Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  goeleq12bg Structured version   Visualization version   GIF version

Theorem goeleq12bg 35361
Description: Two "Godel-set of membership" codes for two variables are equal iff the two corresponding variables are equal. (Contributed by AV, 8-Oct-2023.)
Assertion
Ref Expression
goeleq12bg (((𝑀 ∈ ω ∧ 𝑁 ∈ ω) ∧ (𝐼 ∈ ω ∧ 𝐽 ∈ ω)) → ((𝐼𝑔𝐽) = (𝑀𝑔𝑁) ↔ (𝐼 = 𝑀𝐽 = 𝑁)))

Proof of Theorem goeleq12bg
StepHypRef Expression
1 goel 35359 . . 3 ((𝐼 ∈ ω ∧ 𝐽 ∈ ω) → (𝐼𝑔𝐽) = ⟨∅, ⟨𝐼, 𝐽⟩⟩)
2 goel 35359 . . 3 ((𝑀 ∈ ω ∧ 𝑁 ∈ ω) → (𝑀𝑔𝑁) = ⟨∅, ⟨𝑀, 𝑁⟩⟩)
31, 2eqeqan12rd 2745 . 2 (((𝑀 ∈ ω ∧ 𝑁 ∈ ω) ∧ (𝐼 ∈ ω ∧ 𝐽 ∈ ω)) → ((𝐼𝑔𝐽) = (𝑀𝑔𝑁) ↔ ⟨∅, ⟨𝐼, 𝐽⟩⟩ = ⟨∅, ⟨𝑀, 𝑁⟩⟩))
4 0ex 5243 . . . 4 ∅ ∈ V
5 opex 5402 . . . 4 𝐼, 𝐽⟩ ∈ V
64, 5opth 5414 . . 3 (⟨∅, ⟨𝐼, 𝐽⟩⟩ = ⟨∅, ⟨𝑀, 𝑁⟩⟩ ↔ (∅ = ∅ ∧ ⟨𝐼, 𝐽⟩ = ⟨𝑀, 𝑁⟩))
7 eqid 2730 . . . . 5 ∅ = ∅
87biantrur 530 . . . 4 (⟨𝐼, 𝐽⟩ = ⟨𝑀, 𝑁⟩ ↔ (∅ = ∅ ∧ ⟨𝐼, 𝐽⟩ = ⟨𝑀, 𝑁⟩))
9 opthg 5415 . . . . 5 ((𝐼 ∈ ω ∧ 𝐽 ∈ ω) → (⟨𝐼, 𝐽⟩ = ⟨𝑀, 𝑁⟩ ↔ (𝐼 = 𝑀𝐽 = 𝑁)))
109adantl 481 . . . 4 (((𝑀 ∈ ω ∧ 𝑁 ∈ ω) ∧ (𝐼 ∈ ω ∧ 𝐽 ∈ ω)) → (⟨𝐼, 𝐽⟩ = ⟨𝑀, 𝑁⟩ ↔ (𝐼 = 𝑀𝐽 = 𝑁)))
118, 10bitr3id 285 . . 3 (((𝑀 ∈ ω ∧ 𝑁 ∈ ω) ∧ (𝐼 ∈ ω ∧ 𝐽 ∈ ω)) → ((∅ = ∅ ∧ ⟨𝐼, 𝐽⟩ = ⟨𝑀, 𝑁⟩) ↔ (𝐼 = 𝑀𝐽 = 𝑁)))
126, 11bitrid 283 . 2 (((𝑀 ∈ ω ∧ 𝑁 ∈ ω) ∧ (𝐼 ∈ ω ∧ 𝐽 ∈ ω)) → (⟨∅, ⟨𝐼, 𝐽⟩⟩ = ⟨∅, ⟨𝑀, 𝑁⟩⟩ ↔ (𝐼 = 𝑀𝐽 = 𝑁)))
133, 12bitrd 279 1 (((𝑀 ∈ ω ∧ 𝑁 ∈ ω) ∧ (𝐼 ∈ ω ∧ 𝐽 ∈ ω)) → ((𝐼𝑔𝐽) = (𝑀𝑔𝑁) ↔ (𝐼 = 𝑀𝐽 = 𝑁)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1541  wcel 2110  c0 4281  cop 4580  (class class class)co 7341  ωcom 7791  𝑔cgoe 35345
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2112  ax-9 2120  ax-10 2143  ax-11 2159  ax-12 2179  ax-ext 2702  ax-sep 5232  ax-nul 5242  ax-pr 5368
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ral 3046  df-rex 3055  df-rab 3394  df-v 3436  df-sbc 3740  df-csb 3849  df-dif 3903  df-un 3905  df-ss 3917  df-nul 4282  df-if 4474  df-sn 4575  df-pr 4577  df-op 4581  df-uni 4858  df-br 5090  df-opab 5152  df-mpt 5171  df-id 5509  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-iota 6433  df-fun 6479  df-fv 6485  df-ov 7344  df-goel 35352
This theorem is referenced by:  satfv0  35370  satfv0fun  35383
  Copyright terms: Public domain W3C validator