MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  onssmin Structured version   Visualization version   GIF version

Theorem onssmin 7768
Description: A nonempty class of ordinal numbers has the smallest member. Exercise 9 of [TakeutiZaring] p. 40. (Contributed by NM, 3-Oct-2003.)
Assertion
Ref Expression
onssmin ((𝐴 ⊆ On ∧ 𝐴 ≠ ∅) → ∃𝑥𝐴𝑦𝐴 𝑥𝑦)
Distinct variable group:   𝑥,𝑦,𝐴

Proof of Theorem onssmin
StepHypRef Expression
1 onint 7766 . 2 ((𝐴 ⊆ On ∧ 𝐴 ≠ ∅) → 𝐴𝐴)
2 intss1 4927 . . 3 (𝑦𝐴 𝐴𝑦)
32rgen 3046 . 2 𝑦𝐴 𝐴𝑦
4 sseq1 3972 . . . 4 (𝑥 = 𝐴 → (𝑥𝑦 𝐴𝑦))
54ralbidv 3156 . . 3 (𝑥 = 𝐴 → (∀𝑦𝐴 𝑥𝑦 ↔ ∀𝑦𝐴 𝐴𝑦))
65rspcev 3588 . 2 (( 𝐴𝐴 ∧ ∀𝑦𝐴 𝐴𝑦) → ∃𝑥𝐴𝑦𝐴 𝑥𝑦)
71, 3, 6sylancl 586 1 ((𝐴 ⊆ On ∧ 𝐴 ≠ ∅) → ∃𝑥𝐴𝑦𝐴 𝑥𝑦)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  wne 2925  wral 3044  wrex 3053  wss 3914  c0 4296   cint 4910  Oncon0 6332
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pr 5387
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3406  df-v 3449  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-int 4911  df-br 5108  df-opab 5170  df-tr 5215  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-we 5593  df-ord 6335  df-on 6336
This theorem is referenced by:  nummin  35081  vonf1owev  35095
  Copyright terms: Public domain W3C validator