Proof of Theorem oneo
Step | Hyp | Ref
| Expression |
1 | | onnbtwn 6357 |
. . 3
⊢ (𝐴 ∈ On → ¬ (𝐴 ∈ 𝐵 ∧ 𝐵 ∈ suc 𝐴)) |
2 | 1 | 3ad2ant1 1132 |
. 2
⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 = (2o
·o 𝐴))
→ ¬ (𝐴 ∈
𝐵 ∧ 𝐵 ∈ suc 𝐴)) |
3 | | suceq 6331 |
. . . . 5
⊢ (𝐶 = (2o
·o 𝐴)
→ suc 𝐶 = suc
(2o ·o 𝐴)) |
4 | 3 | eqeq1d 2740 |
. . . 4
⊢ (𝐶 = (2o
·o 𝐴)
→ (suc 𝐶 =
(2o ·o 𝐵) ↔ suc (2o
·o 𝐴) =
(2o ·o 𝐵))) |
5 | 4 | 3ad2ant3 1134 |
. . 3
⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 = (2o
·o 𝐴))
→ (suc 𝐶 =
(2o ·o 𝐵) ↔ suc (2o
·o 𝐴) =
(2o ·o 𝐵))) |
6 | | ovex 7308 |
. . . . . . . 8
⊢
(2o ·o 𝐴) ∈ V |
7 | 6 | sucid 6345 |
. . . . . . 7
⊢
(2o ·o 𝐴) ∈ suc (2o
·o 𝐴) |
8 | | eleq2 2827 |
. . . . . . 7
⊢ (suc
(2o ·o 𝐴) = (2o ·o
𝐵) → ((2o
·o 𝐴)
∈ suc (2o ·o 𝐴) ↔ (2o ·o
𝐴) ∈ (2o
·o 𝐵))) |
9 | 7, 8 | mpbii 232 |
. . . . . 6
⊢ (suc
(2o ·o 𝐴) = (2o ·o
𝐵) → (2o
·o 𝐴)
∈ (2o ·o 𝐵)) |
10 | | 2on 8311 |
. . . . . . . 8
⊢
2o ∈ On |
11 | | omord 8399 |
. . . . . . . 8
⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 2o
∈ On) → ((𝐴
∈ 𝐵 ∧ ∅
∈ 2o) ↔ (2o ·o 𝐴) ∈ (2o
·o 𝐵))) |
12 | 10, 11 | mp3an3 1449 |
. . . . . . 7
⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → ((𝐴 ∈ 𝐵 ∧ ∅ ∈ 2o) ↔
(2o ·o 𝐴) ∈ (2o ·o
𝐵))) |
13 | | simpl 483 |
. . . . . . 7
⊢ ((𝐴 ∈ 𝐵 ∧ ∅ ∈ 2o) →
𝐴 ∈ 𝐵) |
14 | 12, 13 | syl6bir 253 |
. . . . . 6
⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) →
((2o ·o 𝐴) ∈ (2o ·o
𝐵) → 𝐴 ∈ 𝐵)) |
15 | 9, 14 | syl5 34 |
. . . . 5
⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (suc
(2o ·o 𝐴) = (2o ·o
𝐵) → 𝐴 ∈ 𝐵)) |
16 | | simpr 485 |
. . . . . . . . 9
⊢ (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ suc
(2o ·o 𝐴) = (2o ·o
𝐵)) → suc
(2o ·o 𝐴) = (2o ·o
𝐵)) |
17 | | omcl 8366 |
. . . . . . . . . . . . 13
⊢
((2o ∈ On ∧ 𝐴 ∈ On) → (2o
·o 𝐴)
∈ On) |
18 | 10, 17 | mpan 687 |
. . . . . . . . . . . 12
⊢ (𝐴 ∈ On → (2o
·o 𝐴)
∈ On) |
19 | | oa1suc 8361 |
. . . . . . . . . . . 12
⊢
((2o ·o 𝐴) ∈ On → ((2o
·o 𝐴)
+o 1o) = suc (2o ·o 𝐴)) |
20 | 18, 19 | syl 17 |
. . . . . . . . . . 11
⊢ (𝐴 ∈ On →
((2o ·o 𝐴) +o 1o) = suc
(2o ·o 𝐴)) |
21 | | 1oex 8307 |
. . . . . . . . . . . . . . 15
⊢
1o ∈ V |
22 | 21 | sucid 6345 |
. . . . . . . . . . . . . 14
⊢
1o ∈ suc 1o |
23 | | df-2o 8298 |
. . . . . . . . . . . . . 14
⊢
2o = suc 1o |
24 | 22, 23 | eleqtrri 2838 |
. . . . . . . . . . . . 13
⊢
1o ∈ 2o |
25 | | 1on 8309 |
. . . . . . . . . . . . . 14
⊢
1o ∈ On |
26 | | oaord 8378 |
. . . . . . . . . . . . . 14
⊢
((1o ∈ On ∧ 2o ∈ On ∧
(2o ·o 𝐴) ∈ On) → (1o ∈
2o ↔ ((2o ·o 𝐴) +o 1o) ∈
((2o ·o 𝐴) +o
2o))) |
27 | 25, 10, 18, 26 | mp3an12i 1464 |
. . . . . . . . . . . . 13
⊢ (𝐴 ∈ On → (1o
∈ 2o ↔ ((2o ·o 𝐴) +o 1o)
∈ ((2o ·o 𝐴) +o
2o))) |
28 | 24, 27 | mpbii 232 |
. . . . . . . . . . . 12
⊢ (𝐴 ∈ On →
((2o ·o 𝐴) +o 1o) ∈
((2o ·o 𝐴) +o
2o)) |
29 | | omsuc 8356 |
. . . . . . . . . . . . 13
⊢
((2o ∈ On ∧ 𝐴 ∈ On) → (2o
·o suc 𝐴)
= ((2o ·o 𝐴) +o
2o)) |
30 | 10, 29 | mpan 687 |
. . . . . . . . . . . 12
⊢ (𝐴 ∈ On → (2o
·o suc 𝐴)
= ((2o ·o 𝐴) +o
2o)) |
31 | 28, 30 | eleqtrrd 2842 |
. . . . . . . . . . 11
⊢ (𝐴 ∈ On →
((2o ·o 𝐴) +o 1o) ∈
(2o ·o suc 𝐴)) |
32 | 20, 31 | eqeltrrd 2840 |
. . . . . . . . . 10
⊢ (𝐴 ∈ On → suc
(2o ·o 𝐴) ∈ (2o ·o
suc 𝐴)) |
33 | 32 | ad2antrr 723 |
. . . . . . . . 9
⊢ (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ suc
(2o ·o 𝐴) = (2o ·o
𝐵)) → suc
(2o ·o 𝐴) ∈ (2o ·o
suc 𝐴)) |
34 | 16, 33 | eqeltrrd 2840 |
. . . . . . . 8
⊢ (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ suc
(2o ·o 𝐴) = (2o ·o
𝐵)) → (2o
·o 𝐵)
∈ (2o ·o suc 𝐴)) |
35 | | suceloni 7659 |
. . . . . . . . . . 11
⊢ (𝐴 ∈ On → suc 𝐴 ∈ On) |
36 | | omord 8399 |
. . . . . . . . . . . 12
⊢ ((𝐵 ∈ On ∧ suc 𝐴 ∈ On ∧ 2o
∈ On) → ((𝐵
∈ suc 𝐴 ∧ ∅
∈ 2o) ↔ (2o ·o 𝐵) ∈ (2o
·o suc 𝐴))) |
37 | 10, 36 | mp3an3 1449 |
. . . . . . . . . . 11
⊢ ((𝐵 ∈ On ∧ suc 𝐴 ∈ On) → ((𝐵 ∈ suc 𝐴 ∧ ∅ ∈ 2o) ↔
(2o ·o 𝐵) ∈ (2o ·o
suc 𝐴))) |
38 | 35, 37 | sylan2 593 |
. . . . . . . . . 10
⊢ ((𝐵 ∈ On ∧ 𝐴 ∈ On) → ((𝐵 ∈ suc 𝐴 ∧ ∅ ∈ 2o) ↔
(2o ·o 𝐵) ∈ (2o ·o
suc 𝐴))) |
39 | 38 | ancoms 459 |
. . . . . . . . 9
⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → ((𝐵 ∈ suc 𝐴 ∧ ∅ ∈ 2o) ↔
(2o ·o 𝐵) ∈ (2o ·o
suc 𝐴))) |
40 | 39 | adantr 481 |
. . . . . . . 8
⊢ (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ suc
(2o ·o 𝐴) = (2o ·o
𝐵)) → ((𝐵 ∈ suc 𝐴 ∧ ∅ ∈ 2o) ↔
(2o ·o 𝐵) ∈ (2o ·o
suc 𝐴))) |
41 | 34, 40 | mpbird 256 |
. . . . . . 7
⊢ (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ suc
(2o ·o 𝐴) = (2o ·o
𝐵)) → (𝐵 ∈ suc 𝐴 ∧ ∅ ∈
2o)) |
42 | 41 | simpld 495 |
. . . . . 6
⊢ (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ suc
(2o ·o 𝐴) = (2o ·o
𝐵)) → 𝐵 ∈ suc 𝐴) |
43 | 42 | ex 413 |
. . . . 5
⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (suc
(2o ·o 𝐴) = (2o ·o
𝐵) → 𝐵 ∈ suc 𝐴)) |
44 | 15, 43 | jcad 513 |
. . . 4
⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (suc
(2o ·o 𝐴) = (2o ·o
𝐵) → (𝐴 ∈ 𝐵 ∧ 𝐵 ∈ suc 𝐴))) |
45 | 44 | 3adant3 1131 |
. . 3
⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 = (2o
·o 𝐴))
→ (suc (2o ·o 𝐴) = (2o ·o
𝐵) → (𝐴 ∈ 𝐵 ∧ 𝐵 ∈ suc 𝐴))) |
46 | 5, 45 | sylbid 239 |
. 2
⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 = (2o
·o 𝐴))
→ (suc 𝐶 =
(2o ·o 𝐵) → (𝐴 ∈ 𝐵 ∧ 𝐵 ∈ suc 𝐴))) |
47 | 2, 46 | mtod 197 |
1
⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 = (2o
·o 𝐴))
→ ¬ suc 𝐶 =
(2o ·o 𝐵)) |