Users' Mathboxes Mathbox for BTernaryTau < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  vonf1owev Structured version   Visualization version   GIF version

Theorem vonf1owev 35152
Description: If 𝐹 is a bijection from the universe to the ordinals, then 𝑅 well-orders the universe. This is the ZFC version of (2 3) in https://tinyurl.com/hamkins-gblac. (Contributed by BTernaryTau, 6-Dec-2025.)
Hypothesis
Ref Expression
vonf1owev.1 𝑅 = {⟨𝑥, 𝑦⟩ ∣ (𝐹𝑥) ∈ (𝐹𝑦)}
Assertion
Ref Expression
vonf1owev (𝐹:V–1-1-onto→On → 𝑅 We V)
Distinct variable group:   𝑥,𝐹,𝑦
Allowed substitution hints:   𝑅(𝑥,𝑦)

Proof of Theorem vonf1owev
Dummy variables 𝑤 𝑧 𝑡 𝑢 𝑣 𝑠 𝑟 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 f1of 6763 . . . . . . . 8 (𝐹:V–1-1-onto→On → 𝐹:V⟶On)
21fimassd 6672 . . . . . . 7 (𝐹:V–1-1-onto→On → (𝐹𝑡) ⊆ On)
3 f1odm 6767 . . . . . . . . . . . 12 (𝐹:V–1-1-onto→On → dom 𝐹 = V)
43ineq1d 4166 . . . . . . . . . . 11 (𝐹:V–1-1-onto→On → (dom 𝐹𝑡) = (V ∩ 𝑡))
54neeq1d 2987 . . . . . . . . . 10 (𝐹:V–1-1-onto→On → ((dom 𝐹𝑡) ≠ ∅ ↔ (V ∩ 𝑡) ≠ ∅))
6 inv1 4345 . . . . . . . . . . . 12 (𝑡 ∩ V) = 𝑡
76ineqcomi 4158 . . . . . . . . . . 11 (V ∩ 𝑡) = 𝑡
87neeq1i 2992 . . . . . . . . . 10 ((V ∩ 𝑡) ≠ ∅ ↔ 𝑡 ≠ ∅)
95, 8bitr2di 288 . . . . . . . . 9 (𝐹:V–1-1-onto→On → (𝑡 ≠ ∅ ↔ (dom 𝐹𝑡) ≠ ∅))
109biimpa 476 . . . . . . . 8 ((𝐹:V–1-1-onto→On ∧ 𝑡 ≠ ∅) → (dom 𝐹𝑡) ≠ ∅)
1110imadisjlnd 6029 . . . . . . 7 ((𝐹:V–1-1-onto→On ∧ 𝑡 ≠ ∅) → (𝐹𝑡) ≠ ∅)
12 onssmin 7725 . . . . . . 7 (((𝐹𝑡) ⊆ On ∧ (𝐹𝑡) ≠ ∅) → ∃𝑟 ∈ (𝐹𝑡)∀𝑠 ∈ (𝐹𝑡)𝑟𝑠)
132, 11, 12syl2an2r 685 . . . . . 6 ((𝐹:V–1-1-onto→On ∧ 𝑡 ≠ ∅) → ∃𝑟 ∈ (𝐹𝑡)∀𝑠 ∈ (𝐹𝑡)𝑟𝑠)
1413ex 412 . . . . 5 (𝐹:V–1-1-onto→On → (𝑡 ≠ ∅ → ∃𝑟 ∈ (𝐹𝑡)∀𝑠 ∈ (𝐹𝑡)𝑟𝑠))
15 vex 3440 . . . . . . . . . . . 12 𝑣 ∈ V
16 vex 3440 . . . . . . . . . . . 12 𝑢 ∈ V
17 fveq2 6822 . . . . . . . . . . . . 13 (𝑥 = 𝑣 → (𝐹𝑥) = (𝐹𝑣))
1817eleq1d 2816 . . . . . . . . . . . 12 (𝑥 = 𝑣 → ((𝐹𝑥) ∈ (𝐹𝑦) ↔ (𝐹𝑣) ∈ (𝐹𝑦)))
19 fveq2 6822 . . . . . . . . . . . . 13 (𝑦 = 𝑢 → (𝐹𝑦) = (𝐹𝑢))
2019eleq2d 2817 . . . . . . . . . . . 12 (𝑦 = 𝑢 → ((𝐹𝑣) ∈ (𝐹𝑦) ↔ (𝐹𝑣) ∈ (𝐹𝑢)))
21 vonf1owev.1 . . . . . . . . . . . 12 𝑅 = {⟨𝑥, 𝑦⟩ ∣ (𝐹𝑥) ∈ (𝐹𝑦)}
2215, 16, 18, 20, 21brab 5481 . . . . . . . . . . 11 (𝑣𝑅𝑢 ↔ (𝐹𝑣) ∈ (𝐹𝑢))
2322notbii 320 . . . . . . . . . 10 𝑣𝑅𝑢 ↔ ¬ (𝐹𝑣) ∈ (𝐹𝑢))
241ffvelcdmda 7017 . . . . . . . . . . . 12 ((𝐹:V–1-1-onto→On ∧ 𝑢 ∈ V) → (𝐹𝑢) ∈ On)
2524elvd 3442 . . . . . . . . . . 11 (𝐹:V–1-1-onto→On → (𝐹𝑢) ∈ On)
261ffvelcdmda 7017 . . . . . . . . . . . 12 ((𝐹:V–1-1-onto→On ∧ 𝑣 ∈ V) → (𝐹𝑣) ∈ On)
2726elvd 3442 . . . . . . . . . . 11 (𝐹:V–1-1-onto→On → (𝐹𝑣) ∈ On)
28 ontri1 6340 . . . . . . . . . . 11 (((𝐹𝑢) ∈ On ∧ (𝐹𝑣) ∈ On) → ((𝐹𝑢) ⊆ (𝐹𝑣) ↔ ¬ (𝐹𝑣) ∈ (𝐹𝑢)))
2925, 27, 28syl2anc 584 . . . . . . . . . 10 (𝐹:V–1-1-onto→On → ((𝐹𝑢) ⊆ (𝐹𝑣) ↔ ¬ (𝐹𝑣) ∈ (𝐹𝑢)))
3023, 29bitr4id 290 . . . . . . . . 9 (𝐹:V–1-1-onto→On → (¬ 𝑣𝑅𝑢 ↔ (𝐹𝑢) ⊆ (𝐹𝑣)))
3130ralbidv 3155 . . . . . . . 8 (𝐹:V–1-1-onto→On → (∀𝑣𝑡 ¬ 𝑣𝑅𝑢 ↔ ∀𝑣𝑡 (𝐹𝑢) ⊆ (𝐹𝑣)))
32 f1ofn 6764 . . . . . . . . 9 (𝐹:V–1-1-onto→On → 𝐹 Fn V)
33 ssv 3954 . . . . . . . . 9 𝑡 ⊆ V
34 sseq2 3956 . . . . . . . . . 10 (𝑠 = (𝐹𝑣) → ((𝐹𝑢) ⊆ 𝑠 ↔ (𝐹𝑢) ⊆ (𝐹𝑣)))
3534ralima 7171 . . . . . . . . 9 ((𝐹 Fn V ∧ 𝑡 ⊆ V) → (∀𝑠 ∈ (𝐹𝑡)(𝐹𝑢) ⊆ 𝑠 ↔ ∀𝑣𝑡 (𝐹𝑢) ⊆ (𝐹𝑣)))
3632, 33, 35sylancl 586 . . . . . . . 8 (𝐹:V–1-1-onto→On → (∀𝑠 ∈ (𝐹𝑡)(𝐹𝑢) ⊆ 𝑠 ↔ ∀𝑣𝑡 (𝐹𝑢) ⊆ (𝐹𝑣)))
3731, 36bitr4d 282 . . . . . . 7 (𝐹:V–1-1-onto→On → (∀𝑣𝑡 ¬ 𝑣𝑅𝑢 ↔ ∀𝑠 ∈ (𝐹𝑡)(𝐹𝑢) ⊆ 𝑠))
3837rexbidv 3156 . . . . . 6 (𝐹:V–1-1-onto→On → (∃𝑢𝑡𝑣𝑡 ¬ 𝑣𝑅𝑢 ↔ ∃𝑢𝑡𝑠 ∈ (𝐹𝑡)(𝐹𝑢) ⊆ 𝑠))
39 sseq1 3955 . . . . . . . . 9 (𝑟 = (𝐹𝑢) → (𝑟𝑠 ↔ (𝐹𝑢) ⊆ 𝑠))
4039ralbidv 3155 . . . . . . . 8 (𝑟 = (𝐹𝑢) → (∀𝑠 ∈ (𝐹𝑡)𝑟𝑠 ↔ ∀𝑠 ∈ (𝐹𝑡)(𝐹𝑢) ⊆ 𝑠))
4140rexima 7172 . . . . . . 7 ((𝐹 Fn V ∧ 𝑡 ⊆ V) → (∃𝑟 ∈ (𝐹𝑡)∀𝑠 ∈ (𝐹𝑡)𝑟𝑠 ↔ ∃𝑢𝑡𝑠 ∈ (𝐹𝑡)(𝐹𝑢) ⊆ 𝑠))
4232, 33, 41sylancl 586 . . . . . 6 (𝐹:V–1-1-onto→On → (∃𝑟 ∈ (𝐹𝑡)∀𝑠 ∈ (𝐹𝑡)𝑟𝑠 ↔ ∃𝑢𝑡𝑠 ∈ (𝐹𝑡)(𝐹𝑢) ⊆ 𝑠))
4338, 42bitr4d 282 . . . . 5 (𝐹:V–1-1-onto→On → (∃𝑢𝑡𝑣𝑡 ¬ 𝑣𝑅𝑢 ↔ ∃𝑟 ∈ (𝐹𝑡)∀𝑠 ∈ (𝐹𝑡)𝑟𝑠))
4414, 43sylibrd 259 . . . 4 (𝐹:V–1-1-onto→On → (𝑡 ≠ ∅ → ∃𝑢𝑡𝑣𝑡 ¬ 𝑣𝑅𝑢))
4544alrimiv 1928 . . 3 (𝐹:V–1-1-onto→On → ∀𝑡(𝑡 ≠ ∅ → ∃𝑢𝑡𝑣𝑡 ¬ 𝑣𝑅𝑢))
46 df-fr 5567 . . . 4 (𝑅 Fr V ↔ ∀𝑡((𝑡 ⊆ V ∧ 𝑡 ≠ ∅) → ∃𝑢𝑡𝑣𝑡 ¬ 𝑣𝑅𝑢))
4733biantrur 530 . . . . . 6 (𝑡 ≠ ∅ ↔ (𝑡 ⊆ V ∧ 𝑡 ≠ ∅))
4847imbi1i 349 . . . . 5 ((𝑡 ≠ ∅ → ∃𝑢𝑡𝑣𝑡 ¬ 𝑣𝑅𝑢) ↔ ((𝑡 ⊆ V ∧ 𝑡 ≠ ∅) → ∃𝑢𝑡𝑣𝑡 ¬ 𝑣𝑅𝑢))
4948albii 1820 . . . 4 (∀𝑡(𝑡 ≠ ∅ → ∃𝑢𝑡𝑣𝑡 ¬ 𝑣𝑅𝑢) ↔ ∀𝑡((𝑡 ⊆ V ∧ 𝑡 ≠ ∅) → ∃𝑢𝑡𝑣𝑡 ¬ 𝑣𝑅𝑢))
5046, 49bitr4i 278 . . 3 (𝑅 Fr V ↔ ∀𝑡(𝑡 ≠ ∅ → ∃𝑢𝑡𝑣𝑡 ¬ 𝑣𝑅𝑢))
5145, 50sylibr 234 . 2 (𝐹:V–1-1-onto→On → 𝑅 Fr V)
521ffvelcdmda 7017 . . . . . . . 8 ((𝐹:V–1-1-onto→On ∧ 𝑤 ∈ V) → (𝐹𝑤) ∈ On)
5352elvd 3442 . . . . . . 7 (𝐹:V–1-1-onto→On → (𝐹𝑤) ∈ On)
541ffvelcdmda 7017 . . . . . . . 8 ((𝐹:V–1-1-onto→On ∧ 𝑧 ∈ V) → (𝐹𝑧) ∈ On)
5554elvd 3442 . . . . . . 7 (𝐹:V–1-1-onto→On → (𝐹𝑧) ∈ On)
56 oneltri 6349 . . . . . . 7 (((𝐹𝑤) ∈ On ∧ (𝐹𝑧) ∈ On) → ((𝐹𝑤) ∈ (𝐹𝑧) ∨ (𝐹𝑧) ∈ (𝐹𝑤) ∨ (𝐹𝑤) = (𝐹𝑧)))
5753, 55, 56syl2anc 584 . . . . . 6 (𝐹:V–1-1-onto→On → ((𝐹𝑤) ∈ (𝐹𝑧) ∨ (𝐹𝑧) ∈ (𝐹𝑤) ∨ (𝐹𝑤) = (𝐹𝑧)))
58 3orcomb 1093 . . . . . 6 (((𝐹𝑤) ∈ (𝐹𝑧) ∨ (𝐹𝑧) ∈ (𝐹𝑤) ∨ (𝐹𝑤) = (𝐹𝑧)) ↔ ((𝐹𝑤) ∈ (𝐹𝑧) ∨ (𝐹𝑤) = (𝐹𝑧) ∨ (𝐹𝑧) ∈ (𝐹𝑤)))
5957, 58sylib 218 . . . . 5 (𝐹:V–1-1-onto→On → ((𝐹𝑤) ∈ (𝐹𝑧) ∨ (𝐹𝑤) = (𝐹𝑧) ∨ (𝐹𝑧) ∈ (𝐹𝑤)))
60 vex 3440 . . . . . . . . 9 𝑤 ∈ V
61 vex 3440 . . . . . . . . 9 𝑧 ∈ V
62 fveq2 6822 . . . . . . . . . 10 (𝑥 = 𝑤 → (𝐹𝑥) = (𝐹𝑤))
6362eleq1d 2816 . . . . . . . . 9 (𝑥 = 𝑤 → ((𝐹𝑥) ∈ (𝐹𝑦) ↔ (𝐹𝑤) ∈ (𝐹𝑦)))
64 fveq2 6822 . . . . . . . . . 10 (𝑦 = 𝑧 → (𝐹𝑦) = (𝐹𝑧))
6564eleq2d 2817 . . . . . . . . 9 (𝑦 = 𝑧 → ((𝐹𝑤) ∈ (𝐹𝑦) ↔ (𝐹𝑤) ∈ (𝐹𝑧)))
6660, 61, 63, 65, 21brab 5481 . . . . . . . 8 (𝑤𝑅𝑧 ↔ (𝐹𝑤) ∈ (𝐹𝑧))
6766biimpri 228 . . . . . . 7 ((𝐹𝑤) ∈ (𝐹𝑧) → 𝑤𝑅𝑧)
6867a1i 11 . . . . . 6 (𝐹:V–1-1-onto→On → ((𝐹𝑤) ∈ (𝐹𝑧) → 𝑤𝑅𝑧))
69 f1of1 6762 . . . . . . 7 (𝐹:V–1-1-onto→On → 𝐹:V–1-1→On)
70 f1veqaeq 7190 . . . . . . . 8 ((𝐹:V–1-1→On ∧ (𝑤 ∈ V ∧ 𝑧 ∈ V)) → ((𝐹𝑤) = (𝐹𝑧) → 𝑤 = 𝑧))
7160, 61, 70mpanr12 705 . . . . . . 7 (𝐹:V–1-1→On → ((𝐹𝑤) = (𝐹𝑧) → 𝑤 = 𝑧))
7269, 71syl 17 . . . . . 6 (𝐹:V–1-1-onto→On → ((𝐹𝑤) = (𝐹𝑧) → 𝑤 = 𝑧))
73 fveq2 6822 . . . . . . . . . 10 (𝑥 = 𝑧 → (𝐹𝑥) = (𝐹𝑧))
7473eleq1d 2816 . . . . . . . . 9 (𝑥 = 𝑧 → ((𝐹𝑥) ∈ (𝐹𝑦) ↔ (𝐹𝑧) ∈ (𝐹𝑦)))
75 fveq2 6822 . . . . . . . . . 10 (𝑦 = 𝑤 → (𝐹𝑦) = (𝐹𝑤))
7675eleq2d 2817 . . . . . . . . 9 (𝑦 = 𝑤 → ((𝐹𝑧) ∈ (𝐹𝑦) ↔ (𝐹𝑧) ∈ (𝐹𝑤)))
7761, 60, 74, 76, 21brab 5481 . . . . . . . 8 (𝑧𝑅𝑤 ↔ (𝐹𝑧) ∈ (𝐹𝑤))
7877biimpri 228 . . . . . . 7 ((𝐹𝑧) ∈ (𝐹𝑤) → 𝑧𝑅𝑤)
7978a1i 11 . . . . . 6 (𝐹:V–1-1-onto→On → ((𝐹𝑧) ∈ (𝐹𝑤) → 𝑧𝑅𝑤))
8068, 72, 793orim123d 1446 . . . . 5 (𝐹:V–1-1-onto→On → (((𝐹𝑤) ∈ (𝐹𝑧) ∨ (𝐹𝑤) = (𝐹𝑧) ∨ (𝐹𝑧) ∈ (𝐹𝑤)) → (𝑤𝑅𝑧𝑤 = 𝑧𝑧𝑅𝑤)))
8159, 80mpd 15 . . . 4 (𝐹:V–1-1-onto→On → (𝑤𝑅𝑧𝑤 = 𝑧𝑧𝑅𝑤))
8281ralrimivw 3128 . . 3 (𝐹:V–1-1-onto→On → ∀𝑧 ∈ V (𝑤𝑅𝑧𝑤 = 𝑧𝑧𝑅𝑤))
8382ralrimivw 3128 . 2 (𝐹:V–1-1-onto→On → ∀𝑤 ∈ V ∀𝑧 ∈ V (𝑤𝑅𝑧𝑤 = 𝑧𝑧𝑅𝑤))
84 dfwe2 7707 . 2 (𝑅 We V ↔ (𝑅 Fr V ∧ ∀𝑤 ∈ V ∀𝑧 ∈ V (𝑤𝑅𝑧𝑤 = 𝑧𝑧𝑅𝑤)))
8551, 83, 84sylanbrc 583 1 (𝐹:V–1-1-onto→On → 𝑅 We V)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3o 1085  wal 1539   = wceq 1541  wcel 2111  wne 2928  wral 3047  wrex 3056  Vcvv 3436  cin 3896  wss 3897  c0 4280   class class class wbr 5089  {copab 5151   Fr wfr 5564   We wwe 5566  dom cdm 5614  cima 5617  Oncon0 6306   Fn wfn 6476  1-1wf1 6478  1-1-ontowf1o 6480  cfv 6481
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5232  ax-nul 5242  ax-pr 5368  ax-un 7668
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-ne 2929  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-tp 4578  df-op 4580  df-uni 4857  df-int 4896  df-br 5090  df-opab 5152  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-ord 6309  df-on 6310  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-f1o 6488  df-fv 6489
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator