| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ordsucsssuc | Structured version Visualization version GIF version | ||
| Description: The subclass relationship between two ordinal classes is inherited by their successors. (Contributed by NM, 4-Oct-2003.) |
| Ref | Expression |
|---|---|
| ordsucsssuc | ⊢ ((Ord 𝐴 ∧ Ord 𝐵) → (𝐴 ⊆ 𝐵 ↔ suc 𝐴 ⊆ suc 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ordsucelsuc 7752 | . . . 4 ⊢ (Ord 𝐴 → (𝐵 ∈ 𝐴 ↔ suc 𝐵 ∈ suc 𝐴)) | |
| 2 | 1 | notbid 318 | . . 3 ⊢ (Ord 𝐴 → (¬ 𝐵 ∈ 𝐴 ↔ ¬ suc 𝐵 ∈ suc 𝐴)) |
| 3 | 2 | adantr 480 | . 2 ⊢ ((Ord 𝐴 ∧ Ord 𝐵) → (¬ 𝐵 ∈ 𝐴 ↔ ¬ suc 𝐵 ∈ suc 𝐴)) |
| 4 | ordtri1 6339 | . 2 ⊢ ((Ord 𝐴 ∧ Ord 𝐵) → (𝐴 ⊆ 𝐵 ↔ ¬ 𝐵 ∈ 𝐴)) | |
| 5 | ordsuc 7744 | . . 3 ⊢ (Ord 𝐴 ↔ Ord suc 𝐴) | |
| 6 | ordsuc 7744 | . . 3 ⊢ (Ord 𝐵 ↔ Ord suc 𝐵) | |
| 7 | ordtri1 6339 | . . 3 ⊢ ((Ord suc 𝐴 ∧ Ord suc 𝐵) → (suc 𝐴 ⊆ suc 𝐵 ↔ ¬ suc 𝐵 ∈ suc 𝐴)) | |
| 8 | 5, 6, 7 | syl2anb 598 | . 2 ⊢ ((Ord 𝐴 ∧ Ord 𝐵) → (suc 𝐴 ⊆ suc 𝐵 ↔ ¬ suc 𝐵 ∈ suc 𝐴)) |
| 9 | 3, 4, 8 | 3bitr4d 311 | 1 ⊢ ((Ord 𝐴 ∧ Ord 𝐵) → (𝐴 ⊆ 𝐵 ↔ suc 𝐴 ⊆ suc 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 ∈ wcel 2111 ⊆ wss 3897 Ord word 6305 suc csuc 6308 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pr 5368 ax-un 7668 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-ne 2929 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-br 5090 df-opab 5152 df-tr 5197 df-eprel 5514 df-po 5522 df-so 5523 df-fr 5567 df-we 5569 df-ord 6309 df-on 6310 df-suc 6312 |
| This theorem is referenced by: oawordri 8465 oeworde 8508 nnawordi 8536 eldifsucnn 8579 ttrcltr 9606 bndrank 9734 rankmapu 9771 ackbij1b 10129 onsuct0 36485 finxpsuclem 37441 onsucwordi 43380 naddgeoa 43486 |
| Copyright terms: Public domain | W3C validator |