Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ordsucsssuc | Structured version Visualization version GIF version |
Description: The subclass relationship between two ordinal classes is inherited by their successors. (Contributed by NM, 4-Oct-2003.) |
Ref | Expression |
---|---|
ordsucsssuc | ⊢ ((Ord 𝐴 ∧ Ord 𝐵) → (𝐴 ⊆ 𝐵 ↔ suc 𝐴 ⊆ suc 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ordsucelsuc 7644 | . . . 4 ⊢ (Ord 𝐴 → (𝐵 ∈ 𝐴 ↔ suc 𝐵 ∈ suc 𝐴)) | |
2 | 1 | notbid 317 | . . 3 ⊢ (Ord 𝐴 → (¬ 𝐵 ∈ 𝐴 ↔ ¬ suc 𝐵 ∈ suc 𝐴)) |
3 | 2 | adantr 480 | . 2 ⊢ ((Ord 𝐴 ∧ Ord 𝐵) → (¬ 𝐵 ∈ 𝐴 ↔ ¬ suc 𝐵 ∈ suc 𝐴)) |
4 | ordtri1 6284 | . 2 ⊢ ((Ord 𝐴 ∧ Ord 𝐵) → (𝐴 ⊆ 𝐵 ↔ ¬ 𝐵 ∈ 𝐴)) | |
5 | ordsuc 7636 | . . 3 ⊢ (Ord 𝐴 ↔ Ord suc 𝐴) | |
6 | ordsuc 7636 | . . 3 ⊢ (Ord 𝐵 ↔ Ord suc 𝐵) | |
7 | ordtri1 6284 | . . 3 ⊢ ((Ord suc 𝐴 ∧ Ord suc 𝐵) → (suc 𝐴 ⊆ suc 𝐵 ↔ ¬ suc 𝐵 ∈ suc 𝐴)) | |
8 | 5, 6, 7 | syl2anb 597 | . 2 ⊢ ((Ord 𝐴 ∧ Ord 𝐵) → (suc 𝐴 ⊆ suc 𝐵 ↔ ¬ suc 𝐵 ∈ suc 𝐴)) |
9 | 3, 4, 8 | 3bitr4d 310 | 1 ⊢ ((Ord 𝐴 ∧ Ord 𝐵) → (𝐴 ⊆ 𝐵 ↔ suc 𝐴 ⊆ suc 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∧ wa 395 ∈ wcel 2108 ⊆ wss 3883 Ord word 6250 suc csuc 6253 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-11 2156 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 ax-un 7566 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-ne 2943 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-br 5071 df-opab 5133 df-tr 5188 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-we 5537 df-ord 6254 df-on 6255 df-suc 6257 |
This theorem is referenced by: oawordri 8343 oeworde 8386 nnawordi 8414 bndrank 9530 rankmapu 9567 ackbij1b 9926 eldifsucnn 33597 ttrcltr 33702 onsuct0 34557 finxpsuclem 35495 |
Copyright terms: Public domain | W3C validator |