| Step | Hyp | Ref
| Expression |
| 1 | | f1of 6803 |
. . . . . . . 8
⊢ (𝐹:V–1-1-onto→On
→ 𝐹:V⟶On) |
| 2 | 1 | fimassd 6712 |
. . . . . . 7
⊢ (𝐹:V–1-1-onto→On
→ (𝐹 “ 𝑡) ⊆ On) |
| 3 | | f1odm 6807 |
. . . . . . . . . . . 12
⊢ (𝐹:V–1-1-onto→On
→ dom 𝐹 =
V) |
| 4 | 3 | ineq1d 4185 |
. . . . . . . . . . 11
⊢ (𝐹:V–1-1-onto→On
→ (dom 𝐹 ∩ 𝑡) = (V ∩ 𝑡)) |
| 5 | 4 | neeq1d 2985 |
. . . . . . . . . 10
⊢ (𝐹:V–1-1-onto→On
→ ((dom 𝐹 ∩ 𝑡) ≠ ∅ ↔ (V ∩
𝑡) ≠
∅)) |
| 6 | | inv1 4364 |
. . . . . . . . . . . 12
⊢ (𝑡 ∩ V) = 𝑡 |
| 7 | 6 | ineqcomi 4177 |
. . . . . . . . . . 11
⊢ (V ∩
𝑡) = 𝑡 |
| 8 | 7 | neeq1i 2990 |
. . . . . . . . . 10
⊢ ((V ∩
𝑡) ≠ ∅ ↔
𝑡 ≠
∅) |
| 9 | 5, 8 | bitr2di 288 |
. . . . . . . . 9
⊢ (𝐹:V–1-1-onto→On
→ (𝑡 ≠ ∅
↔ (dom 𝐹 ∩ 𝑡) ≠
∅)) |
| 10 | 9 | biimpa 476 |
. . . . . . . 8
⊢ ((𝐹:V–1-1-onto→On
∧ 𝑡 ≠ ∅)
→ (dom 𝐹 ∩ 𝑡) ≠ ∅) |
| 11 | 10 | imadisjlnd 6055 |
. . . . . . 7
⊢ ((𝐹:V–1-1-onto→On
∧ 𝑡 ≠ ∅)
→ (𝐹 “ 𝑡) ≠ ∅) |
| 12 | | onssmin 7771 |
. . . . . . 7
⊢ (((𝐹 “ 𝑡) ⊆ On ∧ (𝐹 “ 𝑡) ≠ ∅) → ∃𝑟 ∈ (𝐹 “ 𝑡)∀𝑠 ∈ (𝐹 “ 𝑡)𝑟 ⊆ 𝑠) |
| 13 | 2, 11, 12 | syl2an2r 685 |
. . . . . 6
⊢ ((𝐹:V–1-1-onto→On
∧ 𝑡 ≠ ∅)
→ ∃𝑟 ∈
(𝐹 “ 𝑡)∀𝑠 ∈ (𝐹 “ 𝑡)𝑟 ⊆ 𝑠) |
| 14 | 13 | ex 412 |
. . . . 5
⊢ (𝐹:V–1-1-onto→On
→ (𝑡 ≠ ∅
→ ∃𝑟 ∈
(𝐹 “ 𝑡)∀𝑠 ∈ (𝐹 “ 𝑡)𝑟 ⊆ 𝑠)) |
| 15 | | vex 3454 |
. . . . . . . . . . . 12
⊢ 𝑣 ∈ V |
| 16 | | vex 3454 |
. . . . . . . . . . . 12
⊢ 𝑢 ∈ V |
| 17 | | fveq2 6861 |
. . . . . . . . . . . . 13
⊢ (𝑥 = 𝑣 → (𝐹‘𝑥) = (𝐹‘𝑣)) |
| 18 | 17 | eleq1d 2814 |
. . . . . . . . . . . 12
⊢ (𝑥 = 𝑣 → ((𝐹‘𝑥) ∈ (𝐹‘𝑦) ↔ (𝐹‘𝑣) ∈ (𝐹‘𝑦))) |
| 19 | | fveq2 6861 |
. . . . . . . . . . . . 13
⊢ (𝑦 = 𝑢 → (𝐹‘𝑦) = (𝐹‘𝑢)) |
| 20 | 19 | eleq2d 2815 |
. . . . . . . . . . . 12
⊢ (𝑦 = 𝑢 → ((𝐹‘𝑣) ∈ (𝐹‘𝑦) ↔ (𝐹‘𝑣) ∈ (𝐹‘𝑢))) |
| 21 | | vonf1owev.1 |
. . . . . . . . . . . 12
⊢ 𝑅 = {〈𝑥, 𝑦〉 ∣ (𝐹‘𝑥) ∈ (𝐹‘𝑦)} |
| 22 | 15, 16, 18, 20, 21 | brab 5506 |
. . . . . . . . . . 11
⊢ (𝑣𝑅𝑢 ↔ (𝐹‘𝑣) ∈ (𝐹‘𝑢)) |
| 23 | 22 | notbii 320 |
. . . . . . . . . 10
⊢ (¬
𝑣𝑅𝑢 ↔ ¬ (𝐹‘𝑣) ∈ (𝐹‘𝑢)) |
| 24 | 1 | ffvelcdmda 7059 |
. . . . . . . . . . . 12
⊢ ((𝐹:V–1-1-onto→On
∧ 𝑢 ∈ V) →
(𝐹‘𝑢) ∈ On) |
| 25 | 24 | elvd 3456 |
. . . . . . . . . . 11
⊢ (𝐹:V–1-1-onto→On
→ (𝐹‘𝑢) ∈ On) |
| 26 | 1 | ffvelcdmda 7059 |
. . . . . . . . . . . 12
⊢ ((𝐹:V–1-1-onto→On
∧ 𝑣 ∈ V) →
(𝐹‘𝑣) ∈ On) |
| 27 | 26 | elvd 3456 |
. . . . . . . . . . 11
⊢ (𝐹:V–1-1-onto→On
→ (𝐹‘𝑣) ∈ On) |
| 28 | | ontri1 6369 |
. . . . . . . . . . 11
⊢ (((𝐹‘𝑢) ∈ On ∧ (𝐹‘𝑣) ∈ On) → ((𝐹‘𝑢) ⊆ (𝐹‘𝑣) ↔ ¬ (𝐹‘𝑣) ∈ (𝐹‘𝑢))) |
| 29 | 25, 27, 28 | syl2anc 584 |
. . . . . . . . . 10
⊢ (𝐹:V–1-1-onto→On
→ ((𝐹‘𝑢) ⊆ (𝐹‘𝑣) ↔ ¬ (𝐹‘𝑣) ∈ (𝐹‘𝑢))) |
| 30 | 23, 29 | bitr4id 290 |
. . . . . . . . 9
⊢ (𝐹:V–1-1-onto→On
→ (¬ 𝑣𝑅𝑢 ↔ (𝐹‘𝑢) ⊆ (𝐹‘𝑣))) |
| 31 | 30 | ralbidv 3157 |
. . . . . . . 8
⊢ (𝐹:V–1-1-onto→On
→ (∀𝑣 ∈
𝑡 ¬ 𝑣𝑅𝑢 ↔ ∀𝑣 ∈ 𝑡 (𝐹‘𝑢) ⊆ (𝐹‘𝑣))) |
| 32 | | f1ofn 6804 |
. . . . . . . . 9
⊢ (𝐹:V–1-1-onto→On
→ 𝐹 Fn
V) |
| 33 | | ssv 3974 |
. . . . . . . . 9
⊢ 𝑡 ⊆ V |
| 34 | | sseq2 3976 |
. . . . . . . . . 10
⊢ (𝑠 = (𝐹‘𝑣) → ((𝐹‘𝑢) ⊆ 𝑠 ↔ (𝐹‘𝑢) ⊆ (𝐹‘𝑣))) |
| 35 | 34 | ralima 7214 |
. . . . . . . . 9
⊢ ((𝐹 Fn V ∧ 𝑡 ⊆ V) → (∀𝑠 ∈ (𝐹 “ 𝑡)(𝐹‘𝑢) ⊆ 𝑠 ↔ ∀𝑣 ∈ 𝑡 (𝐹‘𝑢) ⊆ (𝐹‘𝑣))) |
| 36 | 32, 33, 35 | sylancl 586 |
. . . . . . . 8
⊢ (𝐹:V–1-1-onto→On
→ (∀𝑠 ∈
(𝐹 “ 𝑡)(𝐹‘𝑢) ⊆ 𝑠 ↔ ∀𝑣 ∈ 𝑡 (𝐹‘𝑢) ⊆ (𝐹‘𝑣))) |
| 37 | 31, 36 | bitr4d 282 |
. . . . . . 7
⊢ (𝐹:V–1-1-onto→On
→ (∀𝑣 ∈
𝑡 ¬ 𝑣𝑅𝑢 ↔ ∀𝑠 ∈ (𝐹 “ 𝑡)(𝐹‘𝑢) ⊆ 𝑠)) |
| 38 | 37 | rexbidv 3158 |
. . . . . 6
⊢ (𝐹:V–1-1-onto→On
→ (∃𝑢 ∈
𝑡 ∀𝑣 ∈ 𝑡 ¬ 𝑣𝑅𝑢 ↔ ∃𝑢 ∈ 𝑡 ∀𝑠 ∈ (𝐹 “ 𝑡)(𝐹‘𝑢) ⊆ 𝑠)) |
| 39 | | sseq1 3975 |
. . . . . . . . 9
⊢ (𝑟 = (𝐹‘𝑢) → (𝑟 ⊆ 𝑠 ↔ (𝐹‘𝑢) ⊆ 𝑠)) |
| 40 | 39 | ralbidv 3157 |
. . . . . . . 8
⊢ (𝑟 = (𝐹‘𝑢) → (∀𝑠 ∈ (𝐹 “ 𝑡)𝑟 ⊆ 𝑠 ↔ ∀𝑠 ∈ (𝐹 “ 𝑡)(𝐹‘𝑢) ⊆ 𝑠)) |
| 41 | 40 | rexima 7215 |
. . . . . . 7
⊢ ((𝐹 Fn V ∧ 𝑡 ⊆ V) → (∃𝑟 ∈ (𝐹 “ 𝑡)∀𝑠 ∈ (𝐹 “ 𝑡)𝑟 ⊆ 𝑠 ↔ ∃𝑢 ∈ 𝑡 ∀𝑠 ∈ (𝐹 “ 𝑡)(𝐹‘𝑢) ⊆ 𝑠)) |
| 42 | 32, 33, 41 | sylancl 586 |
. . . . . 6
⊢ (𝐹:V–1-1-onto→On
→ (∃𝑟 ∈
(𝐹 “ 𝑡)∀𝑠 ∈ (𝐹 “ 𝑡)𝑟 ⊆ 𝑠 ↔ ∃𝑢 ∈ 𝑡 ∀𝑠 ∈ (𝐹 “ 𝑡)(𝐹‘𝑢) ⊆ 𝑠)) |
| 43 | 38, 42 | bitr4d 282 |
. . . . 5
⊢ (𝐹:V–1-1-onto→On
→ (∃𝑢 ∈
𝑡 ∀𝑣 ∈ 𝑡 ¬ 𝑣𝑅𝑢 ↔ ∃𝑟 ∈ (𝐹 “ 𝑡)∀𝑠 ∈ (𝐹 “ 𝑡)𝑟 ⊆ 𝑠)) |
| 44 | 14, 43 | sylibrd 259 |
. . . 4
⊢ (𝐹:V–1-1-onto→On
→ (𝑡 ≠ ∅
→ ∃𝑢 ∈
𝑡 ∀𝑣 ∈ 𝑡 ¬ 𝑣𝑅𝑢)) |
| 45 | 44 | alrimiv 1927 |
. . 3
⊢ (𝐹:V–1-1-onto→On
→ ∀𝑡(𝑡 ≠ ∅ →
∃𝑢 ∈ 𝑡 ∀𝑣 ∈ 𝑡 ¬ 𝑣𝑅𝑢)) |
| 46 | | df-fr 5594 |
. . . 4
⊢ (𝑅 Fr V ↔ ∀𝑡((𝑡 ⊆ V ∧ 𝑡 ≠ ∅) → ∃𝑢 ∈ 𝑡 ∀𝑣 ∈ 𝑡 ¬ 𝑣𝑅𝑢)) |
| 47 | 33 | biantrur 530 |
. . . . . 6
⊢ (𝑡 ≠ ∅ ↔ (𝑡 ⊆ V ∧ 𝑡 ≠ ∅)) |
| 48 | 47 | imbi1i 349 |
. . . . 5
⊢ ((𝑡 ≠ ∅ →
∃𝑢 ∈ 𝑡 ∀𝑣 ∈ 𝑡 ¬ 𝑣𝑅𝑢) ↔ ((𝑡 ⊆ V ∧ 𝑡 ≠ ∅) → ∃𝑢 ∈ 𝑡 ∀𝑣 ∈ 𝑡 ¬ 𝑣𝑅𝑢)) |
| 49 | 48 | albii 1819 |
. . . 4
⊢
(∀𝑡(𝑡 ≠ ∅ →
∃𝑢 ∈ 𝑡 ∀𝑣 ∈ 𝑡 ¬ 𝑣𝑅𝑢) ↔ ∀𝑡((𝑡 ⊆ V ∧ 𝑡 ≠ ∅) → ∃𝑢 ∈ 𝑡 ∀𝑣 ∈ 𝑡 ¬ 𝑣𝑅𝑢)) |
| 50 | 46, 49 | bitr4i 278 |
. . 3
⊢ (𝑅 Fr V ↔ ∀𝑡(𝑡 ≠ ∅ → ∃𝑢 ∈ 𝑡 ∀𝑣 ∈ 𝑡 ¬ 𝑣𝑅𝑢)) |
| 51 | 45, 50 | sylibr 234 |
. 2
⊢ (𝐹:V–1-1-onto→On
→ 𝑅 Fr
V) |
| 52 | 1 | ffvelcdmda 7059 |
. . . . . . . 8
⊢ ((𝐹:V–1-1-onto→On
∧ 𝑤 ∈ V) →
(𝐹‘𝑤) ∈ On) |
| 53 | 52 | elvd 3456 |
. . . . . . 7
⊢ (𝐹:V–1-1-onto→On
→ (𝐹‘𝑤) ∈ On) |
| 54 | 1 | ffvelcdmda 7059 |
. . . . . . . 8
⊢ ((𝐹:V–1-1-onto→On
∧ 𝑧 ∈ V) →
(𝐹‘𝑧) ∈ On) |
| 55 | 54 | elvd 3456 |
. . . . . . 7
⊢ (𝐹:V–1-1-onto→On
→ (𝐹‘𝑧) ∈ On) |
| 56 | | oneltri 6378 |
. . . . . . 7
⊢ (((𝐹‘𝑤) ∈ On ∧ (𝐹‘𝑧) ∈ On) → ((𝐹‘𝑤) ∈ (𝐹‘𝑧) ∨ (𝐹‘𝑧) ∈ (𝐹‘𝑤) ∨ (𝐹‘𝑤) = (𝐹‘𝑧))) |
| 57 | 53, 55, 56 | syl2anc 584 |
. . . . . 6
⊢ (𝐹:V–1-1-onto→On
→ ((𝐹‘𝑤) ∈ (𝐹‘𝑧) ∨ (𝐹‘𝑧) ∈ (𝐹‘𝑤) ∨ (𝐹‘𝑤) = (𝐹‘𝑧))) |
| 58 | | 3orcomb 1093 |
. . . . . 6
⊢ (((𝐹‘𝑤) ∈ (𝐹‘𝑧) ∨ (𝐹‘𝑧) ∈ (𝐹‘𝑤) ∨ (𝐹‘𝑤) = (𝐹‘𝑧)) ↔ ((𝐹‘𝑤) ∈ (𝐹‘𝑧) ∨ (𝐹‘𝑤) = (𝐹‘𝑧) ∨ (𝐹‘𝑧) ∈ (𝐹‘𝑤))) |
| 59 | 57, 58 | sylib 218 |
. . . . 5
⊢ (𝐹:V–1-1-onto→On
→ ((𝐹‘𝑤) ∈ (𝐹‘𝑧) ∨ (𝐹‘𝑤) = (𝐹‘𝑧) ∨ (𝐹‘𝑧) ∈ (𝐹‘𝑤))) |
| 60 | | vex 3454 |
. . . . . . . . 9
⊢ 𝑤 ∈ V |
| 61 | | vex 3454 |
. . . . . . . . 9
⊢ 𝑧 ∈ V |
| 62 | | fveq2 6861 |
. . . . . . . . . 10
⊢ (𝑥 = 𝑤 → (𝐹‘𝑥) = (𝐹‘𝑤)) |
| 63 | 62 | eleq1d 2814 |
. . . . . . . . 9
⊢ (𝑥 = 𝑤 → ((𝐹‘𝑥) ∈ (𝐹‘𝑦) ↔ (𝐹‘𝑤) ∈ (𝐹‘𝑦))) |
| 64 | | fveq2 6861 |
. . . . . . . . . 10
⊢ (𝑦 = 𝑧 → (𝐹‘𝑦) = (𝐹‘𝑧)) |
| 65 | 64 | eleq2d 2815 |
. . . . . . . . 9
⊢ (𝑦 = 𝑧 → ((𝐹‘𝑤) ∈ (𝐹‘𝑦) ↔ (𝐹‘𝑤) ∈ (𝐹‘𝑧))) |
| 66 | 60, 61, 63, 65, 21 | brab 5506 |
. . . . . . . 8
⊢ (𝑤𝑅𝑧 ↔ (𝐹‘𝑤) ∈ (𝐹‘𝑧)) |
| 67 | 66 | biimpri 228 |
. . . . . . 7
⊢ ((𝐹‘𝑤) ∈ (𝐹‘𝑧) → 𝑤𝑅𝑧) |
| 68 | 67 | a1i 11 |
. . . . . 6
⊢ (𝐹:V–1-1-onto→On
→ ((𝐹‘𝑤) ∈ (𝐹‘𝑧) → 𝑤𝑅𝑧)) |
| 69 | | f1of1 6802 |
. . . . . . 7
⊢ (𝐹:V–1-1-onto→On
→ 𝐹:V–1-1→On) |
| 70 | | f1veqaeq 7234 |
. . . . . . . 8
⊢ ((𝐹:V–1-1→On ∧ (𝑤 ∈ V ∧ 𝑧 ∈ V)) → ((𝐹‘𝑤) = (𝐹‘𝑧) → 𝑤 = 𝑧)) |
| 71 | 60, 61, 70 | mpanr12 705 |
. . . . . . 7
⊢ (𝐹:V–1-1→On → ((𝐹‘𝑤) = (𝐹‘𝑧) → 𝑤 = 𝑧)) |
| 72 | 69, 71 | syl 17 |
. . . . . 6
⊢ (𝐹:V–1-1-onto→On
→ ((𝐹‘𝑤) = (𝐹‘𝑧) → 𝑤 = 𝑧)) |
| 73 | | fveq2 6861 |
. . . . . . . . . 10
⊢ (𝑥 = 𝑧 → (𝐹‘𝑥) = (𝐹‘𝑧)) |
| 74 | 73 | eleq1d 2814 |
. . . . . . . . 9
⊢ (𝑥 = 𝑧 → ((𝐹‘𝑥) ∈ (𝐹‘𝑦) ↔ (𝐹‘𝑧) ∈ (𝐹‘𝑦))) |
| 75 | | fveq2 6861 |
. . . . . . . . . 10
⊢ (𝑦 = 𝑤 → (𝐹‘𝑦) = (𝐹‘𝑤)) |
| 76 | 75 | eleq2d 2815 |
. . . . . . . . 9
⊢ (𝑦 = 𝑤 → ((𝐹‘𝑧) ∈ (𝐹‘𝑦) ↔ (𝐹‘𝑧) ∈ (𝐹‘𝑤))) |
| 77 | 61, 60, 74, 76, 21 | brab 5506 |
. . . . . . . 8
⊢ (𝑧𝑅𝑤 ↔ (𝐹‘𝑧) ∈ (𝐹‘𝑤)) |
| 78 | 77 | biimpri 228 |
. . . . . . 7
⊢ ((𝐹‘𝑧) ∈ (𝐹‘𝑤) → 𝑧𝑅𝑤) |
| 79 | 78 | a1i 11 |
. . . . . 6
⊢ (𝐹:V–1-1-onto→On
→ ((𝐹‘𝑧) ∈ (𝐹‘𝑤) → 𝑧𝑅𝑤)) |
| 80 | 68, 72, 79 | 3orim123d 1446 |
. . . . 5
⊢ (𝐹:V–1-1-onto→On
→ (((𝐹‘𝑤) ∈ (𝐹‘𝑧) ∨ (𝐹‘𝑤) = (𝐹‘𝑧) ∨ (𝐹‘𝑧) ∈ (𝐹‘𝑤)) → (𝑤𝑅𝑧 ∨ 𝑤 = 𝑧 ∨ 𝑧𝑅𝑤))) |
| 81 | 59, 80 | mpd 15 |
. . . 4
⊢ (𝐹:V–1-1-onto→On
→ (𝑤𝑅𝑧 ∨ 𝑤 = 𝑧 ∨ 𝑧𝑅𝑤)) |
| 82 | 81 | ralrimivw 3130 |
. . 3
⊢ (𝐹:V–1-1-onto→On
→ ∀𝑧 ∈ V
(𝑤𝑅𝑧 ∨ 𝑤 = 𝑧 ∨ 𝑧𝑅𝑤)) |
| 83 | 82 | ralrimivw 3130 |
. 2
⊢ (𝐹:V–1-1-onto→On
→ ∀𝑤 ∈ V
∀𝑧 ∈ V (𝑤𝑅𝑧 ∨ 𝑤 = 𝑧 ∨ 𝑧𝑅𝑤)) |
| 84 | | dfwe2 7753 |
. 2
⊢ (𝑅 We V ↔ (𝑅 Fr V ∧ ∀𝑤 ∈ V ∀𝑧 ∈ V (𝑤𝑅𝑧 ∨ 𝑤 = 𝑧 ∨ 𝑧𝑅𝑤))) |
| 85 | 51, 83, 84 | sylanbrc 583 |
1
⊢ (𝐹:V–1-1-onto→On
→ 𝑅 We
V) |