![]() |
Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > onsucwordi | Structured version Visualization version GIF version |
Description: The successor operation preserves the less-than-or-equal relationship between ordinals. Lemma 3.1 of [Schloeder] p. 7. (Contributed by RP, 29-Jan-2025.) |
Ref | Expression |
---|---|
onsucwordi | ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 ⊆ 𝐵 → suc 𝐴 ⊆ suc 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eloni 6386 | . . 3 ⊢ (𝐴 ∈ On → Ord 𝐴) | |
2 | eloni 6386 | . . 3 ⊢ (𝐵 ∈ On → Ord 𝐵) | |
3 | ordsucsssuc 7832 | . . 3 ⊢ ((Ord 𝐴 ∧ Ord 𝐵) → (𝐴 ⊆ 𝐵 ↔ suc 𝐴 ⊆ suc 𝐵)) | |
4 | 1, 2, 3 | syl2an 594 | . 2 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 ⊆ 𝐵 ↔ suc 𝐴 ⊆ suc 𝐵)) |
5 | 4 | biimpd 228 | 1 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 ⊆ 𝐵 → suc 𝐴 ⊆ suc 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 394 ∈ wcel 2099 ⊆ wss 3947 Ord word 6375 Oncon0 6376 suc csuc 6378 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-ext 2697 ax-sep 5304 ax-nul 5311 ax-pr 5433 ax-un 7746 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1537 df-fal 1547 df-ex 1775 df-sb 2061 df-clab 2704 df-cleq 2718 df-clel 2803 df-ne 2931 df-ral 3052 df-rex 3061 df-rab 3420 df-v 3464 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3967 df-nul 4326 df-if 4534 df-pw 4609 df-sn 4634 df-pr 4636 df-op 4640 df-uni 4914 df-br 5154 df-opab 5216 df-tr 5271 df-eprel 5586 df-po 5594 df-so 5595 df-fr 5637 df-we 5639 df-ord 6379 df-on 6380 df-suc 6382 |
This theorem is referenced by: onsucunipr 43038 |
Copyright terms: Public domain | W3C validator |