MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  oneo Structured version   Visualization version   GIF version

Theorem oneo 8637
Description: If an ordinal number is even, its successor is odd. (Contributed by NM, 26-Jan-2006.)
Assertion
Ref Expression
oneo ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 = (2o ·o 𝐴)) → ¬ suc 𝐶 = (2o ·o 𝐵))

Proof of Theorem oneo
StepHypRef Expression
1 onnbtwn 6489 . . 3 (𝐴 ∈ On → ¬ (𝐴𝐵𝐵 ∈ suc 𝐴))
213ad2ant1 1133 . 2 ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 = (2o ·o 𝐴)) → ¬ (𝐴𝐵𝐵 ∈ suc 𝐴))
3 suceq 6461 . . . . 5 (𝐶 = (2o ·o 𝐴) → suc 𝐶 = suc (2o ·o 𝐴))
43eqeq1d 2742 . . . 4 (𝐶 = (2o ·o 𝐴) → (suc 𝐶 = (2o ·o 𝐵) ↔ suc (2o ·o 𝐴) = (2o ·o 𝐵)))
543ad2ant3 1135 . . 3 ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 = (2o ·o 𝐴)) → (suc 𝐶 = (2o ·o 𝐵) ↔ suc (2o ·o 𝐴) = (2o ·o 𝐵)))
6 ovex 7481 . . . . . . . 8 (2o ·o 𝐴) ∈ V
76sucid 6477 . . . . . . 7 (2o ·o 𝐴) ∈ suc (2o ·o 𝐴)
8 eleq2 2833 . . . . . . 7 (suc (2o ·o 𝐴) = (2o ·o 𝐵) → ((2o ·o 𝐴) ∈ suc (2o ·o 𝐴) ↔ (2o ·o 𝐴) ∈ (2o ·o 𝐵)))
97, 8mpbii 233 . . . . . 6 (suc (2o ·o 𝐴) = (2o ·o 𝐵) → (2o ·o 𝐴) ∈ (2o ·o 𝐵))
10 2on 8536 . . . . . . . 8 2o ∈ On
11 omord 8624 . . . . . . . 8 ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 2o ∈ On) → ((𝐴𝐵 ∧ ∅ ∈ 2o) ↔ (2o ·o 𝐴) ∈ (2o ·o 𝐵)))
1210, 11mp3an3 1450 . . . . . . 7 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → ((𝐴𝐵 ∧ ∅ ∈ 2o) ↔ (2o ·o 𝐴) ∈ (2o ·o 𝐵)))
13 simpl 482 . . . . . . 7 ((𝐴𝐵 ∧ ∅ ∈ 2o) → 𝐴𝐵)
1412, 13biimtrrdi 254 . . . . . 6 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → ((2o ·o 𝐴) ∈ (2o ·o 𝐵) → 𝐴𝐵))
159, 14syl5 34 . . . . 5 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (suc (2o ·o 𝐴) = (2o ·o 𝐵) → 𝐴𝐵))
16 simpr 484 . . . . . . . . 9 (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ suc (2o ·o 𝐴) = (2o ·o 𝐵)) → suc (2o ·o 𝐴) = (2o ·o 𝐵))
17 omcl 8592 . . . . . . . . . . . . 13 ((2o ∈ On ∧ 𝐴 ∈ On) → (2o ·o 𝐴) ∈ On)
1810, 17mpan 689 . . . . . . . . . . . 12 (𝐴 ∈ On → (2o ·o 𝐴) ∈ On)
19 oa1suc 8587 . . . . . . . . . . . 12 ((2o ·o 𝐴) ∈ On → ((2o ·o 𝐴) +o 1o) = suc (2o ·o 𝐴))
2018, 19syl 17 . . . . . . . . . . 11 (𝐴 ∈ On → ((2o ·o 𝐴) +o 1o) = suc (2o ·o 𝐴))
21 1oex 8532 . . . . . . . . . . . . . . 15 1o ∈ V
2221sucid 6477 . . . . . . . . . . . . . 14 1o ∈ suc 1o
23 df-2o 8523 . . . . . . . . . . . . . 14 2o = suc 1o
2422, 23eleqtrri 2843 . . . . . . . . . . . . 13 1o ∈ 2o
25 1on 8534 . . . . . . . . . . . . . 14 1o ∈ On
26 oaord 8603 . . . . . . . . . . . . . 14 ((1o ∈ On ∧ 2o ∈ On ∧ (2o ·o 𝐴) ∈ On) → (1o ∈ 2o ↔ ((2o ·o 𝐴) +o 1o) ∈ ((2o ·o 𝐴) +o 2o)))
2725, 10, 18, 26mp3an12i 1465 . . . . . . . . . . . . 13 (𝐴 ∈ On → (1o ∈ 2o ↔ ((2o ·o 𝐴) +o 1o) ∈ ((2o ·o 𝐴) +o 2o)))
2824, 27mpbii 233 . . . . . . . . . . . 12 (𝐴 ∈ On → ((2o ·o 𝐴) +o 1o) ∈ ((2o ·o 𝐴) +o 2o))
29 omsuc 8582 . . . . . . . . . . . . 13 ((2o ∈ On ∧ 𝐴 ∈ On) → (2o ·o suc 𝐴) = ((2o ·o 𝐴) +o 2o))
3010, 29mpan 689 . . . . . . . . . . . 12 (𝐴 ∈ On → (2o ·o suc 𝐴) = ((2o ·o 𝐴) +o 2o))
3128, 30eleqtrrd 2847 . . . . . . . . . . 11 (𝐴 ∈ On → ((2o ·o 𝐴) +o 1o) ∈ (2o ·o suc 𝐴))
3220, 31eqeltrrd 2845 . . . . . . . . . 10 (𝐴 ∈ On → suc (2o ·o 𝐴) ∈ (2o ·o suc 𝐴))
3332ad2antrr 725 . . . . . . . . 9 (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ suc (2o ·o 𝐴) = (2o ·o 𝐵)) → suc (2o ·o 𝐴) ∈ (2o ·o suc 𝐴))
3416, 33eqeltrrd 2845 . . . . . . . 8 (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ suc (2o ·o 𝐴) = (2o ·o 𝐵)) → (2o ·o 𝐵) ∈ (2o ·o suc 𝐴))
35 onsuc 7847 . . . . . . . . . . 11 (𝐴 ∈ On → suc 𝐴 ∈ On)
36 omord 8624 . . . . . . . . . . . 12 ((𝐵 ∈ On ∧ suc 𝐴 ∈ On ∧ 2o ∈ On) → ((𝐵 ∈ suc 𝐴 ∧ ∅ ∈ 2o) ↔ (2o ·o 𝐵) ∈ (2o ·o suc 𝐴)))
3710, 36mp3an3 1450 . . . . . . . . . . 11 ((𝐵 ∈ On ∧ suc 𝐴 ∈ On) → ((𝐵 ∈ suc 𝐴 ∧ ∅ ∈ 2o) ↔ (2o ·o 𝐵) ∈ (2o ·o suc 𝐴)))
3835, 37sylan2 592 . . . . . . . . . 10 ((𝐵 ∈ On ∧ 𝐴 ∈ On) → ((𝐵 ∈ suc 𝐴 ∧ ∅ ∈ 2o) ↔ (2o ·o 𝐵) ∈ (2o ·o suc 𝐴)))
3938ancoms 458 . . . . . . . . 9 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → ((𝐵 ∈ suc 𝐴 ∧ ∅ ∈ 2o) ↔ (2o ·o 𝐵) ∈ (2o ·o suc 𝐴)))
4039adantr 480 . . . . . . . 8 (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ suc (2o ·o 𝐴) = (2o ·o 𝐵)) → ((𝐵 ∈ suc 𝐴 ∧ ∅ ∈ 2o) ↔ (2o ·o 𝐵) ∈ (2o ·o suc 𝐴)))
4134, 40mpbird 257 . . . . . . 7 (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ suc (2o ·o 𝐴) = (2o ·o 𝐵)) → (𝐵 ∈ suc 𝐴 ∧ ∅ ∈ 2o))
4241simpld 494 . . . . . 6 (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ suc (2o ·o 𝐴) = (2o ·o 𝐵)) → 𝐵 ∈ suc 𝐴)
4342ex 412 . . . . 5 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (suc (2o ·o 𝐴) = (2o ·o 𝐵) → 𝐵 ∈ suc 𝐴))
4415, 43jcad 512 . . . 4 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (suc (2o ·o 𝐴) = (2o ·o 𝐵) → (𝐴𝐵𝐵 ∈ suc 𝐴)))
45443adant3 1132 . . 3 ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 = (2o ·o 𝐴)) → (suc (2o ·o 𝐴) = (2o ·o 𝐵) → (𝐴𝐵𝐵 ∈ suc 𝐴)))
465, 45sylbid 240 . 2 ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 = (2o ·o 𝐴)) → (suc 𝐶 = (2o ·o 𝐵) → (𝐴𝐵𝐵 ∈ suc 𝐴)))
472, 46mtod 198 1 ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 = (2o ·o 𝐴)) → ¬ suc 𝐶 = (2o ·o 𝐵))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1087   = wceq 1537  wcel 2108  c0 4352  Oncon0 6395  suc csuc 6397  (class class class)co 7448  1oc1o 8515  2oc2o 8516   +o coa 8519   ·o comu 8520
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pr 5447  ax-un 7770
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-1o 8522  df-2o 8523  df-oadd 8526  df-omul 8527
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator