![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ordsucsssuc | Structured version Visualization version GIF version |
Description: The subclass relationship between two ordinal classes is inherited by their successors. (Contributed by NM, 4-Oct-2003.) |
Ref | Expression |
---|---|
ordsucsssuc | ⊢ ((Ord 𝐴 ∧ Ord 𝐵) → (𝐴 ⊆ 𝐵 ↔ suc 𝐴 ⊆ suc 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ordsucelsuc 7822 | . . . 4 ⊢ (Ord 𝐴 → (𝐵 ∈ 𝐴 ↔ suc 𝐵 ∈ suc 𝐴)) | |
2 | 1 | notbid 317 | . . 3 ⊢ (Ord 𝐴 → (¬ 𝐵 ∈ 𝐴 ↔ ¬ suc 𝐵 ∈ suc 𝐴)) |
3 | 2 | adantr 479 | . 2 ⊢ ((Ord 𝐴 ∧ Ord 𝐵) → (¬ 𝐵 ∈ 𝐴 ↔ ¬ suc 𝐵 ∈ suc 𝐴)) |
4 | ordtri1 6397 | . 2 ⊢ ((Ord 𝐴 ∧ Ord 𝐵) → (𝐴 ⊆ 𝐵 ↔ ¬ 𝐵 ∈ 𝐴)) | |
5 | ordsuc 7813 | . . 3 ⊢ (Ord 𝐴 ↔ Ord suc 𝐴) | |
6 | ordsuc 7813 | . . 3 ⊢ (Ord 𝐵 ↔ Ord suc 𝐵) | |
7 | ordtri1 6397 | . . 3 ⊢ ((Ord suc 𝐴 ∧ Ord suc 𝐵) → (suc 𝐴 ⊆ suc 𝐵 ↔ ¬ suc 𝐵 ∈ suc 𝐴)) | |
8 | 5, 6, 7 | syl2anb 596 | . 2 ⊢ ((Ord 𝐴 ∧ Ord 𝐵) → (suc 𝐴 ⊆ suc 𝐵 ↔ ¬ suc 𝐵 ∈ suc 𝐴)) |
9 | 3, 4, 8 | 3bitr4d 310 | 1 ⊢ ((Ord 𝐴 ∧ Ord 𝐵) → (𝐴 ⊆ 𝐵 ↔ suc 𝐴 ⊆ suc 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∧ wa 394 ∈ wcel 2098 ⊆ wss 3940 Ord word 6363 suc csuc 6366 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-ext 2696 ax-sep 5294 ax-nul 5301 ax-pr 5423 ax-un 7737 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-sb 2060 df-clab 2703 df-cleq 2717 df-clel 2802 df-ne 2931 df-ral 3052 df-rex 3061 df-rab 3420 df-v 3465 df-dif 3943 df-un 3945 df-in 3947 df-ss 3957 df-pss 3960 df-nul 4319 df-if 4525 df-pw 4600 df-sn 4625 df-pr 4627 df-op 4631 df-uni 4904 df-br 5144 df-opab 5206 df-tr 5261 df-eprel 5576 df-po 5584 df-so 5585 df-fr 5627 df-we 5629 df-ord 6367 df-on 6368 df-suc 6370 |
This theorem is referenced by: oawordri 8567 oeworde 8610 nnawordi 8638 eldifsucnn 8681 ttrcltr 9737 bndrank 9862 rankmapu 9899 ackbij1b 10260 onsuct0 35981 finxpsuclem 36932 onsucwordi 42781 naddgeoa 42888 |
Copyright terms: Public domain | W3C validator |