MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ordsucsssuc Structured version   Visualization version   GIF version

Theorem ordsucsssuc 7168
Description: The subclass relationship between two ordinal classes is inherited by their successors. (Contributed by NM, 4-Oct-2003.)
Assertion
Ref Expression
ordsucsssuc ((Ord 𝐴 ∧ Ord 𝐵) → (𝐴𝐵 ↔ suc 𝐴 ⊆ suc 𝐵))

Proof of Theorem ordsucsssuc
StepHypRef Expression
1 ordsucelsuc 7167 . . . 4 (Ord 𝐴 → (𝐵𝐴 ↔ suc 𝐵 ∈ suc 𝐴))
21notbid 307 . . 3 (Ord 𝐴 → (¬ 𝐵𝐴 ↔ ¬ suc 𝐵 ∈ suc 𝐴))
32adantr 466 . 2 ((Ord 𝐴 ∧ Ord 𝐵) → (¬ 𝐵𝐴 ↔ ¬ suc 𝐵 ∈ suc 𝐴))
4 ordtri1 5897 . 2 ((Ord 𝐴 ∧ Ord 𝐵) → (𝐴𝐵 ↔ ¬ 𝐵𝐴))
5 ordsuc 7159 . . 3 (Ord 𝐴 ↔ Ord suc 𝐴)
6 ordsuc 7159 . . 3 (Ord 𝐵 ↔ Ord suc 𝐵)
7 ordtri1 5897 . . 3 ((Ord suc 𝐴 ∧ Ord suc 𝐵) → (suc 𝐴 ⊆ suc 𝐵 ↔ ¬ suc 𝐵 ∈ suc 𝐴))
85, 6, 7syl2anb 585 . 2 ((Ord 𝐴 ∧ Ord 𝐵) → (suc 𝐴 ⊆ suc 𝐵 ↔ ¬ suc 𝐵 ∈ suc 𝐴))
93, 4, 83bitr4d 300 1 ((Ord 𝐴 ∧ Ord 𝐵) → (𝐴𝐵 ↔ suc 𝐴 ⊆ suc 𝐵))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wa 382  wcel 2145  wss 3723  Ord word 5863  suc csuc 5866
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1870  ax-4 1885  ax-5 1991  ax-6 2057  ax-7 2093  ax-8 2147  ax-9 2154  ax-10 2174  ax-11 2190  ax-12 2203  ax-13 2408  ax-ext 2751  ax-sep 4915  ax-nul 4923  ax-pr 5034  ax-un 7094
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 837  df-3or 1072  df-3an 1073  df-tru 1634  df-ex 1853  df-nf 1858  df-sb 2050  df-eu 2622  df-mo 2623  df-clab 2758  df-cleq 2764  df-clel 2767  df-nfc 2902  df-ne 2944  df-ral 3066  df-rex 3067  df-rab 3070  df-v 3353  df-sbc 3588  df-dif 3726  df-un 3728  df-in 3730  df-ss 3737  df-pss 3739  df-nul 4064  df-if 4226  df-sn 4317  df-pr 4319  df-tp 4321  df-op 4323  df-uni 4575  df-br 4787  df-opab 4847  df-tr 4887  df-eprel 5162  df-po 5170  df-so 5171  df-fr 5208  df-we 5210  df-ord 5867  df-on 5868  df-suc 5870
This theorem is referenced by:  oawordri  7782  oeworde  7825  nnawordi  7853  bndrank  8866  rankmapu  8903  ackbij1b  9261  nosupbday  32181  onsuct0  32770  finxpsuclem  33564
  Copyright terms: Public domain W3C validator