MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  onssmin Structured version   Visualization version   GIF version

Theorem onssmin 7633
Description: A nonempty class of ordinal numbers has the smallest member. Exercise 9 of [TakeutiZaring] p. 40. (Contributed by NM, 3-Oct-2003.)
Assertion
Ref Expression
onssmin ((𝐴 ⊆ On ∧ 𝐴 ≠ ∅) → ∃𝑥𝐴𝑦𝐴 𝑥𝑦)
Distinct variable group:   𝑥,𝑦,𝐴

Proof of Theorem onssmin
StepHypRef Expression
1 onint 7631 . 2 ((𝐴 ⊆ On ∧ 𝐴 ≠ ∅) → 𝐴𝐴)
2 intss1 4895 . . 3 (𝑦𝐴 𝐴𝑦)
32rgen 3074 . 2 𝑦𝐴 𝐴𝑦
4 sseq1 3946 . . . 4 (𝑥 = 𝐴 → (𝑥𝑦 𝐴𝑦))
54ralbidv 3108 . . 3 (𝑥 = 𝐴 → (∀𝑦𝐴 𝑥𝑦 ↔ ∀𝑦𝐴 𝐴𝑦))
65rspcev 3560 . 2 (( 𝐴𝐴 ∧ ∀𝑦𝐴 𝐴𝑦) → ∃𝑥𝐴𝑦𝐴 𝑥𝑦)
71, 3, 6sylancl 586 1 ((𝐴 ⊆ On ∧ 𝐴 ≠ ∅) → ∃𝑥𝐴𝑦𝐴 𝑥𝑦)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1539  wcel 2106  wne 2943  wral 3064  wrex 3065  wss 3887  c0 4257   cint 4880  Oncon0 6260
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-11 2154  ax-ext 2709  ax-sep 5222  ax-nul 5229  ax-pr 5351
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-sb 2068  df-clab 2716  df-cleq 2730  df-clel 2816  df-ne 2944  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3432  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4258  df-if 4461  df-pw 4536  df-sn 4563  df-pr 4565  df-op 4569  df-uni 4841  df-int 4881  df-br 5075  df-opab 5137  df-tr 5192  df-eprel 5491  df-po 5499  df-so 5500  df-fr 5540  df-we 5542  df-ord 6263  df-on 6264
This theorem is referenced by:  nummin  33049
  Copyright terms: Public domain W3C validator