MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ordunisuc2 Structured version   Visualization version   GIF version

Theorem ordunisuc2 7829
Description: An ordinal equal to its union contains the successor of each of its members. (Contributed by NM, 1-Feb-2005.)
Assertion
Ref Expression
ordunisuc2 (Ord 𝐴 → (𝐴 = 𝐴 ↔ ∀𝑥𝐴 suc 𝑥𝐴))
Distinct variable group:   𝑥,𝐴

Proof of Theorem ordunisuc2
StepHypRef Expression
1 orduninsuc 7828 . 2 (Ord 𝐴 → (𝐴 = 𝐴 ↔ ¬ ∃𝑥 ∈ On 𝐴 = suc 𝑥))
2 ralnex 3072 . . 3 (∀𝑥 ∈ On ¬ 𝐴 = suc 𝑥 ↔ ¬ ∃𝑥 ∈ On 𝐴 = suc 𝑥)
3 onsuc 7795 . . . . . . . . . 10 (𝑥 ∈ On → suc 𝑥 ∈ On)
4 eloni 6371 . . . . . . . . . 10 (suc 𝑥 ∈ On → Ord suc 𝑥)
53, 4syl 17 . . . . . . . . 9 (𝑥 ∈ On → Ord suc 𝑥)
6 ordtri3 6397 . . . . . . . . 9 ((Ord 𝐴 ∧ Ord suc 𝑥) → (𝐴 = suc 𝑥 ↔ ¬ (𝐴 ∈ suc 𝑥 ∨ suc 𝑥𝐴)))
75, 6sylan2 593 . . . . . . . 8 ((Ord 𝐴𝑥 ∈ On) → (𝐴 = suc 𝑥 ↔ ¬ (𝐴 ∈ suc 𝑥 ∨ suc 𝑥𝐴)))
87con2bid 354 . . . . . . 7 ((Ord 𝐴𝑥 ∈ On) → ((𝐴 ∈ suc 𝑥 ∨ suc 𝑥𝐴) ↔ ¬ 𝐴 = suc 𝑥))
9 onnbtwn 6455 . . . . . . . . . . . . 13 (𝑥 ∈ On → ¬ (𝑥𝐴𝐴 ∈ suc 𝑥))
10 imnan 400 . . . . . . . . . . . . 13 ((𝑥𝐴 → ¬ 𝐴 ∈ suc 𝑥) ↔ ¬ (𝑥𝐴𝐴 ∈ suc 𝑥))
119, 10sylibr 233 . . . . . . . . . . . 12 (𝑥 ∈ On → (𝑥𝐴 → ¬ 𝐴 ∈ suc 𝑥))
1211con2d 134 . . . . . . . . . . 11 (𝑥 ∈ On → (𝐴 ∈ suc 𝑥 → ¬ 𝑥𝐴))
13 pm2.21 123 . . . . . . . . . . 11 𝑥𝐴 → (𝑥𝐴 → suc 𝑥𝐴))
1412, 13syl6 35 . . . . . . . . . 10 (𝑥 ∈ On → (𝐴 ∈ suc 𝑥 → (𝑥𝐴 → suc 𝑥𝐴)))
1514adantl 482 . . . . . . . . 9 ((Ord 𝐴𝑥 ∈ On) → (𝐴 ∈ suc 𝑥 → (𝑥𝐴 → suc 𝑥𝐴)))
16 ax-1 6 . . . . . . . . . 10 (suc 𝑥𝐴 → (𝑥𝐴 → suc 𝑥𝐴))
1716a1i 11 . . . . . . . . 9 ((Ord 𝐴𝑥 ∈ On) → (suc 𝑥𝐴 → (𝑥𝐴 → suc 𝑥𝐴)))
1815, 17jaod 857 . . . . . . . 8 ((Ord 𝐴𝑥 ∈ On) → ((𝐴 ∈ suc 𝑥 ∨ suc 𝑥𝐴) → (𝑥𝐴 → suc 𝑥𝐴)))
19 eloni 6371 . . . . . . . . . . . . . 14 (𝑥 ∈ On → Ord 𝑥)
20 ordtri2or 6459 . . . . . . . . . . . . . 14 ((Ord 𝑥 ∧ Ord 𝐴) → (𝑥𝐴𝐴𝑥))
2119, 20sylan 580 . . . . . . . . . . . . 13 ((𝑥 ∈ On ∧ Ord 𝐴) → (𝑥𝐴𝐴𝑥))
2221ancoms 459 . . . . . . . . . . . 12 ((Ord 𝐴𝑥 ∈ On) → (𝑥𝐴𝐴𝑥))
2322orcomd 869 . . . . . . . . . . 11 ((Ord 𝐴𝑥 ∈ On) → (𝐴𝑥𝑥𝐴))
2423adantr 481 . . . . . . . . . 10 (((Ord 𝐴𝑥 ∈ On) ∧ (𝑥𝐴 → suc 𝑥𝐴)) → (𝐴𝑥𝑥𝐴))
25 ordsssuc2 6452 . . . . . . . . . . . . 13 ((Ord 𝐴𝑥 ∈ On) → (𝐴𝑥𝐴 ∈ suc 𝑥))
2625biimpd 228 . . . . . . . . . . . 12 ((Ord 𝐴𝑥 ∈ On) → (𝐴𝑥𝐴 ∈ suc 𝑥))
2726adantr 481 . . . . . . . . . . 11 (((Ord 𝐴𝑥 ∈ On) ∧ (𝑥𝐴 → suc 𝑥𝐴)) → (𝐴𝑥𝐴 ∈ suc 𝑥))
28 simpr 485 . . . . . . . . . . 11 (((Ord 𝐴𝑥 ∈ On) ∧ (𝑥𝐴 → suc 𝑥𝐴)) → (𝑥𝐴 → suc 𝑥𝐴))
2927, 28orim12d 963 . . . . . . . . . 10 (((Ord 𝐴𝑥 ∈ On) ∧ (𝑥𝐴 → suc 𝑥𝐴)) → ((𝐴𝑥𝑥𝐴) → (𝐴 ∈ suc 𝑥 ∨ suc 𝑥𝐴)))
3024, 29mpd 15 . . . . . . . . 9 (((Ord 𝐴𝑥 ∈ On) ∧ (𝑥𝐴 → suc 𝑥𝐴)) → (𝐴 ∈ suc 𝑥 ∨ suc 𝑥𝐴))
3130ex 413 . . . . . . . 8 ((Ord 𝐴𝑥 ∈ On) → ((𝑥𝐴 → suc 𝑥𝐴) → (𝐴 ∈ suc 𝑥 ∨ suc 𝑥𝐴)))
3218, 31impbid 211 . . . . . . 7 ((Ord 𝐴𝑥 ∈ On) → ((𝐴 ∈ suc 𝑥 ∨ suc 𝑥𝐴) ↔ (𝑥𝐴 → suc 𝑥𝐴)))
338, 32bitr3d 280 . . . . . 6 ((Ord 𝐴𝑥 ∈ On) → (¬ 𝐴 = suc 𝑥 ↔ (𝑥𝐴 → suc 𝑥𝐴)))
3433pm5.74da 802 . . . . 5 (Ord 𝐴 → ((𝑥 ∈ On → ¬ 𝐴 = suc 𝑥) ↔ (𝑥 ∈ On → (𝑥𝐴 → suc 𝑥𝐴))))
35 impexp 451 . . . . . 6 (((𝑥 ∈ On ∧ 𝑥𝐴) → suc 𝑥𝐴) ↔ (𝑥 ∈ On → (𝑥𝐴 → suc 𝑥𝐴)))
36 simpr 485 . . . . . . . 8 ((𝑥 ∈ On ∧ 𝑥𝐴) → 𝑥𝐴)
37 ordelon 6385 . . . . . . . . . 10 ((Ord 𝐴𝑥𝐴) → 𝑥 ∈ On)
3837ex 413 . . . . . . . . 9 (Ord 𝐴 → (𝑥𝐴𝑥 ∈ On))
3938ancrd 552 . . . . . . . 8 (Ord 𝐴 → (𝑥𝐴 → (𝑥 ∈ On ∧ 𝑥𝐴)))
4036, 39impbid2 225 . . . . . . 7 (Ord 𝐴 → ((𝑥 ∈ On ∧ 𝑥𝐴) ↔ 𝑥𝐴))
4140imbi1d 341 . . . . . 6 (Ord 𝐴 → (((𝑥 ∈ On ∧ 𝑥𝐴) → suc 𝑥𝐴) ↔ (𝑥𝐴 → suc 𝑥𝐴)))
4235, 41bitr3id 284 . . . . 5 (Ord 𝐴 → ((𝑥 ∈ On → (𝑥𝐴 → suc 𝑥𝐴)) ↔ (𝑥𝐴 → suc 𝑥𝐴)))
4334, 42bitrd 278 . . . 4 (Ord 𝐴 → ((𝑥 ∈ On → ¬ 𝐴 = suc 𝑥) ↔ (𝑥𝐴 → suc 𝑥𝐴)))
4443ralbidv2 3173 . . 3 (Ord 𝐴 → (∀𝑥 ∈ On ¬ 𝐴 = suc 𝑥 ↔ ∀𝑥𝐴 suc 𝑥𝐴))
452, 44bitr3id 284 . 2 (Ord 𝐴 → (¬ ∃𝑥 ∈ On 𝐴 = suc 𝑥 ↔ ∀𝑥𝐴 suc 𝑥𝐴))
461, 45bitrd 278 1 (Ord 𝐴 → (𝐴 = 𝐴 ↔ ∀𝑥𝐴 suc 𝑥𝐴))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396  wo 845   = wceq 1541  wcel 2106  wral 3061  wrex 3070  wss 3947   cuni 4907  Ord word 6360  Oncon0 6361  suc csuc 6363
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-ext 2703  ax-sep 5298  ax-nul 5305  ax-pr 5426  ax-un 7721
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-sb 2068  df-clab 2710  df-cleq 2724  df-clel 2810  df-ne 2941  df-ral 3062  df-rex 3071  df-rab 3433  df-v 3476  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-br 5148  df-opab 5210  df-tr 5265  df-eprel 5579  df-po 5587  df-so 5588  df-fr 5630  df-we 5632  df-ord 6364  df-on 6365  df-suc 6367
This theorem is referenced by:  dflim4  7833  limsuc2  41768
  Copyright terms: Public domain W3C validator