![]() |
Mathbox for Mario Carneiro |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > goeleq12bg | Structured version Visualization version GIF version |
Description: Two "Godel-set of membership" codes for two variables are equal iff the two corresponding variables are equal. (Contributed by AV, 8-Oct-2023.) |
Ref | Expression |
---|---|
goeleq12bg | ⊢ (((𝑀 ∈ ω ∧ 𝑁 ∈ ω) ∧ (𝐼 ∈ ω ∧ 𝐽 ∈ ω)) → ((𝐼∈𝑔𝐽) = (𝑀∈𝑔𝑁) ↔ (𝐼 = 𝑀 ∧ 𝐽 = 𝑁))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | goel 34637 | . . 3 ⊢ ((𝐼 ∈ ω ∧ 𝐽 ∈ ω) → (𝐼∈𝑔𝐽) = ⟨∅, ⟨𝐼, 𝐽⟩⟩) | |
2 | goel 34637 | . . 3 ⊢ ((𝑀 ∈ ω ∧ 𝑁 ∈ ω) → (𝑀∈𝑔𝑁) = ⟨∅, ⟨𝑀, 𝑁⟩⟩) | |
3 | 1, 2 | eqeqan12rd 2746 | . 2 ⊢ (((𝑀 ∈ ω ∧ 𝑁 ∈ ω) ∧ (𝐼 ∈ ω ∧ 𝐽 ∈ ω)) → ((𝐼∈𝑔𝐽) = (𝑀∈𝑔𝑁) ↔ ⟨∅, ⟨𝐼, 𝐽⟩⟩ = ⟨∅, ⟨𝑀, 𝑁⟩⟩)) |
4 | 0ex 5307 | . . . 4 ⊢ ∅ ∈ V | |
5 | opex 5464 | . . . 4 ⊢ ⟨𝐼, 𝐽⟩ ∈ V | |
6 | 4, 5 | opth 5476 | . . 3 ⊢ (⟨∅, ⟨𝐼, 𝐽⟩⟩ = ⟨∅, ⟨𝑀, 𝑁⟩⟩ ↔ (∅ = ∅ ∧ ⟨𝐼, 𝐽⟩ = ⟨𝑀, 𝑁⟩)) |
7 | eqid 2731 | . . . . 5 ⊢ ∅ = ∅ | |
8 | 7 | biantrur 530 | . . . 4 ⊢ (⟨𝐼, 𝐽⟩ = ⟨𝑀, 𝑁⟩ ↔ (∅ = ∅ ∧ ⟨𝐼, 𝐽⟩ = ⟨𝑀, 𝑁⟩)) |
9 | opthg 5477 | . . . . 5 ⊢ ((𝐼 ∈ ω ∧ 𝐽 ∈ ω) → (⟨𝐼, 𝐽⟩ = ⟨𝑀, 𝑁⟩ ↔ (𝐼 = 𝑀 ∧ 𝐽 = 𝑁))) | |
10 | 9 | adantl 481 | . . . 4 ⊢ (((𝑀 ∈ ω ∧ 𝑁 ∈ ω) ∧ (𝐼 ∈ ω ∧ 𝐽 ∈ ω)) → (⟨𝐼, 𝐽⟩ = ⟨𝑀, 𝑁⟩ ↔ (𝐼 = 𝑀 ∧ 𝐽 = 𝑁))) |
11 | 8, 10 | bitr3id 285 | . . 3 ⊢ (((𝑀 ∈ ω ∧ 𝑁 ∈ ω) ∧ (𝐼 ∈ ω ∧ 𝐽 ∈ ω)) → ((∅ = ∅ ∧ ⟨𝐼, 𝐽⟩ = ⟨𝑀, 𝑁⟩) ↔ (𝐼 = 𝑀 ∧ 𝐽 = 𝑁))) |
12 | 6, 11 | bitrid 283 | . 2 ⊢ (((𝑀 ∈ ω ∧ 𝑁 ∈ ω) ∧ (𝐼 ∈ ω ∧ 𝐽 ∈ ω)) → (⟨∅, ⟨𝐼, 𝐽⟩⟩ = ⟨∅, ⟨𝑀, 𝑁⟩⟩ ↔ (𝐼 = 𝑀 ∧ 𝐽 = 𝑁))) |
13 | 3, 12 | bitrd 279 | 1 ⊢ (((𝑀 ∈ ω ∧ 𝑁 ∈ ω) ∧ (𝐼 ∈ ω ∧ 𝐽 ∈ ω)) → ((𝐼∈𝑔𝐽) = (𝑀∈𝑔𝑁) ↔ (𝐼 = 𝑀 ∧ 𝐽 = 𝑁))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 = wceq 1540 ∈ wcel 2105 ∅c0 4322 ⟨cop 4634 (class class class)co 7412 ωcom 7859 ∈𝑔cgoe 34623 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2702 ax-sep 5299 ax-nul 5306 ax-pr 5427 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ral 3061 df-rex 3070 df-rab 3432 df-v 3475 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5574 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-iota 6495 df-fun 6545 df-fv 6551 df-ov 7415 df-goel 34630 |
This theorem is referenced by: satfv0 34648 satfv0fun 34661 |
Copyright terms: Public domain | W3C validator |