![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ordnbtwn | Structured version Visualization version GIF version |
Description: There is no set between an ordinal class and its successor. Generalized Proposition 7.25 of [TakeutiZaring] p. 41. Lemma 1.15 of [Schloeder] p. 2. (Contributed by NM, 21-Jun-1998.) (Proof shortened by JJ, 24-Sep-2021.) |
Ref | Expression |
---|---|
ordnbtwn | ⊢ (Ord 𝐴 → ¬ (𝐴 ∈ 𝐵 ∧ 𝐵 ∈ suc 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ordirr 6381 | . . 3 ⊢ (Ord 𝐴 → ¬ 𝐴 ∈ 𝐴) | |
2 | ordn2lp 6383 | . . . 4 ⊢ (Ord 𝐴 → ¬ (𝐴 ∈ 𝐵 ∧ 𝐵 ∈ 𝐴)) | |
3 | pm2.24 124 | . . . . 5 ⊢ ((𝐴 ∈ 𝐵 ∧ 𝐵 ∈ 𝐴) → (¬ (𝐴 ∈ 𝐵 ∧ 𝐵 ∈ 𝐴) → 𝐴 ∈ 𝐴)) | |
4 | eleq2 2817 | . . . . . . 7 ⊢ (𝐵 = 𝐴 → (𝐴 ∈ 𝐵 ↔ 𝐴 ∈ 𝐴)) | |
5 | 4 | biimpac 478 | . . . . . 6 ⊢ ((𝐴 ∈ 𝐵 ∧ 𝐵 = 𝐴) → 𝐴 ∈ 𝐴) |
6 | 5 | a1d 25 | . . . . 5 ⊢ ((𝐴 ∈ 𝐵 ∧ 𝐵 = 𝐴) → (¬ (𝐴 ∈ 𝐵 ∧ 𝐵 ∈ 𝐴) → 𝐴 ∈ 𝐴)) |
7 | 3, 6 | jaodan 956 | . . . 4 ⊢ ((𝐴 ∈ 𝐵 ∧ (𝐵 ∈ 𝐴 ∨ 𝐵 = 𝐴)) → (¬ (𝐴 ∈ 𝐵 ∧ 𝐵 ∈ 𝐴) → 𝐴 ∈ 𝐴)) |
8 | 2, 7 | syl5com 31 | . . 3 ⊢ (Ord 𝐴 → ((𝐴 ∈ 𝐵 ∧ (𝐵 ∈ 𝐴 ∨ 𝐵 = 𝐴)) → 𝐴 ∈ 𝐴)) |
9 | 1, 8 | mtod 197 | . 2 ⊢ (Ord 𝐴 → ¬ (𝐴 ∈ 𝐵 ∧ (𝐵 ∈ 𝐴 ∨ 𝐵 = 𝐴))) |
10 | elsuci 6430 | . . 3 ⊢ (𝐵 ∈ suc 𝐴 → (𝐵 ∈ 𝐴 ∨ 𝐵 = 𝐴)) | |
11 | 10 | anim2i 616 | . 2 ⊢ ((𝐴 ∈ 𝐵 ∧ 𝐵 ∈ suc 𝐴) → (𝐴 ∈ 𝐵 ∧ (𝐵 ∈ 𝐴 ∨ 𝐵 = 𝐴))) |
12 | 9, 11 | nsyl 140 | 1 ⊢ (Ord 𝐴 → ¬ (𝐴 ∈ 𝐵 ∧ 𝐵 ∈ suc 𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 ∨ wo 846 = wceq 1534 ∈ wcel 2099 Ord word 6362 suc csuc 6365 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-ext 2698 ax-sep 5293 ax-nul 5300 ax-pr 5423 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-sb 2061 df-clab 2705 df-cleq 2719 df-clel 2805 df-ne 2936 df-ral 3057 df-rex 3066 df-rab 3428 df-v 3471 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-nul 4319 df-if 4525 df-pw 4600 df-sn 4625 df-pr 4627 df-op 4631 df-uni 4904 df-br 5143 df-opab 5205 df-tr 5260 df-eprel 5576 df-fr 5627 df-we 5629 df-ord 6366 df-suc 6369 |
This theorem is referenced by: onnbtwn 6457 ordsucss 7815 ordnexbtwnsuc 42668 |
Copyright terms: Public domain | W3C validator |