![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ordsucsssuc | Structured version Visualization version GIF version |
Description: The subclass relationship between two ordinal classes is inherited by their successors. (Contributed by NM, 4-Oct-2003.) |
Ref | Expression |
---|---|
ordsucsssuc | ⊢ ((Ord 𝐴 ∧ Ord 𝐵) → (𝐴 ⊆ 𝐵 ↔ suc 𝐴 ⊆ suc 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ordsucelsuc 7841 | . . . 4 ⊢ (Ord 𝐴 → (𝐵 ∈ 𝐴 ↔ suc 𝐵 ∈ suc 𝐴)) | |
2 | 1 | notbid 318 | . . 3 ⊢ (Ord 𝐴 → (¬ 𝐵 ∈ 𝐴 ↔ ¬ suc 𝐵 ∈ suc 𝐴)) |
3 | 2 | adantr 480 | . 2 ⊢ ((Ord 𝐴 ∧ Ord 𝐵) → (¬ 𝐵 ∈ 𝐴 ↔ ¬ suc 𝐵 ∈ suc 𝐴)) |
4 | ordtri1 6418 | . 2 ⊢ ((Ord 𝐴 ∧ Ord 𝐵) → (𝐴 ⊆ 𝐵 ↔ ¬ 𝐵 ∈ 𝐴)) | |
5 | ordsuc 7832 | . . 3 ⊢ (Ord 𝐴 ↔ Ord suc 𝐴) | |
6 | ordsuc 7832 | . . 3 ⊢ (Ord 𝐵 ↔ Ord suc 𝐵) | |
7 | ordtri1 6418 | . . 3 ⊢ ((Ord suc 𝐴 ∧ Ord suc 𝐵) → (suc 𝐴 ⊆ suc 𝐵 ↔ ¬ suc 𝐵 ∈ suc 𝐴)) | |
8 | 5, 6, 7 | syl2anb 598 | . 2 ⊢ ((Ord 𝐴 ∧ Ord 𝐵) → (suc 𝐴 ⊆ suc 𝐵 ↔ ¬ suc 𝐵 ∈ suc 𝐴)) |
9 | 3, 4, 8 | 3bitr4d 311 | 1 ⊢ ((Ord 𝐴 ∧ Ord 𝐵) → (𝐴 ⊆ 𝐵 ↔ suc 𝐴 ⊆ suc 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 ∈ wcel 2105 ⊆ wss 3962 Ord word 6384 suc csuc 6387 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1791 ax-4 1805 ax-5 1907 ax-6 1964 ax-7 2004 ax-8 2107 ax-9 2115 ax-ext 2705 ax-sep 5301 ax-nul 5311 ax-pr 5437 ax-un 7753 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1539 df-fal 1549 df-ex 1776 df-sb 2062 df-clab 2712 df-cleq 2726 df-clel 2813 df-ne 2938 df-ral 3059 df-rex 3068 df-rab 3433 df-v 3479 df-dif 3965 df-un 3967 df-in 3969 df-ss 3979 df-pss 3982 df-nul 4339 df-if 4531 df-pw 4606 df-sn 4631 df-pr 4633 df-op 4637 df-uni 4912 df-br 5148 df-opab 5210 df-tr 5265 df-eprel 5588 df-po 5596 df-so 5597 df-fr 5640 df-we 5642 df-ord 6388 df-on 6389 df-suc 6391 |
This theorem is referenced by: oawordri 8586 oeworde 8629 nnawordi 8657 eldifsucnn 8700 ttrcltr 9753 bndrank 9878 rankmapu 9915 ackbij1b 10275 pw2bday 28432 onsuct0 36423 finxpsuclem 37379 onsucwordi 43277 naddgeoa 43383 |
Copyright terms: Public domain | W3C validator |