Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  onsupex3 Structured version   Visualization version   GIF version

Theorem onsupex3 43267
Description: The supremum of a set of ordinals exists. (Contributed by RP, 23-Jan-2025.)
Assertion
Ref Expression
onsupex3 ((𝐴 ⊆ On ∧ 𝐴𝑉) → {𝑥 ∈ On ∣ ∀𝑦𝐴 𝑦𝑥} ∈ V)
Distinct variable groups:   𝑥,𝐴,𝑦   𝑥,𝑉
Allowed substitution hint:   𝑉(𝑦)

Proof of Theorem onsupex3
StepHypRef Expression
1 onsupcl3 43266 . 2 ((𝐴 ⊆ On ∧ 𝐴𝑉) → {𝑥 ∈ On ∣ ∀𝑦𝐴 𝑦𝑥} ∈ On)
21elexd 3460 1 ((𝐴 ⊆ On ∧ 𝐴𝑉) → {𝑥 ∈ On ∣ ∀𝑦𝐴 𝑦𝑥} ∈ V)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wcel 2111  wral 3047  {crab 3395  Vcvv 3436  wss 3897   cint 4892  Oncon0 6301
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5229  ax-nul 5239  ax-pr 5365  ax-un 7663
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-ne 2929  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4279  df-if 4471  df-pw 4547  df-sn 4572  df-pr 4574  df-op 4578  df-uni 4855  df-int 4893  df-br 5087  df-opab 5149  df-tr 5194  df-eprel 5511  df-po 5519  df-so 5520  df-fr 5564  df-we 5566  df-ord 6304  df-on 6305
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator