MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nnneo Structured version   Visualization version   GIF version

Theorem nnneo 8692
Description: If a natural number is even, its successor is odd. (Contributed by Mario Carneiro, 16-Nov-2014.)
Assertion
Ref Expression
nnneo ((𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐶 = (2o ·o 𝐴)) → ¬ suc 𝐶 = (2o ·o 𝐵))

Proof of Theorem nnneo
StepHypRef Expression
1 nnon 7893 . . . 4 (𝐴 ∈ ω → 𝐴 ∈ On)
2 onnbtwn 6480 . . . 4 (𝐴 ∈ On → ¬ (𝐴𝐵𝐵 ∈ suc 𝐴))
31, 2syl 17 . . 3 (𝐴 ∈ ω → ¬ (𝐴𝐵𝐵 ∈ suc 𝐴))
433ad2ant1 1132 . 2 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐶 = (2o ·o 𝐴)) → ¬ (𝐴𝐵𝐵 ∈ suc 𝐴))
5 suceq 6452 . . . . 5 (𝐶 = (2o ·o 𝐴) → suc 𝐶 = suc (2o ·o 𝐴))
65eqeq1d 2737 . . . 4 (𝐶 = (2o ·o 𝐴) → (suc 𝐶 = (2o ·o 𝐵) ↔ suc (2o ·o 𝐴) = (2o ·o 𝐵)))
763ad2ant3 1134 . . 3 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐶 = (2o ·o 𝐴)) → (suc 𝐶 = (2o ·o 𝐵) ↔ suc (2o ·o 𝐴) = (2o ·o 𝐵)))
8 ovex 7464 . . . . . . . 8 (2o ·o 𝐴) ∈ V
98sucid 6468 . . . . . . 7 (2o ·o 𝐴) ∈ suc (2o ·o 𝐴)
10 eleq2 2828 . . . . . . 7 (suc (2o ·o 𝐴) = (2o ·o 𝐵) → ((2o ·o 𝐴) ∈ suc (2o ·o 𝐴) ↔ (2o ·o 𝐴) ∈ (2o ·o 𝐵)))
119, 10mpbii 233 . . . . . 6 (suc (2o ·o 𝐴) = (2o ·o 𝐵) → (2o ·o 𝐴) ∈ (2o ·o 𝐵))
12 2onn 8679 . . . . . . . 8 2o ∈ ω
13 nnmord 8669 . . . . . . . 8 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 2o ∈ ω) → ((𝐴𝐵 ∧ ∅ ∈ 2o) ↔ (2o ·o 𝐴) ∈ (2o ·o 𝐵)))
1412, 13mp3an3 1449 . . . . . . 7 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → ((𝐴𝐵 ∧ ∅ ∈ 2o) ↔ (2o ·o 𝐴) ∈ (2o ·o 𝐵)))
15 simpl 482 . . . . . . 7 ((𝐴𝐵 ∧ ∅ ∈ 2o) → 𝐴𝐵)
1614, 15biimtrrdi 254 . . . . . 6 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → ((2o ·o 𝐴) ∈ (2o ·o 𝐵) → 𝐴𝐵))
1711, 16syl5 34 . . . . 5 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (suc (2o ·o 𝐴) = (2o ·o 𝐵) → 𝐴𝐵))
18 simpr 484 . . . . . . . . 9 (((𝐴 ∈ ω ∧ 𝐵 ∈ ω) ∧ suc (2o ·o 𝐴) = (2o ·o 𝐵)) → suc (2o ·o 𝐴) = (2o ·o 𝐵))
19 nnmcl 8649 . . . . . . . . . . . . 13 ((2o ∈ ω ∧ 𝐴 ∈ ω) → (2o ·o 𝐴) ∈ ω)
2012, 19mpan 690 . . . . . . . . . . . 12 (𝐴 ∈ ω → (2o ·o 𝐴) ∈ ω)
21 nnon 7893 . . . . . . . . . . . 12 ((2o ·o 𝐴) ∈ ω → (2o ·o 𝐴) ∈ On)
22 oa1suc 8568 . . . . . . . . . . . 12 ((2o ·o 𝐴) ∈ On → ((2o ·o 𝐴) +o 1o) = suc (2o ·o 𝐴))
2320, 21, 223syl 18 . . . . . . . . . . 11 (𝐴 ∈ ω → ((2o ·o 𝐴) +o 1o) = suc (2o ·o 𝐴))
24 1oex 8515 . . . . . . . . . . . . . . 15 1o ∈ V
2524sucid 6468 . . . . . . . . . . . . . 14 1o ∈ suc 1o
26 df-2o 8506 . . . . . . . . . . . . . 14 2o = suc 1o
2725, 26eleqtrri 2838 . . . . . . . . . . . . 13 1o ∈ 2o
28 1onn 8677 . . . . . . . . . . . . . 14 1o ∈ ω
29 nnaord 8656 . . . . . . . . . . . . . 14 ((1o ∈ ω ∧ 2o ∈ ω ∧ (2o ·o 𝐴) ∈ ω) → (1o ∈ 2o ↔ ((2o ·o 𝐴) +o 1o) ∈ ((2o ·o 𝐴) +o 2o)))
3028, 12, 20, 29mp3an12i 1464 . . . . . . . . . . . . 13 (𝐴 ∈ ω → (1o ∈ 2o ↔ ((2o ·o 𝐴) +o 1o) ∈ ((2o ·o 𝐴) +o 2o)))
3127, 30mpbii 233 . . . . . . . . . . . 12 (𝐴 ∈ ω → ((2o ·o 𝐴) +o 1o) ∈ ((2o ·o 𝐴) +o 2o))
32 nnmsuc 8644 . . . . . . . . . . . . 13 ((2o ∈ ω ∧ 𝐴 ∈ ω) → (2o ·o suc 𝐴) = ((2o ·o 𝐴) +o 2o))
3312, 32mpan 690 . . . . . . . . . . . 12 (𝐴 ∈ ω → (2o ·o suc 𝐴) = ((2o ·o 𝐴) +o 2o))
3431, 33eleqtrrd 2842 . . . . . . . . . . 11 (𝐴 ∈ ω → ((2o ·o 𝐴) +o 1o) ∈ (2o ·o suc 𝐴))
3523, 34eqeltrrd 2840 . . . . . . . . . 10 (𝐴 ∈ ω → suc (2o ·o 𝐴) ∈ (2o ·o suc 𝐴))
3635ad2antrr 726 . . . . . . . . 9 (((𝐴 ∈ ω ∧ 𝐵 ∈ ω) ∧ suc (2o ·o 𝐴) = (2o ·o 𝐵)) → suc (2o ·o 𝐴) ∈ (2o ·o suc 𝐴))
3718, 36eqeltrrd 2840 . . . . . . . 8 (((𝐴 ∈ ω ∧ 𝐵 ∈ ω) ∧ suc (2o ·o 𝐴) = (2o ·o 𝐵)) → (2o ·o 𝐵) ∈ (2o ·o suc 𝐴))
38 peano2 7913 . . . . . . . . . . 11 (𝐴 ∈ ω → suc 𝐴 ∈ ω)
39 nnmord 8669 . . . . . . . . . . . 12 ((𝐵 ∈ ω ∧ suc 𝐴 ∈ ω ∧ 2o ∈ ω) → ((𝐵 ∈ suc 𝐴 ∧ ∅ ∈ 2o) ↔ (2o ·o 𝐵) ∈ (2o ·o suc 𝐴)))
4012, 39mp3an3 1449 . . . . . . . . . . 11 ((𝐵 ∈ ω ∧ suc 𝐴 ∈ ω) → ((𝐵 ∈ suc 𝐴 ∧ ∅ ∈ 2o) ↔ (2o ·o 𝐵) ∈ (2o ·o suc 𝐴)))
4138, 40sylan2 593 . . . . . . . . . 10 ((𝐵 ∈ ω ∧ 𝐴 ∈ ω) → ((𝐵 ∈ suc 𝐴 ∧ ∅ ∈ 2o) ↔ (2o ·o 𝐵) ∈ (2o ·o suc 𝐴)))
4241ancoms 458 . . . . . . . . 9 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → ((𝐵 ∈ suc 𝐴 ∧ ∅ ∈ 2o) ↔ (2o ·o 𝐵) ∈ (2o ·o suc 𝐴)))
4342adantr 480 . . . . . . . 8 (((𝐴 ∈ ω ∧ 𝐵 ∈ ω) ∧ suc (2o ·o 𝐴) = (2o ·o 𝐵)) → ((𝐵 ∈ suc 𝐴 ∧ ∅ ∈ 2o) ↔ (2o ·o 𝐵) ∈ (2o ·o suc 𝐴)))
4437, 43mpbird 257 . . . . . . 7 (((𝐴 ∈ ω ∧ 𝐵 ∈ ω) ∧ suc (2o ·o 𝐴) = (2o ·o 𝐵)) → (𝐵 ∈ suc 𝐴 ∧ ∅ ∈ 2o))
4544simpld 494 . . . . . 6 (((𝐴 ∈ ω ∧ 𝐵 ∈ ω) ∧ suc (2o ·o 𝐴) = (2o ·o 𝐵)) → 𝐵 ∈ suc 𝐴)
4645ex 412 . . . . 5 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (suc (2o ·o 𝐴) = (2o ·o 𝐵) → 𝐵 ∈ suc 𝐴))
4717, 46jcad 512 . . . 4 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (suc (2o ·o 𝐴) = (2o ·o 𝐵) → (𝐴𝐵𝐵 ∈ suc 𝐴)))
48473adant3 1131 . . 3 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐶 = (2o ·o 𝐴)) → (suc (2o ·o 𝐴) = (2o ·o 𝐵) → (𝐴𝐵𝐵 ∈ suc 𝐴)))
497, 48sylbid 240 . 2 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐶 = (2o ·o 𝐴)) → (suc 𝐶 = (2o ·o 𝐵) → (𝐴𝐵𝐵 ∈ suc 𝐴)))
504, 49mtod 198 1 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐶 = (2o ·o 𝐴)) → ¬ suc 𝐶 = (2o ·o 𝐵))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1086   = wceq 1537  wcel 2106  c0 4339  Oncon0 6386  suc csuc 6388  (class class class)co 7431  ωcom 7887  1oc1o 8498  2oc2o 8499   +o coa 8502   ·o comu 8503
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-sep 5302  ax-nul 5312  ax-pr 5438  ax-un 7754
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-ral 3060  df-rex 3069  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-2nd 8014  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-rdg 8449  df-1o 8505  df-2o 8506  df-oadd 8509  df-omul 8510
This theorem is referenced by:  nneob  8693
  Copyright terms: Public domain W3C validator