| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ordsucsssuc | Structured version Visualization version GIF version | ||
| Description: The subclass relationship between two ordinal classes is inherited by their successors. (Contributed by NM, 4-Oct-2003.) |
| Ref | Expression |
|---|---|
| ordsucsssuc | ⊢ ((Ord 𝐴 ∧ Ord 𝐵) → (𝐴 ⊆ 𝐵 ↔ suc 𝐴 ⊆ suc 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ordsucelsuc 7797 | . . . 4 ⊢ (Ord 𝐴 → (𝐵 ∈ 𝐴 ↔ suc 𝐵 ∈ suc 𝐴)) | |
| 2 | 1 | notbid 318 | . . 3 ⊢ (Ord 𝐴 → (¬ 𝐵 ∈ 𝐴 ↔ ¬ suc 𝐵 ∈ suc 𝐴)) |
| 3 | 2 | adantr 480 | . 2 ⊢ ((Ord 𝐴 ∧ Ord 𝐵) → (¬ 𝐵 ∈ 𝐴 ↔ ¬ suc 𝐵 ∈ suc 𝐴)) |
| 4 | ordtri1 6365 | . 2 ⊢ ((Ord 𝐴 ∧ Ord 𝐵) → (𝐴 ⊆ 𝐵 ↔ ¬ 𝐵 ∈ 𝐴)) | |
| 5 | ordsuc 7788 | . . 3 ⊢ (Ord 𝐴 ↔ Ord suc 𝐴) | |
| 6 | ordsuc 7788 | . . 3 ⊢ (Ord 𝐵 ↔ Ord suc 𝐵) | |
| 7 | ordtri1 6365 | . . 3 ⊢ ((Ord suc 𝐴 ∧ Ord suc 𝐵) → (suc 𝐴 ⊆ suc 𝐵 ↔ ¬ suc 𝐵 ∈ suc 𝐴)) | |
| 8 | 5, 6, 7 | syl2anb 598 | . 2 ⊢ ((Ord 𝐴 ∧ Ord 𝐵) → (suc 𝐴 ⊆ suc 𝐵 ↔ ¬ suc 𝐵 ∈ suc 𝐴)) |
| 9 | 3, 4, 8 | 3bitr4d 311 | 1 ⊢ ((Ord 𝐴 ∧ Ord 𝐵) → (𝐴 ⊆ 𝐵 ↔ suc 𝐴 ⊆ suc 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 ∈ wcel 2109 ⊆ wss 3914 Ord word 6331 suc csuc 6334 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pr 5387 ax-un 7711 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-br 5108 df-opab 5170 df-tr 5215 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-we 5593 df-ord 6335 df-on 6336 df-suc 6338 |
| This theorem is referenced by: oawordri 8514 oeworde 8557 nnawordi 8585 eldifsucnn 8628 ttrcltr 9669 bndrank 9794 rankmapu 9831 ackbij1b 10191 onsuct0 36429 finxpsuclem 37385 onsucwordi 43277 naddgeoa 43383 |
| Copyright terms: Public domain | W3C validator |