MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ordsucsssuc Structured version   Visualization version   GIF version

Theorem ordsucsssuc 7817
Description: The subclass relationship between two ordinal classes is inherited by their successors. (Contributed by NM, 4-Oct-2003.)
Assertion
Ref Expression
ordsucsssuc ((Ord 𝐴 ∧ Ord 𝐵) → (𝐴𝐵 ↔ suc 𝐴 ⊆ suc 𝐵))

Proof of Theorem ordsucsssuc
StepHypRef Expression
1 ordsucelsuc 7816 . . . 4 (Ord 𝐴 → (𝐵𝐴 ↔ suc 𝐵 ∈ suc 𝐴))
21notbid 318 . . 3 (Ord 𝐴 → (¬ 𝐵𝐴 ↔ ¬ suc 𝐵 ∈ suc 𝐴))
32adantr 480 . 2 ((Ord 𝐴 ∧ Ord 𝐵) → (¬ 𝐵𝐴 ↔ ¬ suc 𝐵 ∈ suc 𝐴))
4 ordtri1 6385 . 2 ((Ord 𝐴 ∧ Ord 𝐵) → (𝐴𝐵 ↔ ¬ 𝐵𝐴))
5 ordsuc 7807 . . 3 (Ord 𝐴 ↔ Ord suc 𝐴)
6 ordsuc 7807 . . 3 (Ord 𝐵 ↔ Ord suc 𝐵)
7 ordtri1 6385 . . 3 ((Ord suc 𝐴 ∧ Ord suc 𝐵) → (suc 𝐴 ⊆ suc 𝐵 ↔ ¬ suc 𝐵 ∈ suc 𝐴))
85, 6, 7syl2anb 598 . 2 ((Ord 𝐴 ∧ Ord 𝐵) → (suc 𝐴 ⊆ suc 𝐵 ↔ ¬ suc 𝐵 ∈ suc 𝐴))
93, 4, 83bitr4d 311 1 ((Ord 𝐴 ∧ Ord 𝐵) → (𝐴𝐵 ↔ suc 𝐴 ⊆ suc 𝐵))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wcel 2108  wss 3926  Ord word 6351  suc csuc 6354
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2707  ax-sep 5266  ax-nul 5276  ax-pr 5402  ax-un 7729
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2065  df-clab 2714  df-cleq 2727  df-clel 2809  df-ne 2933  df-ral 3052  df-rex 3061  df-rab 3416  df-v 3461  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-br 5120  df-opab 5182  df-tr 5230  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-we 5608  df-ord 6355  df-on 6356  df-suc 6358
This theorem is referenced by:  oawordri  8562  oeworde  8605  nnawordi  8633  eldifsucnn  8676  ttrcltr  9730  bndrank  9855  rankmapu  9892  ackbij1b  10252  onsuct0  36459  finxpsuclem  37415  onsucwordi  43312  naddgeoa  43418
  Copyright terms: Public domain W3C validator