MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  onssmin Structured version   Visualization version   GIF version

Theorem onssmin 7619
Description: A nonempty class of ordinal numbers has the smallest member. Exercise 9 of [TakeutiZaring] p. 40. (Contributed by NM, 3-Oct-2003.)
Assertion
Ref Expression
onssmin ((𝐴 ⊆ On ∧ 𝐴 ≠ ∅) → ∃𝑥𝐴𝑦𝐴 𝑥𝑦)
Distinct variable group:   𝑥,𝑦,𝐴

Proof of Theorem onssmin
StepHypRef Expression
1 onint 7617 . 2 ((𝐴 ⊆ On ∧ 𝐴 ≠ ∅) → 𝐴𝐴)
2 intss1 4891 . . 3 (𝑦𝐴 𝐴𝑦)
32rgen 3073 . 2 𝑦𝐴 𝐴𝑦
4 sseq1 3942 . . . 4 (𝑥 = 𝐴 → (𝑥𝑦 𝐴𝑦))
54ralbidv 3120 . . 3 (𝑥 = 𝐴 → (∀𝑦𝐴 𝑥𝑦 ↔ ∀𝑦𝐴 𝐴𝑦))
65rspcev 3552 . 2 (( 𝐴𝐴 ∧ ∀𝑦𝐴 𝐴𝑦) → ∃𝑥𝐴𝑦𝐴 𝑥𝑦)
71, 3, 6sylancl 585 1 ((𝐴 ⊆ On ∧ 𝐴 ≠ ∅) → ∃𝑥𝐴𝑦𝐴 𝑥𝑦)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1539  wcel 2108  wne 2942  wral 3063  wrex 3064  wss 3883  c0 4253   cint 4876  Oncon0 6251
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-11 2156  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pr 5347  ax-un 7566
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-sb 2069  df-clab 2716  df-cleq 2730  df-clel 2817  df-ne 2943  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-br 5071  df-opab 5133  df-tr 5188  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-ord 6254  df-on 6255
This theorem is referenced by:  nummin  32963
  Copyright terms: Public domain W3C validator