Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  goeleq12bg Structured version   Visualization version   GIF version

Theorem goeleq12bg 33211
Description: Two "Godel-set of membership" codes for two variables are equal iff the two corresponding variables are equal. (Contributed by AV, 8-Oct-2023.)
Assertion
Ref Expression
goeleq12bg (((𝑀 ∈ ω ∧ 𝑁 ∈ ω) ∧ (𝐼 ∈ ω ∧ 𝐽 ∈ ω)) → ((𝐼𝑔𝐽) = (𝑀𝑔𝑁) ↔ (𝐼 = 𝑀𝐽 = 𝑁)))

Proof of Theorem goeleq12bg
StepHypRef Expression
1 goel 33209 . . 3 ((𝐼 ∈ ω ∧ 𝐽 ∈ ω) → (𝐼𝑔𝐽) = ⟨∅, ⟨𝐼, 𝐽⟩⟩)
2 goel 33209 . . 3 ((𝑀 ∈ ω ∧ 𝑁 ∈ ω) → (𝑀𝑔𝑁) = ⟨∅, ⟨𝑀, 𝑁⟩⟩)
31, 2eqeqan12rd 2753 . 2 (((𝑀 ∈ ω ∧ 𝑁 ∈ ω) ∧ (𝐼 ∈ ω ∧ 𝐽 ∈ ω)) → ((𝐼𝑔𝐽) = (𝑀𝑔𝑁) ↔ ⟨∅, ⟨𝐼, 𝐽⟩⟩ = ⟨∅, ⟨𝑀, 𝑁⟩⟩))
4 0ex 5226 . . . 4 ∅ ∈ V
5 opex 5373 . . . 4 𝐼, 𝐽⟩ ∈ V
64, 5opth 5385 . . 3 (⟨∅, ⟨𝐼, 𝐽⟩⟩ = ⟨∅, ⟨𝑀, 𝑁⟩⟩ ↔ (∅ = ∅ ∧ ⟨𝐼, 𝐽⟩ = ⟨𝑀, 𝑁⟩))
7 eqid 2738 . . . . 5 ∅ = ∅
87biantrur 530 . . . 4 (⟨𝐼, 𝐽⟩ = ⟨𝑀, 𝑁⟩ ↔ (∅ = ∅ ∧ ⟨𝐼, 𝐽⟩ = ⟨𝑀, 𝑁⟩))
9 opthg 5386 . . . . 5 ((𝐼 ∈ ω ∧ 𝐽 ∈ ω) → (⟨𝐼, 𝐽⟩ = ⟨𝑀, 𝑁⟩ ↔ (𝐼 = 𝑀𝐽 = 𝑁)))
109adantl 481 . . . 4 (((𝑀 ∈ ω ∧ 𝑁 ∈ ω) ∧ (𝐼 ∈ ω ∧ 𝐽 ∈ ω)) → (⟨𝐼, 𝐽⟩ = ⟨𝑀, 𝑁⟩ ↔ (𝐼 = 𝑀𝐽 = 𝑁)))
118, 10bitr3id 284 . . 3 (((𝑀 ∈ ω ∧ 𝑁 ∈ ω) ∧ (𝐼 ∈ ω ∧ 𝐽 ∈ ω)) → ((∅ = ∅ ∧ ⟨𝐼, 𝐽⟩ = ⟨𝑀, 𝑁⟩) ↔ (𝐼 = 𝑀𝐽 = 𝑁)))
126, 11syl5bb 282 . 2 (((𝑀 ∈ ω ∧ 𝑁 ∈ ω) ∧ (𝐼 ∈ ω ∧ 𝐽 ∈ ω)) → (⟨∅, ⟨𝐼, 𝐽⟩⟩ = ⟨∅, ⟨𝑀, 𝑁⟩⟩ ↔ (𝐼 = 𝑀𝐽 = 𝑁)))
133, 12bitrd 278 1 (((𝑀 ∈ ω ∧ 𝑁 ∈ ω) ∧ (𝐼 ∈ ω ∧ 𝐽 ∈ ω)) → ((𝐼𝑔𝐽) = (𝑀𝑔𝑁) ↔ (𝐼 = 𝑀𝐽 = 𝑁)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395   = wceq 1539  wcel 2108  c0 4253  cop 4564  (class class class)co 7255  ωcom 7687  𝑔cgoe 33195
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pr 5347
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-iota 6376  df-fun 6420  df-fv 6426  df-ov 7258  df-goel 33202
This theorem is referenced by:  satfv0  33220  satfv0fun  33233
  Copyright terms: Public domain W3C validator