Mathbox for Mario Carneiro |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > goeleq12bg | Structured version Visualization version GIF version |
Description: Two "Godel-set of membership" codes for two variables are equal iff the two corresponding variables are equal. (Contributed by AV, 8-Oct-2023.) |
Ref | Expression |
---|---|
goeleq12bg | ⊢ (((𝑀 ∈ ω ∧ 𝑁 ∈ ω) ∧ (𝐼 ∈ ω ∧ 𝐽 ∈ ω)) → ((𝐼∈𝑔𝐽) = (𝑀∈𝑔𝑁) ↔ (𝐼 = 𝑀 ∧ 𝐽 = 𝑁))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | goel 33209 | . . 3 ⊢ ((𝐼 ∈ ω ∧ 𝐽 ∈ ω) → (𝐼∈𝑔𝐽) = 〈∅, 〈𝐼, 𝐽〉〉) | |
2 | goel 33209 | . . 3 ⊢ ((𝑀 ∈ ω ∧ 𝑁 ∈ ω) → (𝑀∈𝑔𝑁) = 〈∅, 〈𝑀, 𝑁〉〉) | |
3 | 1, 2 | eqeqan12rd 2753 | . 2 ⊢ (((𝑀 ∈ ω ∧ 𝑁 ∈ ω) ∧ (𝐼 ∈ ω ∧ 𝐽 ∈ ω)) → ((𝐼∈𝑔𝐽) = (𝑀∈𝑔𝑁) ↔ 〈∅, 〈𝐼, 𝐽〉〉 = 〈∅, 〈𝑀, 𝑁〉〉)) |
4 | 0ex 5226 | . . . 4 ⊢ ∅ ∈ V | |
5 | opex 5373 | . . . 4 ⊢ 〈𝐼, 𝐽〉 ∈ V | |
6 | 4, 5 | opth 5385 | . . 3 ⊢ (〈∅, 〈𝐼, 𝐽〉〉 = 〈∅, 〈𝑀, 𝑁〉〉 ↔ (∅ = ∅ ∧ 〈𝐼, 𝐽〉 = 〈𝑀, 𝑁〉)) |
7 | eqid 2738 | . . . . 5 ⊢ ∅ = ∅ | |
8 | 7 | biantrur 530 | . . . 4 ⊢ (〈𝐼, 𝐽〉 = 〈𝑀, 𝑁〉 ↔ (∅ = ∅ ∧ 〈𝐼, 𝐽〉 = 〈𝑀, 𝑁〉)) |
9 | opthg 5386 | . . . . 5 ⊢ ((𝐼 ∈ ω ∧ 𝐽 ∈ ω) → (〈𝐼, 𝐽〉 = 〈𝑀, 𝑁〉 ↔ (𝐼 = 𝑀 ∧ 𝐽 = 𝑁))) | |
10 | 9 | adantl 481 | . . . 4 ⊢ (((𝑀 ∈ ω ∧ 𝑁 ∈ ω) ∧ (𝐼 ∈ ω ∧ 𝐽 ∈ ω)) → (〈𝐼, 𝐽〉 = 〈𝑀, 𝑁〉 ↔ (𝐼 = 𝑀 ∧ 𝐽 = 𝑁))) |
11 | 8, 10 | bitr3id 284 | . . 3 ⊢ (((𝑀 ∈ ω ∧ 𝑁 ∈ ω) ∧ (𝐼 ∈ ω ∧ 𝐽 ∈ ω)) → ((∅ = ∅ ∧ 〈𝐼, 𝐽〉 = 〈𝑀, 𝑁〉) ↔ (𝐼 = 𝑀 ∧ 𝐽 = 𝑁))) |
12 | 6, 11 | syl5bb 282 | . 2 ⊢ (((𝑀 ∈ ω ∧ 𝑁 ∈ ω) ∧ (𝐼 ∈ ω ∧ 𝐽 ∈ ω)) → (〈∅, 〈𝐼, 𝐽〉〉 = 〈∅, 〈𝑀, 𝑁〉〉 ↔ (𝐼 = 𝑀 ∧ 𝐽 = 𝑁))) |
13 | 3, 12 | bitrd 278 | 1 ⊢ (((𝑀 ∈ ω ∧ 𝑁 ∈ ω) ∧ (𝐼 ∈ ω ∧ 𝐽 ∈ ω)) → ((𝐼∈𝑔𝐽) = (𝑀∈𝑔𝑁) ↔ (𝐼 = 𝑀 ∧ 𝐽 = 𝑁))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 = wceq 1539 ∈ wcel 2108 ∅c0 4253 〈cop 4564 (class class class)co 7255 ωcom 7687 ∈𝑔cgoe 33195 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-opab 5133 df-mpt 5154 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-iota 6376 df-fun 6420 df-fv 6426 df-ov 7258 df-goel 33202 |
This theorem is referenced by: satfv0 33220 satfv0fun 33233 |
Copyright terms: Public domain | W3C validator |