![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ordnbtwn | Structured version Visualization version GIF version |
Description: There is no set between an ordinal class and its successor. Generalized Proposition 7.25 of [TakeutiZaring] p. 41. (Contributed by NM, 21-Jun-1998.) (Proof shortened by JJ, 24-Sep-2021.) |
Ref | Expression |
---|---|
ordnbtwn | ⊢ (Ord 𝐴 → ¬ (𝐴 ∈ 𝐵 ∧ 𝐵 ∈ suc 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ordirr 6044 | . . 3 ⊢ (Ord 𝐴 → ¬ 𝐴 ∈ 𝐴) | |
2 | ordn2lp 6046 | . . . 4 ⊢ (Ord 𝐴 → ¬ (𝐴 ∈ 𝐵 ∧ 𝐵 ∈ 𝐴)) | |
3 | pm2.24 122 | . . . . 5 ⊢ ((𝐴 ∈ 𝐵 ∧ 𝐵 ∈ 𝐴) → (¬ (𝐴 ∈ 𝐵 ∧ 𝐵 ∈ 𝐴) → 𝐴 ∈ 𝐴)) | |
4 | eleq2 2847 | . . . . . . 7 ⊢ (𝐵 = 𝐴 → (𝐴 ∈ 𝐵 ↔ 𝐴 ∈ 𝐴)) | |
5 | 4 | biimpac 471 | . . . . . 6 ⊢ ((𝐴 ∈ 𝐵 ∧ 𝐵 = 𝐴) → 𝐴 ∈ 𝐴) |
6 | 5 | a1d 25 | . . . . 5 ⊢ ((𝐴 ∈ 𝐵 ∧ 𝐵 = 𝐴) → (¬ (𝐴 ∈ 𝐵 ∧ 𝐵 ∈ 𝐴) → 𝐴 ∈ 𝐴)) |
7 | 3, 6 | jaodan 941 | . . . 4 ⊢ ((𝐴 ∈ 𝐵 ∧ (𝐵 ∈ 𝐴 ∨ 𝐵 = 𝐴)) → (¬ (𝐴 ∈ 𝐵 ∧ 𝐵 ∈ 𝐴) → 𝐴 ∈ 𝐴)) |
8 | 2, 7 | syl5com 31 | . . 3 ⊢ (Ord 𝐴 → ((𝐴 ∈ 𝐵 ∧ (𝐵 ∈ 𝐴 ∨ 𝐵 = 𝐴)) → 𝐴 ∈ 𝐴)) |
9 | 1, 8 | mtod 190 | . 2 ⊢ (Ord 𝐴 → ¬ (𝐴 ∈ 𝐵 ∧ (𝐵 ∈ 𝐴 ∨ 𝐵 = 𝐴))) |
10 | elsuci 6092 | . . 3 ⊢ (𝐵 ∈ suc 𝐴 → (𝐵 ∈ 𝐴 ∨ 𝐵 = 𝐴)) | |
11 | 10 | anim2i 608 | . 2 ⊢ ((𝐴 ∈ 𝐵 ∧ 𝐵 ∈ suc 𝐴) → (𝐴 ∈ 𝐵 ∧ (𝐵 ∈ 𝐴 ∨ 𝐵 = 𝐴))) |
12 | 9, 11 | nsyl 138 | 1 ⊢ (Ord 𝐴 → ¬ (𝐴 ∈ 𝐵 ∧ 𝐵 ∈ suc 𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 387 ∨ wo 834 = wceq 1508 ∈ wcel 2051 Ord word 6025 suc csuc 6028 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1759 ax-4 1773 ax-5 1870 ax-6 1929 ax-7 1966 ax-8 2053 ax-9 2060 ax-10 2080 ax-11 2094 ax-12 2107 ax-13 2302 ax-ext 2743 ax-sep 5056 ax-nul 5063 ax-pr 5182 |
This theorem depends on definitions: df-bi 199 df-an 388 df-or 835 df-3an 1071 df-tru 1511 df-ex 1744 df-nf 1748 df-sb 2017 df-mo 2548 df-eu 2585 df-clab 2752 df-cleq 2764 df-clel 2839 df-nfc 2911 df-ne 2961 df-ral 3086 df-rex 3087 df-rab 3090 df-v 3410 df-sbc 3675 df-dif 3825 df-un 3827 df-in 3829 df-ss 3836 df-nul 4173 df-if 4345 df-sn 4436 df-pr 4438 df-op 4442 df-uni 4709 df-br 4926 df-opab 4988 df-tr 5027 df-eprel 5313 df-fr 5362 df-we 5364 df-ord 6029 df-suc 6032 |
This theorem is referenced by: onnbtwn 6117 ordsucss 7347 |
Copyright terms: Public domain | W3C validator |