MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ordsucsssuc Structured version   Visualization version   GIF version

Theorem ordsucsssuc 7645
Description: The subclass relationship between two ordinal classes is inherited by their successors. (Contributed by NM, 4-Oct-2003.)
Assertion
Ref Expression
ordsucsssuc ((Ord 𝐴 ∧ Ord 𝐵) → (𝐴𝐵 ↔ suc 𝐴 ⊆ suc 𝐵))

Proof of Theorem ordsucsssuc
StepHypRef Expression
1 ordsucelsuc 7644 . . . 4 (Ord 𝐴 → (𝐵𝐴 ↔ suc 𝐵 ∈ suc 𝐴))
21notbid 317 . . 3 (Ord 𝐴 → (¬ 𝐵𝐴 ↔ ¬ suc 𝐵 ∈ suc 𝐴))
32adantr 480 . 2 ((Ord 𝐴 ∧ Ord 𝐵) → (¬ 𝐵𝐴 ↔ ¬ suc 𝐵 ∈ suc 𝐴))
4 ordtri1 6284 . 2 ((Ord 𝐴 ∧ Ord 𝐵) → (𝐴𝐵 ↔ ¬ 𝐵𝐴))
5 ordsuc 7636 . . 3 (Ord 𝐴 ↔ Ord suc 𝐴)
6 ordsuc 7636 . . 3 (Ord 𝐵 ↔ Ord suc 𝐵)
7 ordtri1 6284 . . 3 ((Ord suc 𝐴 ∧ Ord suc 𝐵) → (suc 𝐴 ⊆ suc 𝐵 ↔ ¬ suc 𝐵 ∈ suc 𝐴))
85, 6, 7syl2anb 597 . 2 ((Ord 𝐴 ∧ Ord 𝐵) → (suc 𝐴 ⊆ suc 𝐵 ↔ ¬ suc 𝐵 ∈ suc 𝐴))
93, 4, 83bitr4d 310 1 ((Ord 𝐴 ∧ Ord 𝐵) → (𝐴𝐵 ↔ suc 𝐴 ⊆ suc 𝐵))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 395  wcel 2108  wss 3883  Ord word 6250  suc csuc 6253
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-11 2156  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pr 5347  ax-un 7566
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-sb 2069  df-clab 2716  df-cleq 2730  df-clel 2817  df-ne 2943  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-br 5071  df-opab 5133  df-tr 5188  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-ord 6254  df-on 6255  df-suc 6257
This theorem is referenced by:  oawordri  8343  oeworde  8386  nnawordi  8414  bndrank  9530  rankmapu  9567  ackbij1b  9926  eldifsucnn  33597  ttrcltr  33702  onsuct0  34557  finxpsuclem  35495
  Copyright terms: Public domain W3C validator