Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ordnbtwn | Structured version Visualization version GIF version |
Description: There is no set between an ordinal class and its successor. Generalized Proposition 7.25 of [TakeutiZaring] p. 41. (Contributed by NM, 21-Jun-1998.) (Proof shortened by JJ, 24-Sep-2021.) |
Ref | Expression |
---|---|
ordnbtwn | ⊢ (Ord 𝐴 → ¬ (𝐴 ∈ 𝐵 ∧ 𝐵 ∈ suc 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ordirr 6284 | . . 3 ⊢ (Ord 𝐴 → ¬ 𝐴 ∈ 𝐴) | |
2 | ordn2lp 6286 | . . . 4 ⊢ (Ord 𝐴 → ¬ (𝐴 ∈ 𝐵 ∧ 𝐵 ∈ 𝐴)) | |
3 | pm2.24 124 | . . . . 5 ⊢ ((𝐴 ∈ 𝐵 ∧ 𝐵 ∈ 𝐴) → (¬ (𝐴 ∈ 𝐵 ∧ 𝐵 ∈ 𝐴) → 𝐴 ∈ 𝐴)) | |
4 | eleq2 2827 | . . . . . . 7 ⊢ (𝐵 = 𝐴 → (𝐴 ∈ 𝐵 ↔ 𝐴 ∈ 𝐴)) | |
5 | 4 | biimpac 479 | . . . . . 6 ⊢ ((𝐴 ∈ 𝐵 ∧ 𝐵 = 𝐴) → 𝐴 ∈ 𝐴) |
6 | 5 | a1d 25 | . . . . 5 ⊢ ((𝐴 ∈ 𝐵 ∧ 𝐵 = 𝐴) → (¬ (𝐴 ∈ 𝐵 ∧ 𝐵 ∈ 𝐴) → 𝐴 ∈ 𝐴)) |
7 | 3, 6 | jaodan 955 | . . . 4 ⊢ ((𝐴 ∈ 𝐵 ∧ (𝐵 ∈ 𝐴 ∨ 𝐵 = 𝐴)) → (¬ (𝐴 ∈ 𝐵 ∧ 𝐵 ∈ 𝐴) → 𝐴 ∈ 𝐴)) |
8 | 2, 7 | syl5com 31 | . . 3 ⊢ (Ord 𝐴 → ((𝐴 ∈ 𝐵 ∧ (𝐵 ∈ 𝐴 ∨ 𝐵 = 𝐴)) → 𝐴 ∈ 𝐴)) |
9 | 1, 8 | mtod 197 | . 2 ⊢ (Ord 𝐴 → ¬ (𝐴 ∈ 𝐵 ∧ (𝐵 ∈ 𝐴 ∨ 𝐵 = 𝐴))) |
10 | elsuci 6332 | . . 3 ⊢ (𝐵 ∈ suc 𝐴 → (𝐵 ∈ 𝐴 ∨ 𝐵 = 𝐴)) | |
11 | 10 | anim2i 617 | . 2 ⊢ ((𝐴 ∈ 𝐵 ∧ 𝐵 ∈ suc 𝐴) → (𝐴 ∈ 𝐵 ∧ (𝐵 ∈ 𝐴 ∨ 𝐵 = 𝐴))) |
12 | 9, 11 | nsyl 140 | 1 ⊢ (Ord 𝐴 → ¬ (𝐴 ∈ 𝐵 ∧ 𝐵 ∈ suc 𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 396 ∨ wo 844 = wceq 1539 ∈ wcel 2106 Ord word 6265 suc csuc 6268 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pr 5352 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-ne 2944 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3434 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-br 5075 df-opab 5137 df-tr 5192 df-eprel 5495 df-fr 5544 df-we 5546 df-ord 6269 df-suc 6272 |
This theorem is referenced by: onnbtwn 6357 ordsucss 7665 |
Copyright terms: Public domain | W3C validator |