MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ordnbtwn Structured version   Visualization version   GIF version

Theorem ordnbtwn 6457
Description: There is no set between an ordinal class and its successor. Generalized Proposition 7.25 of [TakeutiZaring] p. 41. Lemma 1.15 of [Schloeder] p. 2. (Contributed by NM, 21-Jun-1998.) (Proof shortened by JJ, 24-Sep-2021.)
Assertion
Ref Expression
ordnbtwn (Ord 𝐴 → ¬ (𝐴𝐵𝐵 ∈ suc 𝐴))

Proof of Theorem ordnbtwn
StepHypRef Expression
1 ordirr 6382 . . 3 (Ord 𝐴 → ¬ 𝐴𝐴)
2 ordn2lp 6384 . . . 4 (Ord 𝐴 → ¬ (𝐴𝐵𝐵𝐴))
3 pm2.24 124 . . . . 5 ((𝐴𝐵𝐵𝐴) → (¬ (𝐴𝐵𝐵𝐴) → 𝐴𝐴))
4 eleq2 2822 . . . . . . 7 (𝐵 = 𝐴 → (𝐴𝐵𝐴𝐴))
54biimpac 479 . . . . . 6 ((𝐴𝐵𝐵 = 𝐴) → 𝐴𝐴)
65a1d 25 . . . . 5 ((𝐴𝐵𝐵 = 𝐴) → (¬ (𝐴𝐵𝐵𝐴) → 𝐴𝐴))
73, 6jaodan 956 . . . 4 ((𝐴𝐵 ∧ (𝐵𝐴𝐵 = 𝐴)) → (¬ (𝐴𝐵𝐵𝐴) → 𝐴𝐴))
82, 7syl5com 31 . . 3 (Ord 𝐴 → ((𝐴𝐵 ∧ (𝐵𝐴𝐵 = 𝐴)) → 𝐴𝐴))
91, 8mtod 197 . 2 (Ord 𝐴 → ¬ (𝐴𝐵 ∧ (𝐵𝐴𝐵 = 𝐴)))
10 elsuci 6431 . . 3 (𝐵 ∈ suc 𝐴 → (𝐵𝐴𝐵 = 𝐴))
1110anim2i 617 . 2 ((𝐴𝐵𝐵 ∈ suc 𝐴) → (𝐴𝐵 ∧ (𝐵𝐴𝐵 = 𝐴)))
129, 11nsyl 140 1 (Ord 𝐴 → ¬ (𝐴𝐵𝐵 ∈ suc 𝐴))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 396  wo 845   = wceq 1541  wcel 2106  Ord word 6363  suc csuc 6366
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-ext 2703  ax-sep 5299  ax-nul 5306  ax-pr 5427
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-sb 2068  df-clab 2710  df-cleq 2724  df-clel 2810  df-ne 2941  df-ral 3062  df-rex 3071  df-rab 3433  df-v 3476  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-br 5149  df-opab 5211  df-tr 5266  df-eprel 5580  df-fr 5631  df-we 5633  df-ord 6367  df-suc 6370
This theorem is referenced by:  onnbtwn  6458  ordsucss  7808  ordnexbtwnsuc  42319
  Copyright terms: Public domain W3C validator