MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  oneo Structured version   Visualization version   GIF version

Theorem oneo 8496
Description: If an ordinal number is even, its successor is odd. (Contributed by NM, 26-Jan-2006.)
Assertion
Ref Expression
oneo ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 = (2o ·o 𝐴)) → ¬ suc 𝐶 = (2o ·o 𝐵))

Proof of Theorem oneo
StepHypRef Expression
1 onnbtwn 6402 . . 3 (𝐴 ∈ On → ¬ (𝐴𝐵𝐵 ∈ suc 𝐴))
213ad2ant1 1133 . 2 ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 = (2o ·o 𝐴)) → ¬ (𝐴𝐵𝐵 ∈ suc 𝐴))
3 suceq 6374 . . . . 5 (𝐶 = (2o ·o 𝐴) → suc 𝐶 = suc (2o ·o 𝐴))
43eqeq1d 2733 . . . 4 (𝐶 = (2o ·o 𝐴) → (suc 𝐶 = (2o ·o 𝐵) ↔ suc (2o ·o 𝐴) = (2o ·o 𝐵)))
543ad2ant3 1135 . . 3 ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 = (2o ·o 𝐴)) → (suc 𝐶 = (2o ·o 𝐵) ↔ suc (2o ·o 𝐴) = (2o ·o 𝐵)))
6 ovex 7379 . . . . . . . 8 (2o ·o 𝐴) ∈ V
76sucid 6390 . . . . . . 7 (2o ·o 𝐴) ∈ suc (2o ·o 𝐴)
8 eleq2 2820 . . . . . . 7 (suc (2o ·o 𝐴) = (2o ·o 𝐵) → ((2o ·o 𝐴) ∈ suc (2o ·o 𝐴) ↔ (2o ·o 𝐴) ∈ (2o ·o 𝐵)))
97, 8mpbii 233 . . . . . 6 (suc (2o ·o 𝐴) = (2o ·o 𝐵) → (2o ·o 𝐴) ∈ (2o ·o 𝐵))
10 2on 8398 . . . . . . . 8 2o ∈ On
11 omord 8483 . . . . . . . 8 ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 2o ∈ On) → ((𝐴𝐵 ∧ ∅ ∈ 2o) ↔ (2o ·o 𝐴) ∈ (2o ·o 𝐵)))
1210, 11mp3an3 1452 . . . . . . 7 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → ((𝐴𝐵 ∧ ∅ ∈ 2o) ↔ (2o ·o 𝐴) ∈ (2o ·o 𝐵)))
13 simpl 482 . . . . . . 7 ((𝐴𝐵 ∧ ∅ ∈ 2o) → 𝐴𝐵)
1412, 13biimtrrdi 254 . . . . . 6 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → ((2o ·o 𝐴) ∈ (2o ·o 𝐵) → 𝐴𝐵))
159, 14syl5 34 . . . . 5 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (suc (2o ·o 𝐴) = (2o ·o 𝐵) → 𝐴𝐵))
16 simpr 484 . . . . . . . . 9 (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ suc (2o ·o 𝐴) = (2o ·o 𝐵)) → suc (2o ·o 𝐴) = (2o ·o 𝐵))
17 omcl 8451 . . . . . . . . . . . . 13 ((2o ∈ On ∧ 𝐴 ∈ On) → (2o ·o 𝐴) ∈ On)
1810, 17mpan 690 . . . . . . . . . . . 12 (𝐴 ∈ On → (2o ·o 𝐴) ∈ On)
19 oa1suc 8446 . . . . . . . . . . . 12 ((2o ·o 𝐴) ∈ On → ((2o ·o 𝐴) +o 1o) = suc (2o ·o 𝐴))
2018, 19syl 17 . . . . . . . . . . 11 (𝐴 ∈ On → ((2o ·o 𝐴) +o 1o) = suc (2o ·o 𝐴))
21 1oex 8395 . . . . . . . . . . . . . . 15 1o ∈ V
2221sucid 6390 . . . . . . . . . . . . . 14 1o ∈ suc 1o
23 df-2o 8386 . . . . . . . . . . . . . 14 2o = suc 1o
2422, 23eleqtrri 2830 . . . . . . . . . . . . 13 1o ∈ 2o
25 1on 8397 . . . . . . . . . . . . . 14 1o ∈ On
26 oaord 8462 . . . . . . . . . . . . . 14 ((1o ∈ On ∧ 2o ∈ On ∧ (2o ·o 𝐴) ∈ On) → (1o ∈ 2o ↔ ((2o ·o 𝐴) +o 1o) ∈ ((2o ·o 𝐴) +o 2o)))
2725, 10, 18, 26mp3an12i 1467 . . . . . . . . . . . . 13 (𝐴 ∈ On → (1o ∈ 2o ↔ ((2o ·o 𝐴) +o 1o) ∈ ((2o ·o 𝐴) +o 2o)))
2824, 27mpbii 233 . . . . . . . . . . . 12 (𝐴 ∈ On → ((2o ·o 𝐴) +o 1o) ∈ ((2o ·o 𝐴) +o 2o))
29 omsuc 8441 . . . . . . . . . . . . 13 ((2o ∈ On ∧ 𝐴 ∈ On) → (2o ·o suc 𝐴) = ((2o ·o 𝐴) +o 2o))
3010, 29mpan 690 . . . . . . . . . . . 12 (𝐴 ∈ On → (2o ·o suc 𝐴) = ((2o ·o 𝐴) +o 2o))
3128, 30eleqtrrd 2834 . . . . . . . . . . 11 (𝐴 ∈ On → ((2o ·o 𝐴) +o 1o) ∈ (2o ·o suc 𝐴))
3220, 31eqeltrrd 2832 . . . . . . . . . 10 (𝐴 ∈ On → suc (2o ·o 𝐴) ∈ (2o ·o suc 𝐴))
3332ad2antrr 726 . . . . . . . . 9 (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ suc (2o ·o 𝐴) = (2o ·o 𝐵)) → suc (2o ·o 𝐴) ∈ (2o ·o suc 𝐴))
3416, 33eqeltrrd 2832 . . . . . . . 8 (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ suc (2o ·o 𝐴) = (2o ·o 𝐵)) → (2o ·o 𝐵) ∈ (2o ·o suc 𝐴))
35 onsuc 7743 . . . . . . . . . . 11 (𝐴 ∈ On → suc 𝐴 ∈ On)
36 omord 8483 . . . . . . . . . . . 12 ((𝐵 ∈ On ∧ suc 𝐴 ∈ On ∧ 2o ∈ On) → ((𝐵 ∈ suc 𝐴 ∧ ∅ ∈ 2o) ↔ (2o ·o 𝐵) ∈ (2o ·o suc 𝐴)))
3710, 36mp3an3 1452 . . . . . . . . . . 11 ((𝐵 ∈ On ∧ suc 𝐴 ∈ On) → ((𝐵 ∈ suc 𝐴 ∧ ∅ ∈ 2o) ↔ (2o ·o 𝐵) ∈ (2o ·o suc 𝐴)))
3835, 37sylan2 593 . . . . . . . . . 10 ((𝐵 ∈ On ∧ 𝐴 ∈ On) → ((𝐵 ∈ suc 𝐴 ∧ ∅ ∈ 2o) ↔ (2o ·o 𝐵) ∈ (2o ·o suc 𝐴)))
3938ancoms 458 . . . . . . . . 9 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → ((𝐵 ∈ suc 𝐴 ∧ ∅ ∈ 2o) ↔ (2o ·o 𝐵) ∈ (2o ·o suc 𝐴)))
4039adantr 480 . . . . . . . 8 (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ suc (2o ·o 𝐴) = (2o ·o 𝐵)) → ((𝐵 ∈ suc 𝐴 ∧ ∅ ∈ 2o) ↔ (2o ·o 𝐵) ∈ (2o ·o suc 𝐴)))
4134, 40mpbird 257 . . . . . . 7 (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ suc (2o ·o 𝐴) = (2o ·o 𝐵)) → (𝐵 ∈ suc 𝐴 ∧ ∅ ∈ 2o))
4241simpld 494 . . . . . 6 (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ suc (2o ·o 𝐴) = (2o ·o 𝐵)) → 𝐵 ∈ suc 𝐴)
4342ex 412 . . . . 5 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (suc (2o ·o 𝐴) = (2o ·o 𝐵) → 𝐵 ∈ suc 𝐴))
4415, 43jcad 512 . . . 4 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (suc (2o ·o 𝐴) = (2o ·o 𝐵) → (𝐴𝐵𝐵 ∈ suc 𝐴)))
45443adant3 1132 . . 3 ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 = (2o ·o 𝐴)) → (suc (2o ·o 𝐴) = (2o ·o 𝐵) → (𝐴𝐵𝐵 ∈ suc 𝐴)))
465, 45sylbid 240 . 2 ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 = (2o ·o 𝐴)) → (suc 𝐶 = (2o ·o 𝐵) → (𝐴𝐵𝐵 ∈ suc 𝐴)))
472, 46mtod 198 1 ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 = (2o ·o 𝐴)) → ¬ suc 𝐶 = (2o ·o 𝐵))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1086   = wceq 1541  wcel 2111  c0 4283  Oncon0 6306  suc csuc 6308  (class class class)co 7346  1oc1o 8378  2oc2o 8379   +o coa 8382   ·o comu 8383
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5217  ax-sep 5234  ax-nul 5244  ax-pr 5370  ax-un 7668
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3742  df-csb 3851  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-pss 3922  df-nul 4284  df-if 4476  df-pw 4552  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-iun 4943  df-br 5092  df-opab 5154  df-mpt 5173  df-tr 5199  df-id 5511  df-eprel 5516  df-po 5524  df-so 5525  df-fr 5569  df-we 5571  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-ov 7349  df-oprab 7350  df-mpo 7351  df-om 7797  df-2nd 7922  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-1o 8385  df-2o 8386  df-oadd 8389  df-omul 8390
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator