Proof of Theorem ordunisuc2
Step | Hyp | Ref
| Expression |
1 | | orduninsuc 7665 |
. 2
⊢ (Ord
𝐴 → (𝐴 = ∪ 𝐴 ↔ ¬ ∃𝑥 ∈ On 𝐴 = suc 𝑥)) |
2 | | ralnex 3163 |
. . 3
⊢
(∀𝑥 ∈ On
¬ 𝐴 = suc 𝑥 ↔ ¬ ∃𝑥 ∈ On 𝐴 = suc 𝑥) |
3 | | suceloni 7635 |
. . . . . . . . . 10
⊢ (𝑥 ∈ On → suc 𝑥 ∈ On) |
4 | | eloni 6261 |
. . . . . . . . . 10
⊢ (suc
𝑥 ∈ On → Ord suc
𝑥) |
5 | 3, 4 | syl 17 |
. . . . . . . . 9
⊢ (𝑥 ∈ On → Ord suc 𝑥) |
6 | | ordtri3 6287 |
. . . . . . . . 9
⊢ ((Ord
𝐴 ∧ Ord suc 𝑥) → (𝐴 = suc 𝑥 ↔ ¬ (𝐴 ∈ suc 𝑥 ∨ suc 𝑥 ∈ 𝐴))) |
7 | 5, 6 | sylan2 592 |
. . . . . . . 8
⊢ ((Ord
𝐴 ∧ 𝑥 ∈ On) → (𝐴 = suc 𝑥 ↔ ¬ (𝐴 ∈ suc 𝑥 ∨ suc 𝑥 ∈ 𝐴))) |
8 | 7 | con2bid 354 |
. . . . . . 7
⊢ ((Ord
𝐴 ∧ 𝑥 ∈ On) → ((𝐴 ∈ suc 𝑥 ∨ suc 𝑥 ∈ 𝐴) ↔ ¬ 𝐴 = suc 𝑥)) |
9 | | onnbtwn 6342 |
. . . . . . . . . . . . 13
⊢ (𝑥 ∈ On → ¬ (𝑥 ∈ 𝐴 ∧ 𝐴 ∈ suc 𝑥)) |
10 | | imnan 399 |
. . . . . . . . . . . . 13
⊢ ((𝑥 ∈ 𝐴 → ¬ 𝐴 ∈ suc 𝑥) ↔ ¬ (𝑥 ∈ 𝐴 ∧ 𝐴 ∈ suc 𝑥)) |
11 | 9, 10 | sylibr 233 |
. . . . . . . . . . . 12
⊢ (𝑥 ∈ On → (𝑥 ∈ 𝐴 → ¬ 𝐴 ∈ suc 𝑥)) |
12 | 11 | con2d 134 |
. . . . . . . . . . 11
⊢ (𝑥 ∈ On → (𝐴 ∈ suc 𝑥 → ¬ 𝑥 ∈ 𝐴)) |
13 | | pm2.21 123 |
. . . . . . . . . . 11
⊢ (¬
𝑥 ∈ 𝐴 → (𝑥 ∈ 𝐴 → suc 𝑥 ∈ 𝐴)) |
14 | 12, 13 | syl6 35 |
. . . . . . . . . 10
⊢ (𝑥 ∈ On → (𝐴 ∈ suc 𝑥 → (𝑥 ∈ 𝐴 → suc 𝑥 ∈ 𝐴))) |
15 | 14 | adantl 481 |
. . . . . . . . 9
⊢ ((Ord
𝐴 ∧ 𝑥 ∈ On) → (𝐴 ∈ suc 𝑥 → (𝑥 ∈ 𝐴 → suc 𝑥 ∈ 𝐴))) |
16 | | ax-1 6 |
. . . . . . . . . 10
⊢ (suc
𝑥 ∈ 𝐴 → (𝑥 ∈ 𝐴 → suc 𝑥 ∈ 𝐴)) |
17 | 16 | a1i 11 |
. . . . . . . . 9
⊢ ((Ord
𝐴 ∧ 𝑥 ∈ On) → (suc 𝑥 ∈ 𝐴 → (𝑥 ∈ 𝐴 → suc 𝑥 ∈ 𝐴))) |
18 | 15, 17 | jaod 855 |
. . . . . . . 8
⊢ ((Ord
𝐴 ∧ 𝑥 ∈ On) → ((𝐴 ∈ suc 𝑥 ∨ suc 𝑥 ∈ 𝐴) → (𝑥 ∈ 𝐴 → suc 𝑥 ∈ 𝐴))) |
19 | | eloni 6261 |
. . . . . . . . . . . . . 14
⊢ (𝑥 ∈ On → Ord 𝑥) |
20 | | ordtri2or 6346 |
. . . . . . . . . . . . . 14
⊢ ((Ord
𝑥 ∧ Ord 𝐴) → (𝑥 ∈ 𝐴 ∨ 𝐴 ⊆ 𝑥)) |
21 | 19, 20 | sylan 579 |
. . . . . . . . . . . . 13
⊢ ((𝑥 ∈ On ∧ Ord 𝐴) → (𝑥 ∈ 𝐴 ∨ 𝐴 ⊆ 𝑥)) |
22 | 21 | ancoms 458 |
. . . . . . . . . . . 12
⊢ ((Ord
𝐴 ∧ 𝑥 ∈ On) → (𝑥 ∈ 𝐴 ∨ 𝐴 ⊆ 𝑥)) |
23 | 22 | orcomd 867 |
. . . . . . . . . . 11
⊢ ((Ord
𝐴 ∧ 𝑥 ∈ On) → (𝐴 ⊆ 𝑥 ∨ 𝑥 ∈ 𝐴)) |
24 | 23 | adantr 480 |
. . . . . . . . . 10
⊢ (((Ord
𝐴 ∧ 𝑥 ∈ On) ∧ (𝑥 ∈ 𝐴 → suc 𝑥 ∈ 𝐴)) → (𝐴 ⊆ 𝑥 ∨ 𝑥 ∈ 𝐴)) |
25 | | ordsssuc2 6339 |
. . . . . . . . . . . . 13
⊢ ((Ord
𝐴 ∧ 𝑥 ∈ On) → (𝐴 ⊆ 𝑥 ↔ 𝐴 ∈ suc 𝑥)) |
26 | 25 | biimpd 228 |
. . . . . . . . . . . 12
⊢ ((Ord
𝐴 ∧ 𝑥 ∈ On) → (𝐴 ⊆ 𝑥 → 𝐴 ∈ suc 𝑥)) |
27 | 26 | adantr 480 |
. . . . . . . . . . 11
⊢ (((Ord
𝐴 ∧ 𝑥 ∈ On) ∧ (𝑥 ∈ 𝐴 → suc 𝑥 ∈ 𝐴)) → (𝐴 ⊆ 𝑥 → 𝐴 ∈ suc 𝑥)) |
28 | | simpr 484 |
. . . . . . . . . . 11
⊢ (((Ord
𝐴 ∧ 𝑥 ∈ On) ∧ (𝑥 ∈ 𝐴 → suc 𝑥 ∈ 𝐴)) → (𝑥 ∈ 𝐴 → suc 𝑥 ∈ 𝐴)) |
29 | 27, 28 | orim12d 961 |
. . . . . . . . . 10
⊢ (((Ord
𝐴 ∧ 𝑥 ∈ On) ∧ (𝑥 ∈ 𝐴 → suc 𝑥 ∈ 𝐴)) → ((𝐴 ⊆ 𝑥 ∨ 𝑥 ∈ 𝐴) → (𝐴 ∈ suc 𝑥 ∨ suc 𝑥 ∈ 𝐴))) |
30 | 24, 29 | mpd 15 |
. . . . . . . . 9
⊢ (((Ord
𝐴 ∧ 𝑥 ∈ On) ∧ (𝑥 ∈ 𝐴 → suc 𝑥 ∈ 𝐴)) → (𝐴 ∈ suc 𝑥 ∨ suc 𝑥 ∈ 𝐴)) |
31 | 30 | ex 412 |
. . . . . . . 8
⊢ ((Ord
𝐴 ∧ 𝑥 ∈ On) → ((𝑥 ∈ 𝐴 → suc 𝑥 ∈ 𝐴) → (𝐴 ∈ suc 𝑥 ∨ suc 𝑥 ∈ 𝐴))) |
32 | 18, 31 | impbid 211 |
. . . . . . 7
⊢ ((Ord
𝐴 ∧ 𝑥 ∈ On) → ((𝐴 ∈ suc 𝑥 ∨ suc 𝑥 ∈ 𝐴) ↔ (𝑥 ∈ 𝐴 → suc 𝑥 ∈ 𝐴))) |
33 | 8, 32 | bitr3d 280 |
. . . . . 6
⊢ ((Ord
𝐴 ∧ 𝑥 ∈ On) → (¬ 𝐴 = suc 𝑥 ↔ (𝑥 ∈ 𝐴 → suc 𝑥 ∈ 𝐴))) |
34 | 33 | pm5.74da 800 |
. . . . 5
⊢ (Ord
𝐴 → ((𝑥 ∈ On → ¬ 𝐴 = suc 𝑥) ↔ (𝑥 ∈ On → (𝑥 ∈ 𝐴 → suc 𝑥 ∈ 𝐴)))) |
35 | | impexp 450 |
. . . . . 6
⊢ (((𝑥 ∈ On ∧ 𝑥 ∈ 𝐴) → suc 𝑥 ∈ 𝐴) ↔ (𝑥 ∈ On → (𝑥 ∈ 𝐴 → suc 𝑥 ∈ 𝐴))) |
36 | | simpr 484 |
. . . . . . . 8
⊢ ((𝑥 ∈ On ∧ 𝑥 ∈ 𝐴) → 𝑥 ∈ 𝐴) |
37 | | ordelon 6275 |
. . . . . . . . . 10
⊢ ((Ord
𝐴 ∧ 𝑥 ∈ 𝐴) → 𝑥 ∈ On) |
38 | 37 | ex 412 |
. . . . . . . . 9
⊢ (Ord
𝐴 → (𝑥 ∈ 𝐴 → 𝑥 ∈ On)) |
39 | 38 | ancrd 551 |
. . . . . . . 8
⊢ (Ord
𝐴 → (𝑥 ∈ 𝐴 → (𝑥 ∈ On ∧ 𝑥 ∈ 𝐴))) |
40 | 36, 39 | impbid2 225 |
. . . . . . 7
⊢ (Ord
𝐴 → ((𝑥 ∈ On ∧ 𝑥 ∈ 𝐴) ↔ 𝑥 ∈ 𝐴)) |
41 | 40 | imbi1d 341 |
. . . . . 6
⊢ (Ord
𝐴 → (((𝑥 ∈ On ∧ 𝑥 ∈ 𝐴) → suc 𝑥 ∈ 𝐴) ↔ (𝑥 ∈ 𝐴 → suc 𝑥 ∈ 𝐴))) |
42 | 35, 41 | bitr3id 284 |
. . . . 5
⊢ (Ord
𝐴 → ((𝑥 ∈ On → (𝑥 ∈ 𝐴 → suc 𝑥 ∈ 𝐴)) ↔ (𝑥 ∈ 𝐴 → suc 𝑥 ∈ 𝐴))) |
43 | 34, 42 | bitrd 278 |
. . . 4
⊢ (Ord
𝐴 → ((𝑥 ∈ On → ¬ 𝐴 = suc 𝑥) ↔ (𝑥 ∈ 𝐴 → suc 𝑥 ∈ 𝐴))) |
44 | 43 | ralbidv2 3118 |
. . 3
⊢ (Ord
𝐴 → (∀𝑥 ∈ On ¬ 𝐴 = suc 𝑥 ↔ ∀𝑥 ∈ 𝐴 suc 𝑥 ∈ 𝐴)) |
45 | 2, 44 | bitr3id 284 |
. 2
⊢ (Ord
𝐴 → (¬
∃𝑥 ∈ On 𝐴 = suc 𝑥 ↔ ∀𝑥 ∈ 𝐴 suc 𝑥 ∈ 𝐴)) |
46 | 1, 45 | bitrd 278 |
1
⊢ (Ord
𝐴 → (𝐴 = ∪ 𝐴 ↔ ∀𝑥 ∈ 𝐴 suc 𝑥 ∈ 𝐴)) |