MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nnneo Structured version   Visualization version   GIF version

Theorem nnneo 8485
Description: If a natural number is even, its successor is odd. (Contributed by Mario Carneiro, 16-Nov-2014.)
Assertion
Ref Expression
nnneo ((𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐶 = (2o ·o 𝐴)) → ¬ suc 𝐶 = (2o ·o 𝐵))

Proof of Theorem nnneo
StepHypRef Expression
1 nnon 7718 . . . 4 (𝐴 ∈ ω → 𝐴 ∈ On)
2 onnbtwn 6357 . . . 4 (𝐴 ∈ On → ¬ (𝐴𝐵𝐵 ∈ suc 𝐴))
31, 2syl 17 . . 3 (𝐴 ∈ ω → ¬ (𝐴𝐵𝐵 ∈ suc 𝐴))
433ad2ant1 1132 . 2 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐶 = (2o ·o 𝐴)) → ¬ (𝐴𝐵𝐵 ∈ suc 𝐴))
5 suceq 6331 . . . . 5 (𝐶 = (2o ·o 𝐴) → suc 𝐶 = suc (2o ·o 𝐴))
65eqeq1d 2740 . . . 4 (𝐶 = (2o ·o 𝐴) → (suc 𝐶 = (2o ·o 𝐵) ↔ suc (2o ·o 𝐴) = (2o ·o 𝐵)))
763ad2ant3 1134 . . 3 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐶 = (2o ·o 𝐴)) → (suc 𝐶 = (2o ·o 𝐵) ↔ suc (2o ·o 𝐴) = (2o ·o 𝐵)))
8 ovex 7308 . . . . . . . 8 (2o ·o 𝐴) ∈ V
98sucid 6345 . . . . . . 7 (2o ·o 𝐴) ∈ suc (2o ·o 𝐴)
10 eleq2 2827 . . . . . . 7 (suc (2o ·o 𝐴) = (2o ·o 𝐵) → ((2o ·o 𝐴) ∈ suc (2o ·o 𝐴) ↔ (2o ·o 𝐴) ∈ (2o ·o 𝐵)))
119, 10mpbii 232 . . . . . 6 (suc (2o ·o 𝐴) = (2o ·o 𝐵) → (2o ·o 𝐴) ∈ (2o ·o 𝐵))
12 2onn 8472 . . . . . . . 8 2o ∈ ω
13 nnmord 8463 . . . . . . . 8 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 2o ∈ ω) → ((𝐴𝐵 ∧ ∅ ∈ 2o) ↔ (2o ·o 𝐴) ∈ (2o ·o 𝐵)))
1412, 13mp3an3 1449 . . . . . . 7 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → ((𝐴𝐵 ∧ ∅ ∈ 2o) ↔ (2o ·o 𝐴) ∈ (2o ·o 𝐵)))
15 simpl 483 . . . . . . 7 ((𝐴𝐵 ∧ ∅ ∈ 2o) → 𝐴𝐵)
1614, 15syl6bir 253 . . . . . 6 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → ((2o ·o 𝐴) ∈ (2o ·o 𝐵) → 𝐴𝐵))
1711, 16syl5 34 . . . . 5 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (suc (2o ·o 𝐴) = (2o ·o 𝐵) → 𝐴𝐵))
18 simpr 485 . . . . . . . . 9 (((𝐴 ∈ ω ∧ 𝐵 ∈ ω) ∧ suc (2o ·o 𝐴) = (2o ·o 𝐵)) → suc (2o ·o 𝐴) = (2o ·o 𝐵))
19 nnmcl 8443 . . . . . . . . . . . . 13 ((2o ∈ ω ∧ 𝐴 ∈ ω) → (2o ·o 𝐴) ∈ ω)
2012, 19mpan 687 . . . . . . . . . . . 12 (𝐴 ∈ ω → (2o ·o 𝐴) ∈ ω)
21 nnon 7718 . . . . . . . . . . . 12 ((2o ·o 𝐴) ∈ ω → (2o ·o 𝐴) ∈ On)
22 oa1suc 8361 . . . . . . . . . . . 12 ((2o ·o 𝐴) ∈ On → ((2o ·o 𝐴) +o 1o) = suc (2o ·o 𝐴))
2320, 21, 223syl 18 . . . . . . . . . . 11 (𝐴 ∈ ω → ((2o ·o 𝐴) +o 1o) = suc (2o ·o 𝐴))
24 1oex 8307 . . . . . . . . . . . . . . 15 1o ∈ V
2524sucid 6345 . . . . . . . . . . . . . 14 1o ∈ suc 1o
26 df-2o 8298 . . . . . . . . . . . . . 14 2o = suc 1o
2725, 26eleqtrri 2838 . . . . . . . . . . . . 13 1o ∈ 2o
28 1onn 8470 . . . . . . . . . . . . . 14 1o ∈ ω
29 nnaord 8450 . . . . . . . . . . . . . 14 ((1o ∈ ω ∧ 2o ∈ ω ∧ (2o ·o 𝐴) ∈ ω) → (1o ∈ 2o ↔ ((2o ·o 𝐴) +o 1o) ∈ ((2o ·o 𝐴) +o 2o)))
3028, 12, 20, 29mp3an12i 1464 . . . . . . . . . . . . 13 (𝐴 ∈ ω → (1o ∈ 2o ↔ ((2o ·o 𝐴) +o 1o) ∈ ((2o ·o 𝐴) +o 2o)))
3127, 30mpbii 232 . . . . . . . . . . . 12 (𝐴 ∈ ω → ((2o ·o 𝐴) +o 1o) ∈ ((2o ·o 𝐴) +o 2o))
32 nnmsuc 8438 . . . . . . . . . . . . 13 ((2o ∈ ω ∧ 𝐴 ∈ ω) → (2o ·o suc 𝐴) = ((2o ·o 𝐴) +o 2o))
3312, 32mpan 687 . . . . . . . . . . . 12 (𝐴 ∈ ω → (2o ·o suc 𝐴) = ((2o ·o 𝐴) +o 2o))
3431, 33eleqtrrd 2842 . . . . . . . . . . 11 (𝐴 ∈ ω → ((2o ·o 𝐴) +o 1o) ∈ (2o ·o suc 𝐴))
3523, 34eqeltrrd 2840 . . . . . . . . . 10 (𝐴 ∈ ω → suc (2o ·o 𝐴) ∈ (2o ·o suc 𝐴))
3635ad2antrr 723 . . . . . . . . 9 (((𝐴 ∈ ω ∧ 𝐵 ∈ ω) ∧ suc (2o ·o 𝐴) = (2o ·o 𝐵)) → suc (2o ·o 𝐴) ∈ (2o ·o suc 𝐴))
3718, 36eqeltrrd 2840 . . . . . . . 8 (((𝐴 ∈ ω ∧ 𝐵 ∈ ω) ∧ suc (2o ·o 𝐴) = (2o ·o 𝐵)) → (2o ·o 𝐵) ∈ (2o ·o suc 𝐴))
38 peano2 7737 . . . . . . . . . . 11 (𝐴 ∈ ω → suc 𝐴 ∈ ω)
39 nnmord 8463 . . . . . . . . . . . 12 ((𝐵 ∈ ω ∧ suc 𝐴 ∈ ω ∧ 2o ∈ ω) → ((𝐵 ∈ suc 𝐴 ∧ ∅ ∈ 2o) ↔ (2o ·o 𝐵) ∈ (2o ·o suc 𝐴)))
4012, 39mp3an3 1449 . . . . . . . . . . 11 ((𝐵 ∈ ω ∧ suc 𝐴 ∈ ω) → ((𝐵 ∈ suc 𝐴 ∧ ∅ ∈ 2o) ↔ (2o ·o 𝐵) ∈ (2o ·o suc 𝐴)))
4138, 40sylan2 593 . . . . . . . . . 10 ((𝐵 ∈ ω ∧ 𝐴 ∈ ω) → ((𝐵 ∈ suc 𝐴 ∧ ∅ ∈ 2o) ↔ (2o ·o 𝐵) ∈ (2o ·o suc 𝐴)))
4241ancoms 459 . . . . . . . . 9 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → ((𝐵 ∈ suc 𝐴 ∧ ∅ ∈ 2o) ↔ (2o ·o 𝐵) ∈ (2o ·o suc 𝐴)))
4342adantr 481 . . . . . . . 8 (((𝐴 ∈ ω ∧ 𝐵 ∈ ω) ∧ suc (2o ·o 𝐴) = (2o ·o 𝐵)) → ((𝐵 ∈ suc 𝐴 ∧ ∅ ∈ 2o) ↔ (2o ·o 𝐵) ∈ (2o ·o suc 𝐴)))
4437, 43mpbird 256 . . . . . . 7 (((𝐴 ∈ ω ∧ 𝐵 ∈ ω) ∧ suc (2o ·o 𝐴) = (2o ·o 𝐵)) → (𝐵 ∈ suc 𝐴 ∧ ∅ ∈ 2o))
4544simpld 495 . . . . . 6 (((𝐴 ∈ ω ∧ 𝐵 ∈ ω) ∧ suc (2o ·o 𝐴) = (2o ·o 𝐵)) → 𝐵 ∈ suc 𝐴)
4645ex 413 . . . . 5 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (suc (2o ·o 𝐴) = (2o ·o 𝐵) → 𝐵 ∈ suc 𝐴))
4717, 46jcad 513 . . . 4 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (suc (2o ·o 𝐴) = (2o ·o 𝐵) → (𝐴𝐵𝐵 ∈ suc 𝐴)))
48473adant3 1131 . . 3 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐶 = (2o ·o 𝐴)) → (suc (2o ·o 𝐴) = (2o ·o 𝐵) → (𝐴𝐵𝐵 ∈ suc 𝐴)))
497, 48sylbid 239 . 2 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐶 = (2o ·o 𝐴)) → (suc 𝐶 = (2o ·o 𝐵) → (𝐴𝐵𝐵 ∈ suc 𝐴)))
504, 49mtod 197 1 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐶 = (2o ·o 𝐴)) → ¬ suc 𝐶 = (2o ·o 𝐵))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396  w3a 1086   = wceq 1539  wcel 2106  c0 4256  Oncon0 6266  suc csuc 6268  (class class class)co 7275  ωcom 7712  1oc1o 8290  2oc2o 8291   +o coa 8294   ·o comu 8295
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pr 5352  ax-un 7588
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-ov 7278  df-oprab 7279  df-mpo 7280  df-om 7713  df-2nd 7832  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-1o 8297  df-2o 8298  df-oadd 8301  df-omul 8302
This theorem is referenced by:  nneob  8486
  Copyright terms: Public domain W3C validator