MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ordnbtwn Structured version   Visualization version   GIF version

Theorem ordnbtwn 6452
Description: There is no set between an ordinal class and its successor. Generalized Proposition 7.25 of [TakeutiZaring] p. 41. Lemma 1.15 of [Schloeder] p. 2. (Contributed by NM, 21-Jun-1998.) (Proof shortened by JJ, 24-Sep-2021.)
Assertion
Ref Expression
ordnbtwn (Ord 𝐴 → ¬ (𝐴𝐵𝐵 ∈ suc 𝐴))

Proof of Theorem ordnbtwn
StepHypRef Expression
1 ordirr 6375 . . 3 (Ord 𝐴 → ¬ 𝐴𝐴)
2 ordn2lp 6377 . . . 4 (Ord 𝐴 → ¬ (𝐴𝐵𝐵𝐴))
3 pm2.24 124 . . . . 5 ((𝐴𝐵𝐵𝐴) → (¬ (𝐴𝐵𝐵𝐴) → 𝐴𝐴))
4 eleq2 2824 . . . . . . 7 (𝐵 = 𝐴 → (𝐴𝐵𝐴𝐴))
54biimpac 478 . . . . . 6 ((𝐴𝐵𝐵 = 𝐴) → 𝐴𝐴)
65a1d 25 . . . . 5 ((𝐴𝐵𝐵 = 𝐴) → (¬ (𝐴𝐵𝐵𝐴) → 𝐴𝐴))
73, 6jaodan 959 . . . 4 ((𝐴𝐵 ∧ (𝐵𝐴𝐵 = 𝐴)) → (¬ (𝐴𝐵𝐵𝐴) → 𝐴𝐴))
82, 7syl5com 31 . . 3 (Ord 𝐴 → ((𝐴𝐵 ∧ (𝐵𝐴𝐵 = 𝐴)) → 𝐴𝐴))
91, 8mtod 198 . 2 (Ord 𝐴 → ¬ (𝐴𝐵 ∧ (𝐵𝐴𝐵 = 𝐴)))
10 elsuci 6426 . . 3 (𝐵 ∈ suc 𝐴 → (𝐵𝐴𝐵 = 𝐴))
1110anim2i 617 . 2 ((𝐴𝐵𝐵 ∈ suc 𝐴) → (𝐴𝐵 ∧ (𝐵𝐴𝐵 = 𝐴)))
129, 11nsyl 140 1 (Ord 𝐴 → ¬ (𝐴𝐵𝐵 ∈ suc 𝐴))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  wo 847   = wceq 1540  wcel 2109  Ord word 6356  suc csuc 6359
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2708  ax-sep 5271  ax-nul 5281  ax-pr 5407
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2715  df-cleq 2728  df-clel 2810  df-ne 2934  df-ral 3053  df-rex 3062  df-rab 3421  df-v 3466  df-dif 3934  df-un 3936  df-ss 3948  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-br 5125  df-opab 5187  df-tr 5235  df-eprel 5558  df-fr 5611  df-we 5613  df-ord 6360  df-suc 6363
This theorem is referenced by:  onnbtwn  6453  ordsucss  7817  ordnexbtwnsuc  43266
  Copyright terms: Public domain W3C validator