![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > orddisj | Structured version Visualization version GIF version |
Description: An ordinal class and its singleton are disjoint. (Contributed by NM, 19-May-1998.) |
Ref | Expression |
---|---|
orddisj | ⊢ (Ord 𝐴 → (𝐴 ∩ {𝐴}) = ∅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ordirr 6413 | . 2 ⊢ (Ord 𝐴 → ¬ 𝐴 ∈ 𝐴) | |
2 | disjsn 4736 | . 2 ⊢ ((𝐴 ∩ {𝐴}) = ∅ ↔ ¬ 𝐴 ∈ 𝐴) | |
3 | 1, 2 | sylibr 234 | 1 ⊢ (Ord 𝐴 → (𝐴 ∩ {𝐴}) = ∅) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 = wceq 1537 ∈ wcel 2108 ∩ cin 3975 ∅c0 4352 {csn 4648 Ord word 6394 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-ne 2947 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-br 5167 df-opab 5229 df-eprel 5599 df-fr 5652 df-we 5654 df-ord 6398 |
This theorem is referenced by: orddif 6491 omsucne 7922 tfrlem10 8443 enrefnn 9113 pssnn 9234 unfi 9238 phplem2OLD 9281 isinf 9323 isinfOLD 9324 dif1ennnALT 9339 ackbij1lem5 10292 ackbij1lem14 10301 ackbij1lem16 10303 unsnen 10622 pwfi2f1o 43053 |
Copyright terms: Public domain | W3C validator |