Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  constrfiss Structured version   Visualization version   GIF version

Theorem constrfiss 33785
Description: For any finite set 𝐴 of constructible numbers, there is a 𝑛 -th step (𝐶𝑛) containing all numbers in 𝐴. (Contributed by Thierry Arnoux, 2-Nov-2025.)
Hypotheses
Ref Expression
constr0.1 𝐶 = rec((𝑠 ∈ V ↦ {𝑥 ∈ ℂ ∣ (∃𝑎𝑠𝑏𝑠𝑐𝑠𝑑𝑠𝑡 ∈ ℝ ∃𝑟 ∈ ℝ (𝑥 = (𝑎 + (𝑡 · (𝑏𝑎))) ∧ 𝑥 = (𝑐 + (𝑟 · (𝑑𝑐))) ∧ (ℑ‘((∗‘(𝑏𝑎)) · (𝑑𝑐))) ≠ 0) ∨ ∃𝑎𝑠𝑏𝑠𝑐𝑠𝑒𝑠𝑓𝑠𝑡 ∈ ℝ (𝑥 = (𝑎 + (𝑡 · (𝑏𝑎))) ∧ (abs‘(𝑥𝑐)) = (abs‘(𝑒𝑓))) ∨ ∃𝑎𝑠𝑏𝑠𝑐𝑠𝑑𝑠𝑒𝑠𝑓𝑠 (𝑎𝑑 ∧ (abs‘(𝑥𝑎)) = (abs‘(𝑏𝑐)) ∧ (abs‘(𝑥𝑑)) = (abs‘(𝑒𝑓))))}), {0, 1})
constrfiss.1 (𝜑𝐴 ⊆ Constr)
constrfiss.2 (𝜑𝐴 ∈ Fin)
Assertion
Ref Expression
constrfiss (𝜑 → ∃𝑛 ∈ ω 𝐴 ⊆ (𝐶𝑛))
Distinct variable groups:   𝐴,𝑎,𝑏,𝑐,𝑒,𝑓,𝑠,𝑡,𝑥,𝑛   𝐶,𝑎,𝑏,𝑐,𝑒,𝑓,𝑠,𝑡,𝑥,𝑑,𝑛   𝑟,𝑎   𝑏,𝑑,𝑟,𝑐,𝑒,𝑓,𝑠,𝑡,𝑥   𝑛,𝑎,𝜑,𝑏,𝑐,𝑒,𝑓,𝑠,𝑡,𝑥
Allowed substitution hints:   𝜑(𝑟,𝑑)   𝐴(𝑟,𝑑)   𝐶(𝑟)

Proof of Theorem constrfiss
Dummy variables 𝑖 𝑙 𝑚 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 sseq1 3956 . . 3 (𝑏 = ∅ → (𝑏 ⊆ (𝐶𝑛) ↔ ∅ ⊆ (𝐶𝑛)))
21rexbidv 3157 . 2 (𝑏 = ∅ → (∃𝑛 ∈ ω 𝑏 ⊆ (𝐶𝑛) ↔ ∃𝑛 ∈ ω ∅ ⊆ (𝐶𝑛)))
3 sseq1 3956 . . 3 (𝑏 = 𝑖 → (𝑏 ⊆ (𝐶𝑛) ↔ 𝑖 ⊆ (𝐶𝑛)))
43rexbidv 3157 . 2 (𝑏 = 𝑖 → (∃𝑛 ∈ ω 𝑏 ⊆ (𝐶𝑛) ↔ ∃𝑛 ∈ ω 𝑖 ⊆ (𝐶𝑛)))
5 sseq1 3956 . . . 4 (𝑏 = (𝑖 ∪ {𝑥}) → (𝑏 ⊆ (𝐶𝑛) ↔ (𝑖 ∪ {𝑥}) ⊆ (𝐶𝑛)))
65rexbidv 3157 . . 3 (𝑏 = (𝑖 ∪ {𝑥}) → (∃𝑛 ∈ ω 𝑏 ⊆ (𝐶𝑛) ↔ ∃𝑛 ∈ ω (𝑖 ∪ {𝑥}) ⊆ (𝐶𝑛)))
7 fveq2 6828 . . . . 5 (𝑛 = 𝑚 → (𝐶𝑛) = (𝐶𝑚))
87sseq2d 3963 . . . 4 (𝑛 = 𝑚 → ((𝑖 ∪ {𝑥}) ⊆ (𝐶𝑛) ↔ (𝑖 ∪ {𝑥}) ⊆ (𝐶𝑚)))
98cbvrexvw 3212 . . 3 (∃𝑛 ∈ ω (𝑖 ∪ {𝑥}) ⊆ (𝐶𝑛) ↔ ∃𝑚 ∈ ω (𝑖 ∪ {𝑥}) ⊆ (𝐶𝑚))
106, 9bitrdi 287 . 2 (𝑏 = (𝑖 ∪ {𝑥}) → (∃𝑛 ∈ ω 𝑏 ⊆ (𝐶𝑛) ↔ ∃𝑚 ∈ ω (𝑖 ∪ {𝑥}) ⊆ (𝐶𝑚)))
11 sseq1 3956 . . 3 (𝑏 = 𝐴 → (𝑏 ⊆ (𝐶𝑛) ↔ 𝐴 ⊆ (𝐶𝑛)))
1211rexbidv 3157 . 2 (𝑏 = 𝐴 → (∃𝑛 ∈ ω 𝑏 ⊆ (𝐶𝑛) ↔ ∃𝑛 ∈ ω 𝐴 ⊆ (𝐶𝑛)))
13 peano1 7825 . . . 4 ∅ ∈ ω
1413ne0ii 4293 . . 3 ω ≠ ∅
15 0ss 4349 . . . . 5 ∅ ⊆ (𝐶𝑛)
1615a1i 11 . . . 4 ((𝜑𝑛 ∈ ω) → ∅ ⊆ (𝐶𝑛))
1716reximdva0 4304 . . 3 ((𝜑 ∧ ω ≠ ∅) → ∃𝑛 ∈ ω ∅ ⊆ (𝐶𝑛))
1814, 17mpan2 691 . 2 (𝜑 → ∃𝑛 ∈ ω ∅ ⊆ (𝐶𝑛))
19 simpllr 775 . . . . . . . 8 ((((((((𝜑𝑖𝐴) ∧ 𝑥 ∈ (𝐴𝑖)) ∧ 𝑛 ∈ ω) ∧ 𝑖 ⊆ (𝐶𝑛)) ∧ 𝑙 ∈ ω) ∧ 𝑥 ∈ (𝐶𝑙)) ∧ 𝑛𝑙) → 𝑙 ∈ ω)
20 fveq2 6828 . . . . . . . . . 10 (𝑚 = 𝑙 → (𝐶𝑚) = (𝐶𝑙))
2120sseq2d 3963 . . . . . . . . 9 (𝑚 = 𝑙 → ((𝑖 ∪ {𝑥}) ⊆ (𝐶𝑚) ↔ (𝑖 ∪ {𝑥}) ⊆ (𝐶𝑙)))
2221adantl 481 . . . . . . . 8 (((((((((𝜑𝑖𝐴) ∧ 𝑥 ∈ (𝐴𝑖)) ∧ 𝑛 ∈ ω) ∧ 𝑖 ⊆ (𝐶𝑛)) ∧ 𝑙 ∈ ω) ∧ 𝑥 ∈ (𝐶𝑙)) ∧ 𝑛𝑙) ∧ 𝑚 = 𝑙) → ((𝑖 ∪ {𝑥}) ⊆ (𝐶𝑚) ↔ (𝑖 ∪ {𝑥}) ⊆ (𝐶𝑙)))
23 simp-4r 783 . . . . . . . . . 10 ((((((((𝜑𝑖𝐴) ∧ 𝑥 ∈ (𝐴𝑖)) ∧ 𝑛 ∈ ω) ∧ 𝑖 ⊆ (𝐶𝑛)) ∧ 𝑙 ∈ ω) ∧ 𝑥 ∈ (𝐶𝑙)) ∧ 𝑛𝑙) → 𝑖 ⊆ (𝐶𝑛))
24 constr0.1 . . . . . . . . . . . 12 𝐶 = rec((𝑠 ∈ V ↦ {𝑥 ∈ ℂ ∣ (∃𝑎𝑠𝑏𝑠𝑐𝑠𝑑𝑠𝑡 ∈ ℝ ∃𝑟 ∈ ℝ (𝑥 = (𝑎 + (𝑡 · (𝑏𝑎))) ∧ 𝑥 = (𝑐 + (𝑟 · (𝑑𝑐))) ∧ (ℑ‘((∗‘(𝑏𝑎)) · (𝑑𝑐))) ≠ 0) ∨ ∃𝑎𝑠𝑏𝑠𝑐𝑠𝑒𝑠𝑓𝑠𝑡 ∈ ℝ (𝑥 = (𝑎 + (𝑡 · (𝑏𝑎))) ∧ (abs‘(𝑥𝑐)) = (abs‘(𝑒𝑓))) ∨ ∃𝑎𝑠𝑏𝑠𝑐𝑠𝑑𝑠𝑒𝑠𝑓𝑠 (𝑎𝑑 ∧ (abs‘(𝑥𝑎)) = (abs‘(𝑏𝑐)) ∧ (abs‘(𝑥𝑑)) = (abs‘(𝑒𝑓))))}), {0, 1})
25 nnon 7808 . . . . . . . . . . . . 13 (𝑙 ∈ ω → 𝑙 ∈ On)
2625adantr 480 . . . . . . . . . . . 12 ((𝑙 ∈ ω ∧ 𝑛𝑙) → 𝑙 ∈ On)
27 simpr 484 . . . . . . . . . . . 12 ((𝑙 ∈ ω ∧ 𝑛𝑙) → 𝑛𝑙)
2824, 26, 27constrmon 33778 . . . . . . . . . . 11 ((𝑙 ∈ ω ∧ 𝑛𝑙) → (𝐶𝑛) ⊆ (𝐶𝑙))
2919, 28sylancom 588 . . . . . . . . . 10 ((((((((𝜑𝑖𝐴) ∧ 𝑥 ∈ (𝐴𝑖)) ∧ 𝑛 ∈ ω) ∧ 𝑖 ⊆ (𝐶𝑛)) ∧ 𝑙 ∈ ω) ∧ 𝑥 ∈ (𝐶𝑙)) ∧ 𝑛𝑙) → (𝐶𝑛) ⊆ (𝐶𝑙))
3023, 29sstrd 3941 . . . . . . . . 9 ((((((((𝜑𝑖𝐴) ∧ 𝑥 ∈ (𝐴𝑖)) ∧ 𝑛 ∈ ω) ∧ 𝑖 ⊆ (𝐶𝑛)) ∧ 𝑙 ∈ ω) ∧ 𝑥 ∈ (𝐶𝑙)) ∧ 𝑛𝑙) → 𝑖 ⊆ (𝐶𝑙))
31 simplr 768 . . . . . . . . . 10 ((((((((𝜑𝑖𝐴) ∧ 𝑥 ∈ (𝐴𝑖)) ∧ 𝑛 ∈ ω) ∧ 𝑖 ⊆ (𝐶𝑛)) ∧ 𝑙 ∈ ω) ∧ 𝑥 ∈ (𝐶𝑙)) ∧ 𝑛𝑙) → 𝑥 ∈ (𝐶𝑙))
3231snssd 4760 . . . . . . . . 9 ((((((((𝜑𝑖𝐴) ∧ 𝑥 ∈ (𝐴𝑖)) ∧ 𝑛 ∈ ω) ∧ 𝑖 ⊆ (𝐶𝑛)) ∧ 𝑙 ∈ ω) ∧ 𝑥 ∈ (𝐶𝑙)) ∧ 𝑛𝑙) → {𝑥} ⊆ (𝐶𝑙))
3330, 32unssd 4141 . . . . . . . 8 ((((((((𝜑𝑖𝐴) ∧ 𝑥 ∈ (𝐴𝑖)) ∧ 𝑛 ∈ ω) ∧ 𝑖 ⊆ (𝐶𝑛)) ∧ 𝑙 ∈ ω) ∧ 𝑥 ∈ (𝐶𝑙)) ∧ 𝑛𝑙) → (𝑖 ∪ {𝑥}) ⊆ (𝐶𝑙))
3419, 22, 33rspcedvd 3575 . . . . . . 7 ((((((((𝜑𝑖𝐴) ∧ 𝑥 ∈ (𝐴𝑖)) ∧ 𝑛 ∈ ω) ∧ 𝑖 ⊆ (𝐶𝑛)) ∧ 𝑙 ∈ ω) ∧ 𝑥 ∈ (𝐶𝑙)) ∧ 𝑛𝑙) → ∃𝑚 ∈ ω (𝑖 ∪ {𝑥}) ⊆ (𝐶𝑚))
35 simp-5r 785 . . . . . . . 8 ((((((((𝜑𝑖𝐴) ∧ 𝑥 ∈ (𝐴𝑖)) ∧ 𝑛 ∈ ω) ∧ 𝑖 ⊆ (𝐶𝑛)) ∧ 𝑙 ∈ ω) ∧ 𝑥 ∈ (𝐶𝑙)) ∧ 𝑙𝑛) → 𝑛 ∈ ω)
36 fveq2 6828 . . . . . . . . . 10 (𝑚 = 𝑛 → (𝐶𝑚) = (𝐶𝑛))
3736sseq2d 3963 . . . . . . . . 9 (𝑚 = 𝑛 → ((𝑖 ∪ {𝑥}) ⊆ (𝐶𝑚) ↔ (𝑖 ∪ {𝑥}) ⊆ (𝐶𝑛)))
3837adantl 481 . . . . . . . 8 (((((((((𝜑𝑖𝐴) ∧ 𝑥 ∈ (𝐴𝑖)) ∧ 𝑛 ∈ ω) ∧ 𝑖 ⊆ (𝐶𝑛)) ∧ 𝑙 ∈ ω) ∧ 𝑥 ∈ (𝐶𝑙)) ∧ 𝑙𝑛) ∧ 𝑚 = 𝑛) → ((𝑖 ∪ {𝑥}) ⊆ (𝐶𝑚) ↔ (𝑖 ∪ {𝑥}) ⊆ (𝐶𝑛)))
39 simp-4r 783 . . . . . . . . 9 ((((((((𝜑𝑖𝐴) ∧ 𝑥 ∈ (𝐴𝑖)) ∧ 𝑛 ∈ ω) ∧ 𝑖 ⊆ (𝐶𝑛)) ∧ 𝑙 ∈ ω) ∧ 𝑥 ∈ (𝐶𝑙)) ∧ 𝑙𝑛) → 𝑖 ⊆ (𝐶𝑛))
40 nnon 7808 . . . . . . . . . . . . . 14 (𝑛 ∈ ω → 𝑛 ∈ On)
4140adantr 480 . . . . . . . . . . . . 13 ((𝑛 ∈ ω ∧ 𝑙𝑛) → 𝑛 ∈ On)
42 simpr 484 . . . . . . . . . . . . 13 ((𝑛 ∈ ω ∧ 𝑙𝑛) → 𝑙𝑛)
4324, 41, 42constrmon 33778 . . . . . . . . . . . 12 ((𝑛 ∈ ω ∧ 𝑙𝑛) → (𝐶𝑙) ⊆ (𝐶𝑛))
4435, 43sylancom 588 . . . . . . . . . . 11 ((((((((𝜑𝑖𝐴) ∧ 𝑥 ∈ (𝐴𝑖)) ∧ 𝑛 ∈ ω) ∧ 𝑖 ⊆ (𝐶𝑛)) ∧ 𝑙 ∈ ω) ∧ 𝑥 ∈ (𝐶𝑙)) ∧ 𝑙𝑛) → (𝐶𝑙) ⊆ (𝐶𝑛))
45 simplr 768 . . . . . . . . . . 11 ((((((((𝜑𝑖𝐴) ∧ 𝑥 ∈ (𝐴𝑖)) ∧ 𝑛 ∈ ω) ∧ 𝑖 ⊆ (𝐶𝑛)) ∧ 𝑙 ∈ ω) ∧ 𝑥 ∈ (𝐶𝑙)) ∧ 𝑙𝑛) → 𝑥 ∈ (𝐶𝑙))
4644, 45sseldd 3931 . . . . . . . . . 10 ((((((((𝜑𝑖𝐴) ∧ 𝑥 ∈ (𝐴𝑖)) ∧ 𝑛 ∈ ω) ∧ 𝑖 ⊆ (𝐶𝑛)) ∧ 𝑙 ∈ ω) ∧ 𝑥 ∈ (𝐶𝑙)) ∧ 𝑙𝑛) → 𝑥 ∈ (𝐶𝑛))
4746snssd 4760 . . . . . . . . 9 ((((((((𝜑𝑖𝐴) ∧ 𝑥 ∈ (𝐴𝑖)) ∧ 𝑛 ∈ ω) ∧ 𝑖 ⊆ (𝐶𝑛)) ∧ 𝑙 ∈ ω) ∧ 𝑥 ∈ (𝐶𝑙)) ∧ 𝑙𝑛) → {𝑥} ⊆ (𝐶𝑛))
4839, 47unssd 4141 . . . . . . . 8 ((((((((𝜑𝑖𝐴) ∧ 𝑥 ∈ (𝐴𝑖)) ∧ 𝑛 ∈ ω) ∧ 𝑖 ⊆ (𝐶𝑛)) ∧ 𝑙 ∈ ω) ∧ 𝑥 ∈ (𝐶𝑙)) ∧ 𝑙𝑛) → (𝑖 ∪ {𝑥}) ⊆ (𝐶𝑛))
4935, 38, 48rspcedvd 3575 . . . . . . 7 ((((((((𝜑𝑖𝐴) ∧ 𝑥 ∈ (𝐴𝑖)) ∧ 𝑛 ∈ ω) ∧ 𝑖 ⊆ (𝐶𝑛)) ∧ 𝑙 ∈ ω) ∧ 𝑥 ∈ (𝐶𝑙)) ∧ 𝑙𝑛) → ∃𝑚 ∈ ω (𝑖 ∪ {𝑥}) ⊆ (𝐶𝑚))
50 simp-5r 785 . . . . . . . 8 ((((((((𝜑𝑖𝐴) ∧ 𝑥 ∈ (𝐴𝑖)) ∧ 𝑛 ∈ ω) ∧ 𝑖 ⊆ (𝐶𝑛)) ∧ 𝑙 ∈ ω) ∧ 𝑥 ∈ (𝐶𝑙)) ∧ 𝑛 = 𝑙) → 𝑛 ∈ ω)
5137adantl 481 . . . . . . . 8 (((((((((𝜑𝑖𝐴) ∧ 𝑥 ∈ (𝐴𝑖)) ∧ 𝑛 ∈ ω) ∧ 𝑖 ⊆ (𝐶𝑛)) ∧ 𝑙 ∈ ω) ∧ 𝑥 ∈ (𝐶𝑙)) ∧ 𝑛 = 𝑙) ∧ 𝑚 = 𝑛) → ((𝑖 ∪ {𝑥}) ⊆ (𝐶𝑚) ↔ (𝑖 ∪ {𝑥}) ⊆ (𝐶𝑛)))
52 simp-4r 783 . . . . . . . . 9 ((((((((𝜑𝑖𝐴) ∧ 𝑥 ∈ (𝐴𝑖)) ∧ 𝑛 ∈ ω) ∧ 𝑖 ⊆ (𝐶𝑛)) ∧ 𝑙 ∈ ω) ∧ 𝑥 ∈ (𝐶𝑙)) ∧ 𝑛 = 𝑙) → 𝑖 ⊆ (𝐶𝑛))
53 simplr 768 . . . . . . . . . . 11 ((((((((𝜑𝑖𝐴) ∧ 𝑥 ∈ (𝐴𝑖)) ∧ 𝑛 ∈ ω) ∧ 𝑖 ⊆ (𝐶𝑛)) ∧ 𝑙 ∈ ω) ∧ 𝑥 ∈ (𝐶𝑙)) ∧ 𝑛 = 𝑙) → 𝑥 ∈ (𝐶𝑙))
54 simpr 484 . . . . . . . . . . . 12 ((((((((𝜑𝑖𝐴) ∧ 𝑥 ∈ (𝐴𝑖)) ∧ 𝑛 ∈ ω) ∧ 𝑖 ⊆ (𝐶𝑛)) ∧ 𝑙 ∈ ω) ∧ 𝑥 ∈ (𝐶𝑙)) ∧ 𝑛 = 𝑙) → 𝑛 = 𝑙)
5554fveq2d 6832 . . . . . . . . . . 11 ((((((((𝜑𝑖𝐴) ∧ 𝑥 ∈ (𝐴𝑖)) ∧ 𝑛 ∈ ω) ∧ 𝑖 ⊆ (𝐶𝑛)) ∧ 𝑙 ∈ ω) ∧ 𝑥 ∈ (𝐶𝑙)) ∧ 𝑛 = 𝑙) → (𝐶𝑛) = (𝐶𝑙))
5653, 55eleqtrrd 2836 . . . . . . . . . 10 ((((((((𝜑𝑖𝐴) ∧ 𝑥 ∈ (𝐴𝑖)) ∧ 𝑛 ∈ ω) ∧ 𝑖 ⊆ (𝐶𝑛)) ∧ 𝑙 ∈ ω) ∧ 𝑥 ∈ (𝐶𝑙)) ∧ 𝑛 = 𝑙) → 𝑥 ∈ (𝐶𝑛))
5756snssd 4760 . . . . . . . . 9 ((((((((𝜑𝑖𝐴) ∧ 𝑥 ∈ (𝐴𝑖)) ∧ 𝑛 ∈ ω) ∧ 𝑖 ⊆ (𝐶𝑛)) ∧ 𝑙 ∈ ω) ∧ 𝑥 ∈ (𝐶𝑙)) ∧ 𝑛 = 𝑙) → {𝑥} ⊆ (𝐶𝑛))
5852, 57unssd 4141 . . . . . . . 8 ((((((((𝜑𝑖𝐴) ∧ 𝑥 ∈ (𝐴𝑖)) ∧ 𝑛 ∈ ω) ∧ 𝑖 ⊆ (𝐶𝑛)) ∧ 𝑙 ∈ ω) ∧ 𝑥 ∈ (𝐶𝑙)) ∧ 𝑛 = 𝑙) → (𝑖 ∪ {𝑥}) ⊆ (𝐶𝑛))
5950, 51, 58rspcedvd 3575 . . . . . . 7 ((((((((𝜑𝑖𝐴) ∧ 𝑥 ∈ (𝐴𝑖)) ∧ 𝑛 ∈ ω) ∧ 𝑖 ⊆ (𝐶𝑛)) ∧ 𝑙 ∈ ω) ∧ 𝑥 ∈ (𝐶𝑙)) ∧ 𝑛 = 𝑙) → ∃𝑚 ∈ ω (𝑖 ∪ {𝑥}) ⊆ (𝐶𝑚))
6040ad4antlr 733 . . . . . . . 8 (((((((𝜑𝑖𝐴) ∧ 𝑥 ∈ (𝐴𝑖)) ∧ 𝑛 ∈ ω) ∧ 𝑖 ⊆ (𝐶𝑛)) ∧ 𝑙 ∈ ω) ∧ 𝑥 ∈ (𝐶𝑙)) → 𝑛 ∈ On)
6125ad2antlr 727 . . . . . . . 8 (((((((𝜑𝑖𝐴) ∧ 𝑥 ∈ (𝐴𝑖)) ∧ 𝑛 ∈ ω) ∧ 𝑖 ⊆ (𝐶𝑛)) ∧ 𝑙 ∈ ω) ∧ 𝑥 ∈ (𝐶𝑙)) → 𝑙 ∈ On)
62 oneltri 6354 . . . . . . . 8 ((𝑛 ∈ On ∧ 𝑙 ∈ On) → (𝑛𝑙𝑙𝑛𝑛 = 𝑙))
6360, 61, 62syl2anc 584 . . . . . . 7 (((((((𝜑𝑖𝐴) ∧ 𝑥 ∈ (𝐴𝑖)) ∧ 𝑛 ∈ ω) ∧ 𝑖 ⊆ (𝐶𝑛)) ∧ 𝑙 ∈ ω) ∧ 𝑥 ∈ (𝐶𝑙)) → (𝑛𝑙𝑙𝑛𝑛 = 𝑙))
6434, 49, 59, 63mpjao3dan 1434 . . . . . 6 (((((((𝜑𝑖𝐴) ∧ 𝑥 ∈ (𝐴𝑖)) ∧ 𝑛 ∈ ω) ∧ 𝑖 ⊆ (𝐶𝑛)) ∧ 𝑙 ∈ ω) ∧ 𝑥 ∈ (𝐶𝑙)) → ∃𝑚 ∈ ω (𝑖 ∪ {𝑥}) ⊆ (𝐶𝑚))
65 constrfiss.1 . . . . . . . . 9 (𝜑𝐴 ⊆ Constr)
6665ad4antr 732 . . . . . . . 8 (((((𝜑𝑖𝐴) ∧ 𝑥 ∈ (𝐴𝑖)) ∧ 𝑛 ∈ ω) ∧ 𝑖 ⊆ (𝐶𝑛)) → 𝐴 ⊆ Constr)
67 simpllr 775 . . . . . . . . 9 (((((𝜑𝑖𝐴) ∧ 𝑥 ∈ (𝐴𝑖)) ∧ 𝑛 ∈ ω) ∧ 𝑖 ⊆ (𝐶𝑛)) → 𝑥 ∈ (𝐴𝑖))
6867eldifad 3910 . . . . . . . 8 (((((𝜑𝑖𝐴) ∧ 𝑥 ∈ (𝐴𝑖)) ∧ 𝑛 ∈ ω) ∧ 𝑖 ⊆ (𝐶𝑛)) → 𝑥𝐴)
6966, 68sseldd 3931 . . . . . . 7 (((((𝜑𝑖𝐴) ∧ 𝑥 ∈ (𝐴𝑖)) ∧ 𝑛 ∈ ω) ∧ 𝑖 ⊆ (𝐶𝑛)) → 𝑥 ∈ Constr)
7024isconstr 33770 . . . . . . 7 (𝑥 ∈ Constr ↔ ∃𝑙 ∈ ω 𝑥 ∈ (𝐶𝑙))
7169, 70sylib 218 . . . . . 6 (((((𝜑𝑖𝐴) ∧ 𝑥 ∈ (𝐴𝑖)) ∧ 𝑛 ∈ ω) ∧ 𝑖 ⊆ (𝐶𝑛)) → ∃𝑙 ∈ ω 𝑥 ∈ (𝐶𝑙))
7264, 71r19.29a 3141 . . . . 5 (((((𝜑𝑖𝐴) ∧ 𝑥 ∈ (𝐴𝑖)) ∧ 𝑛 ∈ ω) ∧ 𝑖 ⊆ (𝐶𝑛)) → ∃𝑚 ∈ ω (𝑖 ∪ {𝑥}) ⊆ (𝐶𝑚))
7372r19.29an 3137 . . . 4 ((((𝜑𝑖𝐴) ∧ 𝑥 ∈ (𝐴𝑖)) ∧ ∃𝑛 ∈ ω 𝑖 ⊆ (𝐶𝑛)) → ∃𝑚 ∈ ω (𝑖 ∪ {𝑥}) ⊆ (𝐶𝑚))
7473ex 412 . . 3 (((𝜑𝑖𝐴) ∧ 𝑥 ∈ (𝐴𝑖)) → (∃𝑛 ∈ ω 𝑖 ⊆ (𝐶𝑛) → ∃𝑚 ∈ ω (𝑖 ∪ {𝑥}) ⊆ (𝐶𝑚)))
7574anasss 466 . 2 ((𝜑 ∧ (𝑖𝐴𝑥 ∈ (𝐴𝑖))) → (∃𝑛 ∈ ω 𝑖 ⊆ (𝐶𝑛) → ∃𝑚 ∈ ω (𝑖 ∪ {𝑥}) ⊆ (𝐶𝑚)))
76 constrfiss.2 . 2 (𝜑𝐴 ∈ Fin)
772, 4, 10, 12, 18, 75, 76findcard2d 9083 1 (𝜑 → ∃𝑛 ∈ ω 𝐴 ⊆ (𝐶𝑛))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3o 1085  w3a 1086   = wceq 1541  wcel 2113  wne 2929  wrex 3057  {crab 3396  Vcvv 3437  cdif 3895  cun 3896  wss 3898  c0 4282  {csn 4575  {cpr 4577  cmpt 5174  Oncon0 6311  cfv 6486  (class class class)co 7352  ωcom 7802  reccrdg 8334  Fincfn 8875  cc 11011  cr 11012  0cc0 11013  1c1 11014   + caddc 11016   · cmul 11018  cmin 11351  ccj 15005  cim 15007  abscabs 15143  Constrcconstr 33763
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5219  ax-sep 5236  ax-nul 5246  ax-pow 5305  ax-pr 5372  ax-un 7674  ax-cnex 11069  ax-resscn 11070  ax-1cn 11071  ax-icn 11072  ax-addcl 11073  ax-addrcl 11074  ax-mulcl 11075  ax-mulrcl 11076  ax-mulcom 11077  ax-addass 11078  ax-mulass 11079  ax-distr 11080  ax-i2m1 11081  ax-1ne0 11082  ax-1rid 11083  ax-rnegex 11084  ax-rrecex 11085  ax-cnre 11086  ax-pre-lttri 11087  ax-pre-lttrn 11088  ax-pre-ltadd 11089
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-nel 3034  df-ral 3049  df-rex 3058  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3918  df-nul 4283  df-if 4475  df-pw 4551  df-sn 4576  df-pr 4578  df-op 4582  df-uni 4859  df-iun 4943  df-br 5094  df-opab 5156  df-mpt 5175  df-tr 5201  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-riota 7309  df-ov 7355  df-oprab 7356  df-mpo 7357  df-om 7803  df-2nd 7928  df-frecs 8217  df-wrecs 8248  df-recs 8297  df-rdg 8335  df-er 8628  df-en 8876  df-dom 8877  df-sdom 8878  df-fin 8879  df-pnf 11155  df-mnf 11156  df-ltxr 11158  df-sub 11353  df-constr 33764
This theorem is referenced by:  constrllcllem  33786  constrlccllem  33787  constrcccllem  33788
  Copyright terms: Public domain W3C validator