MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  oneo Structured version   Visualization version   GIF version

Theorem oneo 8287
Description: If an ordinal number is even, its successor is odd. (Contributed by NM, 26-Jan-2006.)
Assertion
Ref Expression
oneo ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 = (2o ·o 𝐴)) → ¬ suc 𝐶 = (2o ·o 𝐵))

Proof of Theorem oneo
StepHypRef Expression
1 onnbtwn 6282 . . 3 (𝐴 ∈ On → ¬ (𝐴𝐵𝐵 ∈ suc 𝐴))
213ad2ant1 1135 . 2 ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 = (2o ·o 𝐴)) → ¬ (𝐴𝐵𝐵 ∈ suc 𝐴))
3 suceq 6256 . . . . 5 (𝐶 = (2o ·o 𝐴) → suc 𝐶 = suc (2o ·o 𝐴))
43eqeq1d 2738 . . . 4 (𝐶 = (2o ·o 𝐴) → (suc 𝐶 = (2o ·o 𝐵) ↔ suc (2o ·o 𝐴) = (2o ·o 𝐵)))
543ad2ant3 1137 . . 3 ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 = (2o ·o 𝐴)) → (suc 𝐶 = (2o ·o 𝐵) ↔ suc (2o ·o 𝐴) = (2o ·o 𝐵)))
6 ovex 7224 . . . . . . . 8 (2o ·o 𝐴) ∈ V
76sucid 6270 . . . . . . 7 (2o ·o 𝐴) ∈ suc (2o ·o 𝐴)
8 eleq2 2819 . . . . . . 7 (suc (2o ·o 𝐴) = (2o ·o 𝐵) → ((2o ·o 𝐴) ∈ suc (2o ·o 𝐴) ↔ (2o ·o 𝐴) ∈ (2o ·o 𝐵)))
97, 8mpbii 236 . . . . . 6 (suc (2o ·o 𝐴) = (2o ·o 𝐵) → (2o ·o 𝐴) ∈ (2o ·o 𝐵))
10 2on 8188 . . . . . . . 8 2o ∈ On
11 omord 8274 . . . . . . . 8 ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 2o ∈ On) → ((𝐴𝐵 ∧ ∅ ∈ 2o) ↔ (2o ·o 𝐴) ∈ (2o ·o 𝐵)))
1210, 11mp3an3 1452 . . . . . . 7 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → ((𝐴𝐵 ∧ ∅ ∈ 2o) ↔ (2o ·o 𝐴) ∈ (2o ·o 𝐵)))
13 simpl 486 . . . . . . 7 ((𝐴𝐵 ∧ ∅ ∈ 2o) → 𝐴𝐵)
1412, 13syl6bir 257 . . . . . 6 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → ((2o ·o 𝐴) ∈ (2o ·o 𝐵) → 𝐴𝐵))
159, 14syl5 34 . . . . 5 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (suc (2o ·o 𝐴) = (2o ·o 𝐵) → 𝐴𝐵))
16 simpr 488 . . . . . . . . 9 (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ suc (2o ·o 𝐴) = (2o ·o 𝐵)) → suc (2o ·o 𝐴) = (2o ·o 𝐵))
17 omcl 8241 . . . . . . . . . . . . 13 ((2o ∈ On ∧ 𝐴 ∈ On) → (2o ·o 𝐴) ∈ On)
1810, 17mpan 690 . . . . . . . . . . . 12 (𝐴 ∈ On → (2o ·o 𝐴) ∈ On)
19 oa1suc 8236 . . . . . . . . . . . 12 ((2o ·o 𝐴) ∈ On → ((2o ·o 𝐴) +o 1o) = suc (2o ·o 𝐴))
2018, 19syl 17 . . . . . . . . . . 11 (𝐴 ∈ On → ((2o ·o 𝐴) +o 1o) = suc (2o ·o 𝐴))
21 1oex 8193 . . . . . . . . . . . . . . 15 1o ∈ V
2221sucid 6270 . . . . . . . . . . . . . 14 1o ∈ suc 1o
23 df-2o 8181 . . . . . . . . . . . . . 14 2o = suc 1o
2422, 23eleqtrri 2830 . . . . . . . . . . . . 13 1o ∈ 2o
25 1on 8187 . . . . . . . . . . . . . 14 1o ∈ On
26 oaord 8253 . . . . . . . . . . . . . 14 ((1o ∈ On ∧ 2o ∈ On ∧ (2o ·o 𝐴) ∈ On) → (1o ∈ 2o ↔ ((2o ·o 𝐴) +o 1o) ∈ ((2o ·o 𝐴) +o 2o)))
2725, 10, 18, 26mp3an12i 1467 . . . . . . . . . . . . 13 (𝐴 ∈ On → (1o ∈ 2o ↔ ((2o ·o 𝐴) +o 1o) ∈ ((2o ·o 𝐴) +o 2o)))
2824, 27mpbii 236 . . . . . . . . . . . 12 (𝐴 ∈ On → ((2o ·o 𝐴) +o 1o) ∈ ((2o ·o 𝐴) +o 2o))
29 omsuc 8231 . . . . . . . . . . . . 13 ((2o ∈ On ∧ 𝐴 ∈ On) → (2o ·o suc 𝐴) = ((2o ·o 𝐴) +o 2o))
3010, 29mpan 690 . . . . . . . . . . . 12 (𝐴 ∈ On → (2o ·o suc 𝐴) = ((2o ·o 𝐴) +o 2o))
3128, 30eleqtrrd 2834 . . . . . . . . . . 11 (𝐴 ∈ On → ((2o ·o 𝐴) +o 1o) ∈ (2o ·o suc 𝐴))
3220, 31eqeltrrd 2832 . . . . . . . . . 10 (𝐴 ∈ On → suc (2o ·o 𝐴) ∈ (2o ·o suc 𝐴))
3332ad2antrr 726 . . . . . . . . 9 (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ suc (2o ·o 𝐴) = (2o ·o 𝐵)) → suc (2o ·o 𝐴) ∈ (2o ·o suc 𝐴))
3416, 33eqeltrrd 2832 . . . . . . . 8 (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ suc (2o ·o 𝐴) = (2o ·o 𝐵)) → (2o ·o 𝐵) ∈ (2o ·o suc 𝐴))
35 suceloni 7570 . . . . . . . . . . 11 (𝐴 ∈ On → suc 𝐴 ∈ On)
36 omord 8274 . . . . . . . . . . . 12 ((𝐵 ∈ On ∧ suc 𝐴 ∈ On ∧ 2o ∈ On) → ((𝐵 ∈ suc 𝐴 ∧ ∅ ∈ 2o) ↔ (2o ·o 𝐵) ∈ (2o ·o suc 𝐴)))
3710, 36mp3an3 1452 . . . . . . . . . . 11 ((𝐵 ∈ On ∧ suc 𝐴 ∈ On) → ((𝐵 ∈ suc 𝐴 ∧ ∅ ∈ 2o) ↔ (2o ·o 𝐵) ∈ (2o ·o suc 𝐴)))
3835, 37sylan2 596 . . . . . . . . . 10 ((𝐵 ∈ On ∧ 𝐴 ∈ On) → ((𝐵 ∈ suc 𝐴 ∧ ∅ ∈ 2o) ↔ (2o ·o 𝐵) ∈ (2o ·o suc 𝐴)))
3938ancoms 462 . . . . . . . . 9 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → ((𝐵 ∈ suc 𝐴 ∧ ∅ ∈ 2o) ↔ (2o ·o 𝐵) ∈ (2o ·o suc 𝐴)))
4039adantr 484 . . . . . . . 8 (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ suc (2o ·o 𝐴) = (2o ·o 𝐵)) → ((𝐵 ∈ suc 𝐴 ∧ ∅ ∈ 2o) ↔ (2o ·o 𝐵) ∈ (2o ·o suc 𝐴)))
4134, 40mpbird 260 . . . . . . 7 (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ suc (2o ·o 𝐴) = (2o ·o 𝐵)) → (𝐵 ∈ suc 𝐴 ∧ ∅ ∈ 2o))
4241simpld 498 . . . . . 6 (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ suc (2o ·o 𝐴) = (2o ·o 𝐵)) → 𝐵 ∈ suc 𝐴)
4342ex 416 . . . . 5 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (suc (2o ·o 𝐴) = (2o ·o 𝐵) → 𝐵 ∈ suc 𝐴))
4415, 43jcad 516 . . . 4 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (suc (2o ·o 𝐴) = (2o ·o 𝐵) → (𝐴𝐵𝐵 ∈ suc 𝐴)))
45443adant3 1134 . . 3 ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 = (2o ·o 𝐴)) → (suc (2o ·o 𝐴) = (2o ·o 𝐵) → (𝐴𝐵𝐵 ∈ suc 𝐴)))
465, 45sylbid 243 . 2 ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 = (2o ·o 𝐴)) → (suc 𝐶 = (2o ·o 𝐵) → (𝐴𝐵𝐵 ∈ suc 𝐴)))
472, 46mtod 201 1 ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 = (2o ·o 𝐴)) → ¬ suc 𝐶 = (2o ·o 𝐵))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 209  wa 399  w3a 1089   = wceq 1543  wcel 2112  c0 4223  Oncon0 6191  suc csuc 6193  (class class class)co 7191  1oc1o 8173  2oc2o 8174   +o coa 8177   ·o comu 8178
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2018  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2160  ax-12 2177  ax-ext 2708  ax-rep 5164  ax-sep 5177  ax-nul 5184  ax-pr 5307  ax-un 7501
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3or 1090  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2073  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2728  df-clel 2809  df-nfc 2879  df-ne 2933  df-ral 3056  df-rex 3057  df-reu 3058  df-rab 3060  df-v 3400  df-sbc 3684  df-csb 3799  df-dif 3856  df-un 3858  df-in 3860  df-ss 3870  df-pss 3872  df-nul 4224  df-if 4426  df-pw 4501  df-sn 4528  df-pr 4530  df-tp 4532  df-op 4534  df-uni 4806  df-iun 4892  df-br 5040  df-opab 5102  df-mpt 5121  df-tr 5147  df-id 5440  df-eprel 5445  df-po 5453  df-so 5454  df-fr 5494  df-we 5496  df-xp 5542  df-rel 5543  df-cnv 5544  df-co 5545  df-dm 5546  df-rn 5547  df-res 5548  df-ima 5549  df-pred 6140  df-ord 6194  df-on 6195  df-lim 6196  df-suc 6197  df-iota 6316  df-fun 6360  df-fn 6361  df-f 6362  df-f1 6363  df-fo 6364  df-f1o 6365  df-fv 6366  df-ov 7194  df-oprab 7195  df-mpo 7196  df-om 7623  df-wrecs 8025  df-recs 8086  df-rdg 8124  df-1o 8180  df-2o 8181  df-oadd 8184  df-omul 8185
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator