MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  oneo Structured version   Visualization version   GIF version

Theorem oneo 8545
Description: If an ordinal number is even, its successor is odd. (Contributed by NM, 26-Jan-2006.)
Assertion
Ref Expression
oneo ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 = (2o ·o 𝐴)) → ¬ suc 𝐶 = (2o ·o 𝐵))

Proof of Theorem oneo
StepHypRef Expression
1 onnbtwn 6428 . . 3 (𝐴 ∈ On → ¬ (𝐴𝐵𝐵 ∈ suc 𝐴))
213ad2ant1 1133 . 2 ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 = (2o ·o 𝐴)) → ¬ (𝐴𝐵𝐵 ∈ suc 𝐴))
3 suceq 6400 . . . . 5 (𝐶 = (2o ·o 𝐴) → suc 𝐶 = suc (2o ·o 𝐴))
43eqeq1d 2731 . . . 4 (𝐶 = (2o ·o 𝐴) → (suc 𝐶 = (2o ·o 𝐵) ↔ suc (2o ·o 𝐴) = (2o ·o 𝐵)))
543ad2ant3 1135 . . 3 ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 = (2o ·o 𝐴)) → (suc 𝐶 = (2o ·o 𝐵) ↔ suc (2o ·o 𝐴) = (2o ·o 𝐵)))
6 ovex 7420 . . . . . . . 8 (2o ·o 𝐴) ∈ V
76sucid 6416 . . . . . . 7 (2o ·o 𝐴) ∈ suc (2o ·o 𝐴)
8 eleq2 2817 . . . . . . 7 (suc (2o ·o 𝐴) = (2o ·o 𝐵) → ((2o ·o 𝐴) ∈ suc (2o ·o 𝐴) ↔ (2o ·o 𝐴) ∈ (2o ·o 𝐵)))
97, 8mpbii 233 . . . . . 6 (suc (2o ·o 𝐴) = (2o ·o 𝐵) → (2o ·o 𝐴) ∈ (2o ·o 𝐵))
10 2on 8447 . . . . . . . 8 2o ∈ On
11 omord 8532 . . . . . . . 8 ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 2o ∈ On) → ((𝐴𝐵 ∧ ∅ ∈ 2o) ↔ (2o ·o 𝐴) ∈ (2o ·o 𝐵)))
1210, 11mp3an3 1452 . . . . . . 7 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → ((𝐴𝐵 ∧ ∅ ∈ 2o) ↔ (2o ·o 𝐴) ∈ (2o ·o 𝐵)))
13 simpl 482 . . . . . . 7 ((𝐴𝐵 ∧ ∅ ∈ 2o) → 𝐴𝐵)
1412, 13biimtrrdi 254 . . . . . 6 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → ((2o ·o 𝐴) ∈ (2o ·o 𝐵) → 𝐴𝐵))
159, 14syl5 34 . . . . 5 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (suc (2o ·o 𝐴) = (2o ·o 𝐵) → 𝐴𝐵))
16 simpr 484 . . . . . . . . 9 (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ suc (2o ·o 𝐴) = (2o ·o 𝐵)) → suc (2o ·o 𝐴) = (2o ·o 𝐵))
17 omcl 8500 . . . . . . . . . . . . 13 ((2o ∈ On ∧ 𝐴 ∈ On) → (2o ·o 𝐴) ∈ On)
1810, 17mpan 690 . . . . . . . . . . . 12 (𝐴 ∈ On → (2o ·o 𝐴) ∈ On)
19 oa1suc 8495 . . . . . . . . . . . 12 ((2o ·o 𝐴) ∈ On → ((2o ·o 𝐴) +o 1o) = suc (2o ·o 𝐴))
2018, 19syl 17 . . . . . . . . . . 11 (𝐴 ∈ On → ((2o ·o 𝐴) +o 1o) = suc (2o ·o 𝐴))
21 1oex 8444 . . . . . . . . . . . . . . 15 1o ∈ V
2221sucid 6416 . . . . . . . . . . . . . 14 1o ∈ suc 1o
23 df-2o 8435 . . . . . . . . . . . . . 14 2o = suc 1o
2422, 23eleqtrri 2827 . . . . . . . . . . . . 13 1o ∈ 2o
25 1on 8446 . . . . . . . . . . . . . 14 1o ∈ On
26 oaord 8511 . . . . . . . . . . . . . 14 ((1o ∈ On ∧ 2o ∈ On ∧ (2o ·o 𝐴) ∈ On) → (1o ∈ 2o ↔ ((2o ·o 𝐴) +o 1o) ∈ ((2o ·o 𝐴) +o 2o)))
2725, 10, 18, 26mp3an12i 1467 . . . . . . . . . . . . 13 (𝐴 ∈ On → (1o ∈ 2o ↔ ((2o ·o 𝐴) +o 1o) ∈ ((2o ·o 𝐴) +o 2o)))
2824, 27mpbii 233 . . . . . . . . . . . 12 (𝐴 ∈ On → ((2o ·o 𝐴) +o 1o) ∈ ((2o ·o 𝐴) +o 2o))
29 omsuc 8490 . . . . . . . . . . . . 13 ((2o ∈ On ∧ 𝐴 ∈ On) → (2o ·o suc 𝐴) = ((2o ·o 𝐴) +o 2o))
3010, 29mpan 690 . . . . . . . . . . . 12 (𝐴 ∈ On → (2o ·o suc 𝐴) = ((2o ·o 𝐴) +o 2o))
3128, 30eleqtrrd 2831 . . . . . . . . . . 11 (𝐴 ∈ On → ((2o ·o 𝐴) +o 1o) ∈ (2o ·o suc 𝐴))
3220, 31eqeltrrd 2829 . . . . . . . . . 10 (𝐴 ∈ On → suc (2o ·o 𝐴) ∈ (2o ·o suc 𝐴))
3332ad2antrr 726 . . . . . . . . 9 (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ suc (2o ·o 𝐴) = (2o ·o 𝐵)) → suc (2o ·o 𝐴) ∈ (2o ·o suc 𝐴))
3416, 33eqeltrrd 2829 . . . . . . . 8 (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ suc (2o ·o 𝐴) = (2o ·o 𝐵)) → (2o ·o 𝐵) ∈ (2o ·o suc 𝐴))
35 onsuc 7787 . . . . . . . . . . 11 (𝐴 ∈ On → suc 𝐴 ∈ On)
36 omord 8532 . . . . . . . . . . . 12 ((𝐵 ∈ On ∧ suc 𝐴 ∈ On ∧ 2o ∈ On) → ((𝐵 ∈ suc 𝐴 ∧ ∅ ∈ 2o) ↔ (2o ·o 𝐵) ∈ (2o ·o suc 𝐴)))
3710, 36mp3an3 1452 . . . . . . . . . . 11 ((𝐵 ∈ On ∧ suc 𝐴 ∈ On) → ((𝐵 ∈ suc 𝐴 ∧ ∅ ∈ 2o) ↔ (2o ·o 𝐵) ∈ (2o ·o suc 𝐴)))
3835, 37sylan2 593 . . . . . . . . . 10 ((𝐵 ∈ On ∧ 𝐴 ∈ On) → ((𝐵 ∈ suc 𝐴 ∧ ∅ ∈ 2o) ↔ (2o ·o 𝐵) ∈ (2o ·o suc 𝐴)))
3938ancoms 458 . . . . . . . . 9 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → ((𝐵 ∈ suc 𝐴 ∧ ∅ ∈ 2o) ↔ (2o ·o 𝐵) ∈ (2o ·o suc 𝐴)))
4039adantr 480 . . . . . . . 8 (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ suc (2o ·o 𝐴) = (2o ·o 𝐵)) → ((𝐵 ∈ suc 𝐴 ∧ ∅ ∈ 2o) ↔ (2o ·o 𝐵) ∈ (2o ·o suc 𝐴)))
4134, 40mpbird 257 . . . . . . 7 (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ suc (2o ·o 𝐴) = (2o ·o 𝐵)) → (𝐵 ∈ suc 𝐴 ∧ ∅ ∈ 2o))
4241simpld 494 . . . . . 6 (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ suc (2o ·o 𝐴) = (2o ·o 𝐵)) → 𝐵 ∈ suc 𝐴)
4342ex 412 . . . . 5 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (suc (2o ·o 𝐴) = (2o ·o 𝐵) → 𝐵 ∈ suc 𝐴))
4415, 43jcad 512 . . . 4 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (suc (2o ·o 𝐴) = (2o ·o 𝐵) → (𝐴𝐵𝐵 ∈ suc 𝐴)))
45443adant3 1132 . . 3 ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 = (2o ·o 𝐴)) → (suc (2o ·o 𝐴) = (2o ·o 𝐵) → (𝐴𝐵𝐵 ∈ suc 𝐴)))
465, 45sylbid 240 . 2 ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 = (2o ·o 𝐴)) → (suc 𝐶 = (2o ·o 𝐵) → (𝐴𝐵𝐵 ∈ suc 𝐴)))
472, 46mtod 198 1 ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 = (2o ·o 𝐴)) → ¬ suc 𝐶 = (2o ·o 𝐵))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  c0 4296  Oncon0 6332  suc csuc 6334  (class class class)co 7387  1oc1o 8427  2oc2o 8428   +o coa 8431   ·o comu 8432
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pr 5387  ax-un 7711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-ov 7390  df-oprab 7391  df-mpo 7392  df-om 7843  df-2nd 7969  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-1o 8434  df-2o 8435  df-oadd 8438  df-omul 8439
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator