Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > onssmin | Structured version Visualization version GIF version |
Description: A nonempty class of ordinal numbers has the smallest member. Exercise 9 of [TakeutiZaring] p. 40. (Contributed by NM, 3-Oct-2003.) |
Ref | Expression |
---|---|
onssmin | ⊢ ((𝐴 ⊆ On ∧ 𝐴 ≠ ∅) → ∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 𝑥 ⊆ 𝑦) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | onint 7617 | . 2 ⊢ ((𝐴 ⊆ On ∧ 𝐴 ≠ ∅) → ∩ 𝐴 ∈ 𝐴) | |
2 | intss1 4891 | . . 3 ⊢ (𝑦 ∈ 𝐴 → ∩ 𝐴 ⊆ 𝑦) | |
3 | 2 | rgen 3073 | . 2 ⊢ ∀𝑦 ∈ 𝐴 ∩ 𝐴 ⊆ 𝑦 |
4 | sseq1 3942 | . . . 4 ⊢ (𝑥 = ∩ 𝐴 → (𝑥 ⊆ 𝑦 ↔ ∩ 𝐴 ⊆ 𝑦)) | |
5 | 4 | ralbidv 3120 | . . 3 ⊢ (𝑥 = ∩ 𝐴 → (∀𝑦 ∈ 𝐴 𝑥 ⊆ 𝑦 ↔ ∀𝑦 ∈ 𝐴 ∩ 𝐴 ⊆ 𝑦)) |
6 | 5 | rspcev 3552 | . 2 ⊢ ((∩ 𝐴 ∈ 𝐴 ∧ ∀𝑦 ∈ 𝐴 ∩ 𝐴 ⊆ 𝑦) → ∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 𝑥 ⊆ 𝑦) |
7 | 1, 3, 6 | sylancl 585 | 1 ⊢ ((𝐴 ⊆ On ∧ 𝐴 ≠ ∅) → ∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 𝑥 ⊆ 𝑦) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2108 ≠ wne 2942 ∀wral 3063 ∃wrex 3064 ⊆ wss 3883 ∅c0 4253 ∩ cint 4876 Oncon0 6251 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-11 2156 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 ax-un 7566 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-ne 2943 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-int 4877 df-br 5071 df-opab 5133 df-tr 5188 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-we 5537 df-ord 6254 df-on 6255 |
This theorem is referenced by: nummin 32963 |
Copyright terms: Public domain | W3C validator |