| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > orddisj | Structured version Visualization version GIF version | ||
| Description: An ordinal class and its singleton are disjoint. (Contributed by NM, 19-May-1998.) |
| Ref | Expression |
|---|---|
| orddisj | ⊢ (Ord 𝐴 → (𝐴 ∩ {𝐴}) = ∅) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ordirr 6353 | . 2 ⊢ (Ord 𝐴 → ¬ 𝐴 ∈ 𝐴) | |
| 2 | disjsn 4678 | . 2 ⊢ ((𝐴 ∩ {𝐴}) = ∅ ↔ ¬ 𝐴 ∈ 𝐴) | |
| 3 | 1, 2 | sylibr 234 | 1 ⊢ (Ord 𝐴 → (𝐴 ∩ {𝐴}) = ∅) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 = wceq 1540 ∈ wcel 2109 ∩ cin 3916 ∅c0 4299 {csn 4592 Ord word 6334 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pr 5390 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-ne 2927 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-br 5111 df-opab 5173 df-eprel 5541 df-fr 5594 df-we 5596 df-ord 6338 |
| This theorem is referenced by: orddif 6433 omsucne 7864 tfrlem10 8358 enrefnn 9021 pssnn 9138 unfi 9141 isinf 9214 isinfOLD 9215 dif1ennnALT 9229 ackbij1lem5 10183 ackbij1lem14 10192 ackbij1lem16 10194 unsnen 10513 pwfi2f1o 43092 |
| Copyright terms: Public domain | W3C validator |