MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  orddisj Structured version   Visualization version   GIF version

Theorem orddisj 6433
Description: An ordinal class and its singleton are disjoint. (Contributed by NM, 19-May-1998.)
Assertion
Ref Expression
orddisj (Ord 𝐴 → (𝐴 ∩ {𝐴}) = ∅)

Proof of Theorem orddisj
StepHypRef Expression
1 ordirr 6413 . 2 (Ord 𝐴 → ¬ 𝐴𝐴)
2 disjsn 4736 . 2 ((𝐴 ∩ {𝐴}) = ∅ ↔ ¬ 𝐴𝐴)
31, 2sylibr 234 1 (Ord 𝐴 → (𝐴 ∩ {𝐴}) = ∅)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4   = wceq 1537  wcel 2108  cin 3975  c0 4352  {csn 4648  Ord word 6394
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pr 5447
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-ne 2947  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-br 5167  df-opab 5229  df-eprel 5599  df-fr 5652  df-we 5654  df-ord 6398
This theorem is referenced by:  orddif  6491  omsucne  7922  tfrlem10  8443  enrefnn  9113  pssnn  9234  unfi  9238  phplem2OLD  9281  isinf  9323  isinfOLD  9324  dif1ennnALT  9339  ackbij1lem5  10292  ackbij1lem14  10301  ackbij1lem16  10303  unsnen  10622  pwfi2f1o  43053
  Copyright terms: Public domain W3C validator