MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nnneo Structured version   Visualization version   GIF version

Theorem nnneo 8667
Description: If a natural number is even, its successor is odd. (Contributed by Mario Carneiro, 16-Nov-2014.)
Assertion
Ref Expression
nnneo ((𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐶 = (2o ·o 𝐴)) → ¬ suc 𝐶 = (2o ·o 𝐵))

Proof of Theorem nnneo
StepHypRef Expression
1 nnon 7867 . . . 4 (𝐴 ∈ ω → 𝐴 ∈ On)
2 onnbtwn 6448 . . . 4 (𝐴 ∈ On → ¬ (𝐴𝐵𝐵 ∈ suc 𝐴))
31, 2syl 17 . . 3 (𝐴 ∈ ω → ¬ (𝐴𝐵𝐵 ∈ suc 𝐴))
433ad2ant1 1133 . 2 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐶 = (2o ·o 𝐴)) → ¬ (𝐴𝐵𝐵 ∈ suc 𝐴))
5 suceq 6419 . . . . 5 (𝐶 = (2o ·o 𝐴) → suc 𝐶 = suc (2o ·o 𝐴))
65eqeq1d 2737 . . . 4 (𝐶 = (2o ·o 𝐴) → (suc 𝐶 = (2o ·o 𝐵) ↔ suc (2o ·o 𝐴) = (2o ·o 𝐵)))
763ad2ant3 1135 . . 3 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐶 = (2o ·o 𝐴)) → (suc 𝐶 = (2o ·o 𝐵) ↔ suc (2o ·o 𝐴) = (2o ·o 𝐵)))
8 ovex 7438 . . . . . . . 8 (2o ·o 𝐴) ∈ V
98sucid 6436 . . . . . . 7 (2o ·o 𝐴) ∈ suc (2o ·o 𝐴)
10 eleq2 2823 . . . . . . 7 (suc (2o ·o 𝐴) = (2o ·o 𝐵) → ((2o ·o 𝐴) ∈ suc (2o ·o 𝐴) ↔ (2o ·o 𝐴) ∈ (2o ·o 𝐵)))
119, 10mpbii 233 . . . . . 6 (suc (2o ·o 𝐴) = (2o ·o 𝐵) → (2o ·o 𝐴) ∈ (2o ·o 𝐵))
12 2onn 8654 . . . . . . . 8 2o ∈ ω
13 nnmord 8644 . . . . . . . 8 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 2o ∈ ω) → ((𝐴𝐵 ∧ ∅ ∈ 2o) ↔ (2o ·o 𝐴) ∈ (2o ·o 𝐵)))
1412, 13mp3an3 1452 . . . . . . 7 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → ((𝐴𝐵 ∧ ∅ ∈ 2o) ↔ (2o ·o 𝐴) ∈ (2o ·o 𝐵)))
15 simpl 482 . . . . . . 7 ((𝐴𝐵 ∧ ∅ ∈ 2o) → 𝐴𝐵)
1614, 15biimtrrdi 254 . . . . . 6 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → ((2o ·o 𝐴) ∈ (2o ·o 𝐵) → 𝐴𝐵))
1711, 16syl5 34 . . . . 5 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (suc (2o ·o 𝐴) = (2o ·o 𝐵) → 𝐴𝐵))
18 simpr 484 . . . . . . . . 9 (((𝐴 ∈ ω ∧ 𝐵 ∈ ω) ∧ suc (2o ·o 𝐴) = (2o ·o 𝐵)) → suc (2o ·o 𝐴) = (2o ·o 𝐵))
19 nnmcl 8624 . . . . . . . . . . . . 13 ((2o ∈ ω ∧ 𝐴 ∈ ω) → (2o ·o 𝐴) ∈ ω)
2012, 19mpan 690 . . . . . . . . . . . 12 (𝐴 ∈ ω → (2o ·o 𝐴) ∈ ω)
21 nnon 7867 . . . . . . . . . . . 12 ((2o ·o 𝐴) ∈ ω → (2o ·o 𝐴) ∈ On)
22 oa1suc 8543 . . . . . . . . . . . 12 ((2o ·o 𝐴) ∈ On → ((2o ·o 𝐴) +o 1o) = suc (2o ·o 𝐴))
2320, 21, 223syl 18 . . . . . . . . . . 11 (𝐴 ∈ ω → ((2o ·o 𝐴) +o 1o) = suc (2o ·o 𝐴))
24 1oex 8490 . . . . . . . . . . . . . . 15 1o ∈ V
2524sucid 6436 . . . . . . . . . . . . . 14 1o ∈ suc 1o
26 df-2o 8481 . . . . . . . . . . . . . 14 2o = suc 1o
2725, 26eleqtrri 2833 . . . . . . . . . . . . 13 1o ∈ 2o
28 1onn 8652 . . . . . . . . . . . . . 14 1o ∈ ω
29 nnaord 8631 . . . . . . . . . . . . . 14 ((1o ∈ ω ∧ 2o ∈ ω ∧ (2o ·o 𝐴) ∈ ω) → (1o ∈ 2o ↔ ((2o ·o 𝐴) +o 1o) ∈ ((2o ·o 𝐴) +o 2o)))
3028, 12, 20, 29mp3an12i 1467 . . . . . . . . . . . . 13 (𝐴 ∈ ω → (1o ∈ 2o ↔ ((2o ·o 𝐴) +o 1o) ∈ ((2o ·o 𝐴) +o 2o)))
3127, 30mpbii 233 . . . . . . . . . . . 12 (𝐴 ∈ ω → ((2o ·o 𝐴) +o 1o) ∈ ((2o ·o 𝐴) +o 2o))
32 nnmsuc 8619 . . . . . . . . . . . . 13 ((2o ∈ ω ∧ 𝐴 ∈ ω) → (2o ·o suc 𝐴) = ((2o ·o 𝐴) +o 2o))
3312, 32mpan 690 . . . . . . . . . . . 12 (𝐴 ∈ ω → (2o ·o suc 𝐴) = ((2o ·o 𝐴) +o 2o))
3431, 33eleqtrrd 2837 . . . . . . . . . . 11 (𝐴 ∈ ω → ((2o ·o 𝐴) +o 1o) ∈ (2o ·o suc 𝐴))
3523, 34eqeltrrd 2835 . . . . . . . . . 10 (𝐴 ∈ ω → suc (2o ·o 𝐴) ∈ (2o ·o suc 𝐴))
3635ad2antrr 726 . . . . . . . . 9 (((𝐴 ∈ ω ∧ 𝐵 ∈ ω) ∧ suc (2o ·o 𝐴) = (2o ·o 𝐵)) → suc (2o ·o 𝐴) ∈ (2o ·o suc 𝐴))
3718, 36eqeltrrd 2835 . . . . . . . 8 (((𝐴 ∈ ω ∧ 𝐵 ∈ ω) ∧ suc (2o ·o 𝐴) = (2o ·o 𝐵)) → (2o ·o 𝐵) ∈ (2o ·o suc 𝐴))
38 peano2 7886 . . . . . . . . . . 11 (𝐴 ∈ ω → suc 𝐴 ∈ ω)
39 nnmord 8644 . . . . . . . . . . . 12 ((𝐵 ∈ ω ∧ suc 𝐴 ∈ ω ∧ 2o ∈ ω) → ((𝐵 ∈ suc 𝐴 ∧ ∅ ∈ 2o) ↔ (2o ·o 𝐵) ∈ (2o ·o suc 𝐴)))
4012, 39mp3an3 1452 . . . . . . . . . . 11 ((𝐵 ∈ ω ∧ suc 𝐴 ∈ ω) → ((𝐵 ∈ suc 𝐴 ∧ ∅ ∈ 2o) ↔ (2o ·o 𝐵) ∈ (2o ·o suc 𝐴)))
4138, 40sylan2 593 . . . . . . . . . 10 ((𝐵 ∈ ω ∧ 𝐴 ∈ ω) → ((𝐵 ∈ suc 𝐴 ∧ ∅ ∈ 2o) ↔ (2o ·o 𝐵) ∈ (2o ·o suc 𝐴)))
4241ancoms 458 . . . . . . . . 9 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → ((𝐵 ∈ suc 𝐴 ∧ ∅ ∈ 2o) ↔ (2o ·o 𝐵) ∈ (2o ·o suc 𝐴)))
4342adantr 480 . . . . . . . 8 (((𝐴 ∈ ω ∧ 𝐵 ∈ ω) ∧ suc (2o ·o 𝐴) = (2o ·o 𝐵)) → ((𝐵 ∈ suc 𝐴 ∧ ∅ ∈ 2o) ↔ (2o ·o 𝐵) ∈ (2o ·o suc 𝐴)))
4437, 43mpbird 257 . . . . . . 7 (((𝐴 ∈ ω ∧ 𝐵 ∈ ω) ∧ suc (2o ·o 𝐴) = (2o ·o 𝐵)) → (𝐵 ∈ suc 𝐴 ∧ ∅ ∈ 2o))
4544simpld 494 . . . . . 6 (((𝐴 ∈ ω ∧ 𝐵 ∈ ω) ∧ suc (2o ·o 𝐴) = (2o ·o 𝐵)) → 𝐵 ∈ suc 𝐴)
4645ex 412 . . . . 5 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (suc (2o ·o 𝐴) = (2o ·o 𝐵) → 𝐵 ∈ suc 𝐴))
4717, 46jcad 512 . . . 4 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (suc (2o ·o 𝐴) = (2o ·o 𝐵) → (𝐴𝐵𝐵 ∈ suc 𝐴)))
48473adant3 1132 . . 3 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐶 = (2o ·o 𝐴)) → (suc (2o ·o 𝐴) = (2o ·o 𝐵) → (𝐴𝐵𝐵 ∈ suc 𝐴)))
497, 48sylbid 240 . 2 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐶 = (2o ·o 𝐴)) → (suc 𝐶 = (2o ·o 𝐵) → (𝐴𝐵𝐵 ∈ suc 𝐴)))
504, 49mtod 198 1 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐶 = (2o ·o 𝐴)) → ¬ suc 𝐶 = (2o ·o 𝐵))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2108  c0 4308  Oncon0 6352  suc csuc 6354  (class class class)co 7405  ωcom 7861  1oc1o 8473  2oc2o 8474   +o coa 8477   ·o comu 8478
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-sep 5266  ax-nul 5276  ax-pr 5402  ax-un 7729
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-ral 3052  df-rex 3061  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-ov 7408  df-oprab 7409  df-mpo 7410  df-om 7862  df-2nd 7989  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-1o 8480  df-2o 8481  df-oadd 8484  df-omul 8485
This theorem is referenced by:  nneob  8668
  Copyright terms: Public domain W3C validator