Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  onsupcl3 Structured version   Visualization version   GIF version

Theorem onsupcl3 43250
Description: The supremum of a set of ordinals is an ordinal. (Contributed by RP, 23-Jan-2025.)
Assertion
Ref Expression
onsupcl3 ((𝐴 ⊆ On ∧ 𝐴𝑉) → {𝑥 ∈ On ∣ ∀𝑦𝐴 𝑦𝑥} ∈ On)
Distinct variable groups:   𝑥,𝐴,𝑦   𝑥,𝑉
Allowed substitution hint:   𝑉(𝑦)

Proof of Theorem onsupcl3
StepHypRef Expression
1 onuniintrab 43243 . 2 ((𝐴 ⊆ On ∧ 𝐴𝑉) → 𝐴 = {𝑥 ∈ On ∣ ∀𝑦𝐴 𝑦𝑥})
2 ssonuni 7801 . . 3 (𝐴𝑉 → (𝐴 ⊆ On → 𝐴 ∈ On))
32impcom 407 . 2 ((𝐴 ⊆ On ∧ 𝐴𝑉) → 𝐴 ∈ On)
41, 3eqeltrrd 2841 1 ((𝐴 ⊆ On ∧ 𝐴𝑉) → {𝑥 ∈ On ∣ ∀𝑦𝐴 𝑦𝑥} ∈ On)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wcel 2107  wral 3060  {crab 3435  wss 3950   cuni 4906   cint 4945  Oncon0 6383
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2707  ax-sep 5295  ax-nul 5305  ax-pr 5431  ax-un 7756
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-clab 2714  df-cleq 2728  df-clel 2815  df-ne 2940  df-ral 3061  df-rex 3070  df-rab 3436  df-v 3481  df-dif 3953  df-un 3955  df-in 3957  df-ss 3967  df-pss 3970  df-nul 4333  df-if 4525  df-pw 4601  df-sn 4626  df-pr 4628  df-op 4632  df-uni 4907  df-int 4946  df-br 5143  df-opab 5205  df-tr 5259  df-eprel 5583  df-po 5591  df-so 5592  df-fr 5636  df-we 5638  df-ord 6386  df-on 6387
This theorem is referenced by:  onsupex3  43251
  Copyright terms: Public domain W3C validator