑙 ∈ ω) ∧ 𝑥 ∈ (𝐶‘𝑙)) ∧ 𝑙 ∈ 𝑛) → (𝑖 ∪ {𝑥}) ⊆ (𝐶‘𝑛)) |
| 49 | 35, 38, 48 | rspcedvd 3607 |
. . . . . . 7
⊢
((((((((𝜑 ∧ 𝑖 ⊆ 𝐴) ∧ 𝑥 ∈ (𝐴 ∖ 𝑖)) ∧ 𝑛 ∈ ω) ∧ 𝑖 ⊆ (𝐶‘𝑛)) ∧ 𝑙 ∈ ω) ∧ 𝑥 ∈ (𝐶‘𝑙)) ∧ 𝑙 ∈ 𝑛) → ∃𝑚 ∈ ω (𝑖 ∪ {𝑥}) ⊆ (𝐶‘𝑚)) |
| 50 | | simp-5r 785 |
. . . . . . . 8
⊢
((((((((𝜑 ∧ 𝑖 ⊆ 𝐴) ∧ 𝑥 ∈ (𝐴 ∖ 𝑖)) ∧ 𝑛 ∈ ω) ∧ 𝑖 ⊆ (𝐶‘𝑛)) ∧ 𝑙 ∈ ω) ∧ 𝑥 ∈ (𝐶‘𝑙)) ∧ 𝑛 = 𝑙) → 𝑛 ∈ ω) |
| 51 | 37 | adantl 481 |
. . . . . . . 8
⊢
(((((((((𝜑 ∧ 𝑖 ⊆ 𝐴) ∧ 𝑥 ∈ (𝐴 ∖ 𝑖)) ∧ 𝑛 ∈ ω) ∧ 𝑖 ⊆ (𝐶‘𝑛)) ∧ 𝑙 ∈ ω) ∧ 𝑥 ∈ (𝐶‘𝑙)) ∧ 𝑛 = 𝑙) ∧ 𝑚 = 𝑛) → ((𝑖 ∪ {𝑥}) ⊆ (𝐶‘𝑚) ↔ (𝑖 ∪ {𝑥}) ⊆ (𝐶‘𝑛))) |
| 52 | | simp-4r 783 |
. . . . . . . . 9
⊢
((((((((𝜑 ∧ 𝑖 ⊆ 𝐴) ∧ 𝑥 ∈ (𝐴 ∖ 𝑖)) ∧ 𝑛 ∈ ω) ∧ 𝑖 ⊆ (𝐶‘𝑛)) ∧ 𝑙 ∈ ω) ∧ 𝑥 ∈ (𝐶‘𝑙)) ∧ 𝑛 = 𝑙) → 𝑖 ⊆ (𝐶‘𝑛)) |
| 53 | | simplr 768 |
. . . . . . . . . . 11
⊢
((((((((𝜑 ∧ 𝑖 ⊆ 𝐴) ∧ 𝑥 ∈ (𝐴 ∖ 𝑖)) ∧ 𝑛 ∈ ω) ∧ 𝑖 ⊆ (𝐶‘𝑛)) ∧ 𝑙 ∈ ω) ∧ 𝑥 ∈ (𝐶‘𝑙)) ∧ 𝑛 = 𝑙) → 𝑥 ∈ (𝐶‘𝑙)) |
| 54 | | simpr 484 |
. . . . . . . . . . . 12
⊢
((((((((𝜑 ∧ 𝑖 ⊆ 𝐴) ∧ 𝑥 ∈ (𝐴 ∖ 𝑖)) ∧ 𝑛 ∈ ω) ∧ 𝑖 ⊆ (𝐶‘𝑛)) ∧ 𝑙 ∈ ω) ∧ 𝑥 ∈ (𝐶‘𝑙)) ∧ 𝑛 = 𝑙) → 𝑛 = 𝑙) |
| 55 | 54 | fveq2d 6890 |
. . . . . . . . . . 11
⊢
((((((((𝜑 ∧ 𝑖 ⊆ 𝐴) ∧ 𝑥 ∈ (𝐴 ∖ 𝑖)) ∧ 𝑛 ∈ ω) ∧ 𝑖 ⊆ (𝐶‘𝑛)) ∧ 𝑙 ∈ ω) ∧ 𝑥 ∈ (𝐶‘𝑙)) ∧ 𝑛 = 𝑙) → (𝐶‘𝑛) = (𝐶‘𝑙)) |
| 56 | 53, 55 | eleqtrrd 2836 |
. . . . . . . . . 10
⊢
((((((((𝜑 ∧ 𝑖 ⊆ 𝐴) ∧ 𝑥 ∈ (𝐴 ∖ 𝑖)) ∧ 𝑛 ∈ ω) ∧ 𝑖 ⊆ (𝐶‘𝑛)) ∧ 𝑙 ∈ ω) ∧ 𝑥 ∈ (𝐶‘𝑙)) ∧ 𝑛 = 𝑙) → 𝑥 ∈ (𝐶‘𝑛)) |
| 57 | 56 | snssd 4789 |
. . . . . . . . 9
⊢
((((((((𝜑 ∧ 𝑖 ⊆ 𝐴) ∧ 𝑥 ∈ (𝐴 ∖ 𝑖)) ∧ 𝑛 ∈ ω) ∧ 𝑖 ⊆ (𝐶‘𝑛)) ∧ 𝑙 ∈ ω) ∧ 𝑥 ∈ (𝐶‘𝑙)) ∧ 𝑛 = 𝑙) → {𝑥} ⊆ (𝐶‘𝑛)) |
| 58 | 52, 57 | unssd 4172 |
. . . . . . . 8
⊢
((((((((𝜑 ∧ 𝑖 ⊆ 𝐴) ∧ 𝑥 ∈ (𝐴 ∖ 𝑖)) ∧ 𝑛 ∈ ω) ∧ 𝑖 ⊆ (𝐶‘𝑛)) ∧ 𝑙 ∈ ω) ∧ 𝑥 ∈ (𝐶‘𝑙)) ∧ 𝑛 = 𝑙) → (𝑖 ∪ {𝑥}) ⊆ (𝐶‘𝑛)) |
| 59 | 50, 51, 58 | rspcedvd 3607 |
. . . . . . 7
⊢
((((((((𝜑 ∧ 𝑖 ⊆ 𝐴) ∧ 𝑥 ∈ (𝐴 ∖ 𝑖)) ∧ 𝑛 ∈ ω) ∧ 𝑖 ⊆ (𝐶‘𝑛)) ∧ 𝑙 ∈ ω) ∧ 𝑥 ∈ (𝐶‘𝑙)) ∧ 𝑛 = 𝑙) → ∃𝑚 ∈ ω (𝑖 ∪ {𝑥}) ⊆ (𝐶‘𝑚)) |
| 60 | 40 | ad4antlr 733 |
. . . . . . . 8
⊢
(((((((𝜑 ∧ 𝑖 ⊆ 𝐴) ∧ 𝑥 ∈ (𝐴 ∖ 𝑖)) ∧ 𝑛 ∈ ω) ∧ 𝑖 ⊆ (𝐶‘𝑛)) ∧ 𝑙 ∈ ω) ∧ 𝑥 ∈ (𝐶‘𝑙)) → 𝑛 ∈ On) |
| 61 | 25 | ad2antlr 727 |
. . . . . . . 8
⊢
(((((((𝜑 ∧ 𝑖 ⊆ 𝐴) ∧ 𝑥 ∈ (𝐴 ∖ 𝑖)) ∧ 𝑛 ∈ ω) ∧ 𝑖 ⊆ (𝐶‘𝑛)) ∧ 𝑙 ∈ ω) ∧ 𝑥 ∈ (𝐶‘𝑙)) → 𝑙 ∈ On) |
| 62 | | oneltri 6406 |
. . . . . . . 8
⊢ ((𝑛 ∈ On ∧ 𝑙 ∈ On) → (𝑛 ∈ 𝑙 ∨ 𝑙 ∈ 𝑛 ∨ 𝑛 = 𝑙)) |
| 63 | 60, 61, 62 | syl2anc 584 |
. . . . . . 7
⊢
(((((((𝜑 ∧ 𝑖 ⊆ 𝐴) ∧ 𝑥 ∈ (𝐴 ∖ 𝑖)) ∧ 𝑛 ∈ ω) ∧ 𝑖 ⊆ (𝐶‘𝑛)) ∧ 𝑙 ∈ ω) ∧ 𝑥 ∈ (𝐶‘𝑙)) → (𝑛 ∈ 𝑙 ∨ 𝑙 ∈ 𝑛 ∨ 𝑛 = 𝑙)) |
| 64 | 34, 49, 59, 63 | mpjao3dan 1433 |
. . . . . 6
⊢
(((((((𝜑 ∧ 𝑖 ⊆ 𝐴) ∧ 𝑥 ∈ (𝐴 ∖ 𝑖)) ∧ 𝑛 ∈ ω) ∧ 𝑖 ⊆ (𝐶‘𝑛)) ∧ 𝑙 ∈ ω) ∧ 𝑥 ∈ (𝐶‘𝑙)) → ∃𝑚 ∈ ω (𝑖 ∪ {𝑥}) ⊆ (𝐶‘𝑚)) |
| 65 | | constrfiss.1 |
. . . . . . . . 9
⊢ (𝜑 → 𝐴 ⊆ Constr) |
| 66 | 65 | ad4antr 732 |
. . . . . . . 8
⊢
(((((𝜑 ∧ 𝑖 ⊆ 𝐴) ∧ 𝑥 ∈ (𝐴 ∖ 𝑖)) ∧ 𝑛 ∈ ω) ∧ 𝑖 ⊆ (𝐶‘𝑛)) → 𝐴 ⊆ Constr) |
| 67 | | simpllr 775 |
. . . . . . . . 9
⊢
(((((𝜑 ∧ 𝑖 ⊆ 𝐴) ∧ 𝑥 ∈ (𝐴 ∖ 𝑖)) ∧ 𝑛 ∈ ω) ∧ 𝑖 ⊆ (𝐶‘𝑛)) → 𝑥 ∈ (𝐴 ∖ 𝑖)) |
| 68 | 67 | eldifad 3943 |
. . . . . . . 8
⊢
(((((𝜑 ∧ 𝑖 ⊆ 𝐴) ∧ 𝑥 ∈ (𝐴 ∖ 𝑖)) ∧ 𝑛 ∈ ω) ∧ 𝑖 ⊆ (𝐶‘𝑛)) → 𝑥 ∈ 𝐴) |
| 69 | 66, 68 | sseldd 3964 |
. . . . . . 7
⊢
(((((𝜑 ∧ 𝑖 ⊆ 𝐴) ∧ 𝑥 ∈ (𝐴 ∖ 𝑖)) ∧ 𝑛 ∈ ω) ∧ 𝑖 ⊆ (𝐶‘𝑛)) → 𝑥 ∈ Constr) |
| 70 | 24 | isconstr 33716 |
. . . . . . 7
⊢ (𝑥 ∈ Constr ↔
∃𝑙 ∈ ω
𝑥 ∈ (𝐶‘𝑙)) |
| 71 | 69, 70 | sylib 218 |
. . . . . 6
⊢
(((((𝜑 ∧ 𝑖 ⊆ 𝐴) ∧ 𝑥 ∈ (𝐴 ∖ 𝑖)) ∧ 𝑛 ∈ ω) ∧ 𝑖 ⊆ (𝐶‘𝑛)) → ∃𝑙 ∈ ω 𝑥 ∈ (𝐶‘𝑙)) |
| 72 | 64, 71 | r19.29a 3149 |
. . . . 5
⊢
(((((𝜑 ∧ 𝑖 ⊆ 𝐴) ∧ 𝑥 ∈ (𝐴 ∖ 𝑖)) ∧ 𝑛 ∈ ω) ∧ 𝑖 ⊆ (𝐶‘𝑛)) → ∃𝑚 ∈ ω (𝑖 ∪ {𝑥}) ⊆ (𝐶‘𝑚)) |
| 73 | 72 | r19.29an 3145 |
. . . 4
⊢ ((((𝜑 ∧ 𝑖 ⊆ 𝐴) ∧ 𝑥 ∈ (𝐴 ∖ 𝑖)) ∧ ∃𝑛 ∈ ω 𝑖 ⊆ (𝐶‘𝑛)) → ∃𝑚 ∈ ω (𝑖 ∪ {𝑥}) ⊆ (𝐶‘𝑚)) |
| 74 | 73 | ex 412 |
. . 3
⊢ (((𝜑 ∧ 𝑖 ⊆ 𝐴) ∧ 𝑥 ∈ (𝐴 ∖ 𝑖)) → (∃𝑛 ∈ ω 𝑖 ⊆ (𝐶‘𝑛) → ∃𝑚 ∈ ω (𝑖 ∪ {𝑥}) ⊆ (𝐶‘𝑚))) |
| 75 | 74 | anasss 466 |
. 2
⊢ ((𝜑 ∧ (𝑖 ⊆ 𝐴 ∧ 𝑥 ∈ (𝐴 ∖ 𝑖))) → (∃𝑛 ∈ ω 𝑖 ⊆ (𝐶‘𝑛) → ∃𝑚 ∈ ω (𝑖 ∪ {𝑥}) ⊆ (𝐶‘𝑚))) |
| 76 | | constrfiss.2 |
. 2
⊢ (𝜑 → 𝐴 ∈ Fin) |
| 77 | 2, 4, 10, 12, 18, 75, 76 | findcard2d 9188 |
1
⊢ (𝜑 → ∃𝑛 ∈ ω 𝐴 ⊆ (𝐶‘𝑛)) |