![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > onssmin | Structured version Visualization version GIF version |
Description: A nonempty class of ordinal numbers has the smallest member. Exercise 9 of [TakeutiZaring] p. 40. (Contributed by NM, 3-Oct-2003.) |
Ref | Expression |
---|---|
onssmin | ⊢ ((𝐴 ⊆ On ∧ 𝐴 ≠ ∅) → ∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 𝑥 ⊆ 𝑦) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | onint 7826 | . 2 ⊢ ((𝐴 ⊆ On ∧ 𝐴 ≠ ∅) → ∩ 𝐴 ∈ 𝐴) | |
2 | intss1 4987 | . . 3 ⊢ (𝑦 ∈ 𝐴 → ∩ 𝐴 ⊆ 𝑦) | |
3 | 2 | rgen 3069 | . 2 ⊢ ∀𝑦 ∈ 𝐴 ∩ 𝐴 ⊆ 𝑦 |
4 | sseq1 4034 | . . . 4 ⊢ (𝑥 = ∩ 𝐴 → (𝑥 ⊆ 𝑦 ↔ ∩ 𝐴 ⊆ 𝑦)) | |
5 | 4 | ralbidv 3184 | . . 3 ⊢ (𝑥 = ∩ 𝐴 → (∀𝑦 ∈ 𝐴 𝑥 ⊆ 𝑦 ↔ ∀𝑦 ∈ 𝐴 ∩ 𝐴 ⊆ 𝑦)) |
6 | 5 | rspcev 3635 | . 2 ⊢ ((∩ 𝐴 ∈ 𝐴 ∧ ∀𝑦 ∈ 𝐴 ∩ 𝐴 ⊆ 𝑦) → ∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 𝑥 ⊆ 𝑦) |
7 | 1, 3, 6 | sylancl 585 | 1 ⊢ ((𝐴 ⊆ On ∧ 𝐴 ≠ ∅) → ∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 𝑥 ⊆ 𝑦) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1537 ∈ wcel 2108 ≠ wne 2946 ∀wral 3067 ∃wrex 3076 ⊆ wss 3976 ∅c0 4352 ∩ cint 4970 Oncon0 6395 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-ne 2947 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-int 4971 df-br 5167 df-opab 5229 df-tr 5284 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-we 5654 df-ord 6398 df-on 6399 |
This theorem is referenced by: nummin 35067 |
Copyright terms: Public domain | W3C validator |