![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ordnbtwn | Structured version Visualization version GIF version |
Description: There is no set between an ordinal class and its successor. Generalized Proposition 7.25 of [TakeutiZaring] p. 41. Lemma 1.15 of [Schloeder] p. 2. (Contributed by NM, 21-Jun-1998.) (Proof shortened by JJ, 24-Sep-2021.) |
Ref | Expression |
---|---|
ordnbtwn | ⊢ (Ord 𝐴 → ¬ (𝐴 ∈ 𝐵 ∧ 𝐵 ∈ suc 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ordirr 6382 | . . 3 ⊢ (Ord 𝐴 → ¬ 𝐴 ∈ 𝐴) | |
2 | ordn2lp 6384 | . . . 4 ⊢ (Ord 𝐴 → ¬ (𝐴 ∈ 𝐵 ∧ 𝐵 ∈ 𝐴)) | |
3 | pm2.24 124 | . . . . 5 ⊢ ((𝐴 ∈ 𝐵 ∧ 𝐵 ∈ 𝐴) → (¬ (𝐴 ∈ 𝐵 ∧ 𝐵 ∈ 𝐴) → 𝐴 ∈ 𝐴)) | |
4 | eleq2 2822 | . . . . . . 7 ⊢ (𝐵 = 𝐴 → (𝐴 ∈ 𝐵 ↔ 𝐴 ∈ 𝐴)) | |
5 | 4 | biimpac 479 | . . . . . 6 ⊢ ((𝐴 ∈ 𝐵 ∧ 𝐵 = 𝐴) → 𝐴 ∈ 𝐴) |
6 | 5 | a1d 25 | . . . . 5 ⊢ ((𝐴 ∈ 𝐵 ∧ 𝐵 = 𝐴) → (¬ (𝐴 ∈ 𝐵 ∧ 𝐵 ∈ 𝐴) → 𝐴 ∈ 𝐴)) |
7 | 3, 6 | jaodan 956 | . . . 4 ⊢ ((𝐴 ∈ 𝐵 ∧ (𝐵 ∈ 𝐴 ∨ 𝐵 = 𝐴)) → (¬ (𝐴 ∈ 𝐵 ∧ 𝐵 ∈ 𝐴) → 𝐴 ∈ 𝐴)) |
8 | 2, 7 | syl5com 31 | . . 3 ⊢ (Ord 𝐴 → ((𝐴 ∈ 𝐵 ∧ (𝐵 ∈ 𝐴 ∨ 𝐵 = 𝐴)) → 𝐴 ∈ 𝐴)) |
9 | 1, 8 | mtod 197 | . 2 ⊢ (Ord 𝐴 → ¬ (𝐴 ∈ 𝐵 ∧ (𝐵 ∈ 𝐴 ∨ 𝐵 = 𝐴))) |
10 | elsuci 6431 | . . 3 ⊢ (𝐵 ∈ suc 𝐴 → (𝐵 ∈ 𝐴 ∨ 𝐵 = 𝐴)) | |
11 | 10 | anim2i 617 | . 2 ⊢ ((𝐴 ∈ 𝐵 ∧ 𝐵 ∈ suc 𝐴) → (𝐴 ∈ 𝐵 ∧ (𝐵 ∈ 𝐴 ∨ 𝐵 = 𝐴))) |
12 | 9, 11 | nsyl 140 | 1 ⊢ (Ord 𝐴 → ¬ (𝐴 ∈ 𝐵 ∧ 𝐵 ∈ suc 𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 396 ∨ wo 845 = wceq 1541 ∈ wcel 2106 Ord word 6363 suc csuc 6366 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2703 ax-sep 5299 ax-nul 5306 ax-pr 5427 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-sb 2068 df-clab 2710 df-cleq 2724 df-clel 2810 df-ne 2941 df-ral 3062 df-rex 3071 df-rab 3433 df-v 3476 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-br 5149 df-opab 5211 df-tr 5266 df-eprel 5580 df-fr 5631 df-we 5633 df-ord 6367 df-suc 6370 |
This theorem is referenced by: onnbtwn 6458 ordsucss 7808 ordnexbtwnsuc 42319 |
Copyright terms: Public domain | W3C validator |