| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > onssmin | Structured version Visualization version GIF version | ||
| Description: A nonempty class of ordinal numbers has the smallest member. Exercise 9 of [TakeutiZaring] p. 40. (Contributed by NM, 3-Oct-2003.) |
| Ref | Expression |
|---|---|
| onssmin | ⊢ ((𝐴 ⊆ On ∧ 𝐴 ≠ ∅) → ∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 𝑥 ⊆ 𝑦) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | onint 7784 | . 2 ⊢ ((𝐴 ⊆ On ∧ 𝐴 ≠ ∅) → ∩ 𝐴 ∈ 𝐴) | |
| 2 | intss1 4939 | . . 3 ⊢ (𝑦 ∈ 𝐴 → ∩ 𝐴 ⊆ 𝑦) | |
| 3 | 2 | rgen 3053 | . 2 ⊢ ∀𝑦 ∈ 𝐴 ∩ 𝐴 ⊆ 𝑦 |
| 4 | sseq1 3984 | . . . 4 ⊢ (𝑥 = ∩ 𝐴 → (𝑥 ⊆ 𝑦 ↔ ∩ 𝐴 ⊆ 𝑦)) | |
| 5 | 4 | ralbidv 3163 | . . 3 ⊢ (𝑥 = ∩ 𝐴 → (∀𝑦 ∈ 𝐴 𝑥 ⊆ 𝑦 ↔ ∀𝑦 ∈ 𝐴 ∩ 𝐴 ⊆ 𝑦)) |
| 6 | 5 | rspcev 3601 | . 2 ⊢ ((∩ 𝐴 ∈ 𝐴 ∧ ∀𝑦 ∈ 𝐴 ∩ 𝐴 ⊆ 𝑦) → ∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 𝑥 ⊆ 𝑦) |
| 7 | 1, 3, 6 | sylancl 586 | 1 ⊢ ((𝐴 ⊆ On ∧ 𝐴 ≠ ∅) → ∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 𝑥 ⊆ 𝑦) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2108 ≠ wne 2932 ∀wral 3051 ∃wrex 3060 ⊆ wss 3926 ∅c0 4308 ∩ cint 4922 Oncon0 6352 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pr 5402 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2065 df-clab 2714 df-cleq 2727 df-clel 2809 df-ne 2933 df-ral 3052 df-rex 3061 df-rab 3416 df-v 3461 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-pss 3946 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-int 4923 df-br 5120 df-opab 5182 df-tr 5230 df-eprel 5553 df-po 5561 df-so 5562 df-fr 5606 df-we 5608 df-ord 6355 df-on 6356 |
| This theorem is referenced by: nummin 35122 |
| Copyright terms: Public domain | W3C validator |