![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > onssmin | Structured version Visualization version GIF version |
Description: A nonempty class of ordinal numbers has the smallest member. Exercise 9 of [TakeutiZaring] p. 40. (Contributed by NM, 3-Oct-2003.) |
Ref | Expression |
---|---|
onssmin | ⊢ ((𝐴 ⊆ On ∧ 𝐴 ≠ ∅) → ∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 𝑥 ⊆ 𝑦) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | onint 7778 | . 2 ⊢ ((𝐴 ⊆ On ∧ 𝐴 ≠ ∅) → ∩ 𝐴 ∈ 𝐴) | |
2 | intss1 4968 | . . 3 ⊢ (𝑦 ∈ 𝐴 → ∩ 𝐴 ⊆ 𝑦) | |
3 | 2 | rgen 3064 | . 2 ⊢ ∀𝑦 ∈ 𝐴 ∩ 𝐴 ⊆ 𝑦 |
4 | sseq1 4008 | . . . 4 ⊢ (𝑥 = ∩ 𝐴 → (𝑥 ⊆ 𝑦 ↔ ∩ 𝐴 ⊆ 𝑦)) | |
5 | 4 | ralbidv 3178 | . . 3 ⊢ (𝑥 = ∩ 𝐴 → (∀𝑦 ∈ 𝐴 𝑥 ⊆ 𝑦 ↔ ∀𝑦 ∈ 𝐴 ∩ 𝐴 ⊆ 𝑦)) |
6 | 5 | rspcev 3613 | . 2 ⊢ ((∩ 𝐴 ∈ 𝐴 ∧ ∀𝑦 ∈ 𝐴 ∩ 𝐴 ⊆ 𝑦) → ∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 𝑥 ⊆ 𝑦) |
7 | 1, 3, 6 | sylancl 587 | 1 ⊢ ((𝐴 ⊆ On ∧ 𝐴 ≠ ∅) → ∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 𝑥 ⊆ 𝑦) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 397 = wceq 1542 ∈ wcel 2107 ≠ wne 2941 ∀wral 3062 ∃wrex 3071 ⊆ wss 3949 ∅c0 4323 ∩ cint 4951 Oncon0 6365 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-ext 2704 ax-sep 5300 ax-nul 5307 ax-pr 5428 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-sb 2069 df-clab 2711 df-cleq 2725 df-clel 2811 df-ne 2942 df-ral 3063 df-rex 3072 df-rab 3434 df-v 3477 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-pss 3968 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4910 df-int 4952 df-br 5150 df-opab 5212 df-tr 5267 df-eprel 5581 df-po 5589 df-so 5590 df-fr 5632 df-we 5634 df-ord 6368 df-on 6369 |
This theorem is referenced by: nummin 34094 |
Copyright terms: Public domain | W3C validator |