![]() |
Mathbox for Mario Carneiro |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > goeleq12bg | Structured version Visualization version GIF version |
Description: Two "Godel-set of membership" codes for two variables are equal iff the two corresponding variables are equal. (Contributed by AV, 8-Oct-2023.) |
Ref | Expression |
---|---|
goeleq12bg | ⊢ (((𝑀 ∈ ω ∧ 𝑁 ∈ ω) ∧ (𝐼 ∈ ω ∧ 𝐽 ∈ ω)) → ((𝐼∈𝑔𝐽) = (𝑀∈𝑔𝑁) ↔ (𝐼 = 𝑀 ∧ 𝐽 = 𝑁))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | goel 35088 | . . 3 ⊢ ((𝐼 ∈ ω ∧ 𝐽 ∈ ω) → (𝐼∈𝑔𝐽) = 〈∅, 〈𝐼, 𝐽〉〉) | |
2 | goel 35088 | . . 3 ⊢ ((𝑀 ∈ ω ∧ 𝑁 ∈ ω) → (𝑀∈𝑔𝑁) = 〈∅, 〈𝑀, 𝑁〉〉) | |
3 | 1, 2 | eqeqan12rd 2740 | . 2 ⊢ (((𝑀 ∈ ω ∧ 𝑁 ∈ ω) ∧ (𝐼 ∈ ω ∧ 𝐽 ∈ ω)) → ((𝐼∈𝑔𝐽) = (𝑀∈𝑔𝑁) ↔ 〈∅, 〈𝐼, 𝐽〉〉 = 〈∅, 〈𝑀, 𝑁〉〉)) |
4 | 0ex 5308 | . . . 4 ⊢ ∅ ∈ V | |
5 | opex 5466 | . . . 4 ⊢ 〈𝐼, 𝐽〉 ∈ V | |
6 | 4, 5 | opth 5478 | . . 3 ⊢ (〈∅, 〈𝐼, 𝐽〉〉 = 〈∅, 〈𝑀, 𝑁〉〉 ↔ (∅ = ∅ ∧ 〈𝐼, 𝐽〉 = 〈𝑀, 𝑁〉)) |
7 | eqid 2725 | . . . . 5 ⊢ ∅ = ∅ | |
8 | 7 | biantrur 529 | . . . 4 ⊢ (〈𝐼, 𝐽〉 = 〈𝑀, 𝑁〉 ↔ (∅ = ∅ ∧ 〈𝐼, 𝐽〉 = 〈𝑀, 𝑁〉)) |
9 | opthg 5479 | . . . . 5 ⊢ ((𝐼 ∈ ω ∧ 𝐽 ∈ ω) → (〈𝐼, 𝐽〉 = 〈𝑀, 𝑁〉 ↔ (𝐼 = 𝑀 ∧ 𝐽 = 𝑁))) | |
10 | 9 | adantl 480 | . . . 4 ⊢ (((𝑀 ∈ ω ∧ 𝑁 ∈ ω) ∧ (𝐼 ∈ ω ∧ 𝐽 ∈ ω)) → (〈𝐼, 𝐽〉 = 〈𝑀, 𝑁〉 ↔ (𝐼 = 𝑀 ∧ 𝐽 = 𝑁))) |
11 | 8, 10 | bitr3id 284 | . . 3 ⊢ (((𝑀 ∈ ω ∧ 𝑁 ∈ ω) ∧ (𝐼 ∈ ω ∧ 𝐽 ∈ ω)) → ((∅ = ∅ ∧ 〈𝐼, 𝐽〉 = 〈𝑀, 𝑁〉) ↔ (𝐼 = 𝑀 ∧ 𝐽 = 𝑁))) |
12 | 6, 11 | bitrid 282 | . 2 ⊢ (((𝑀 ∈ ω ∧ 𝑁 ∈ ω) ∧ (𝐼 ∈ ω ∧ 𝐽 ∈ ω)) → (〈∅, 〈𝐼, 𝐽〉〉 = 〈∅, 〈𝑀, 𝑁〉〉 ↔ (𝐼 = 𝑀 ∧ 𝐽 = 𝑁))) |
13 | 3, 12 | bitrd 278 | 1 ⊢ (((𝑀 ∈ ω ∧ 𝑁 ∈ ω) ∧ (𝐼 ∈ ω ∧ 𝐽 ∈ ω)) → ((𝐼∈𝑔𝐽) = (𝑀∈𝑔𝑁) ↔ (𝐼 = 𝑀 ∧ 𝐽 = 𝑁))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 394 = wceq 1533 ∈ wcel 2098 ∅c0 4322 〈cop 4636 (class class class)co 7419 ωcom 7871 ∈𝑔cgoe 35074 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2696 ax-sep 5300 ax-nul 5307 ax-pr 5429 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2703 df-cleq 2717 df-clel 2802 df-nfc 2877 df-ral 3051 df-rex 3060 df-rab 3419 df-v 3463 df-sbc 3774 df-csb 3890 df-dif 3947 df-un 3949 df-ss 3961 df-nul 4323 df-if 4531 df-sn 4631 df-pr 4633 df-op 4637 df-uni 4910 df-br 5150 df-opab 5212 df-mpt 5233 df-id 5576 df-xp 5684 df-rel 5685 df-cnv 5686 df-co 5687 df-dm 5688 df-iota 6501 df-fun 6551 df-fv 6557 df-ov 7422 df-goel 35081 |
This theorem is referenced by: satfv0 35099 satfv0fun 35112 |
Copyright terms: Public domain | W3C validator |