| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > orddisj | Structured version Visualization version GIF version | ||
| Description: An ordinal class and its singleton are disjoint. (Contributed by NM, 19-May-1998.) |
| Ref | Expression |
|---|---|
| orddisj | ⊢ (Ord 𝐴 → (𝐴 ∩ {𝐴}) = ∅) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ordirr 6350 | . 2 ⊢ (Ord 𝐴 → ¬ 𝐴 ∈ 𝐴) | |
| 2 | disjsn 4675 | . 2 ⊢ ((𝐴 ∩ {𝐴}) = ∅ ↔ ¬ 𝐴 ∈ 𝐴) | |
| 3 | 1, 2 | sylibr 234 | 1 ⊢ (Ord 𝐴 → (𝐴 ∩ {𝐴}) = ∅) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 = wceq 1540 ∈ wcel 2109 ∩ cin 3913 ∅c0 4296 {csn 4589 Ord word 6331 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pr 5387 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-br 5108 df-opab 5170 df-eprel 5538 df-fr 5591 df-we 5593 df-ord 6335 |
| This theorem is referenced by: orddif 6430 omsucne 7861 tfrlem10 8355 enrefnn 9018 pssnn 9132 unfi 9135 isinf 9207 isinfOLD 9208 dif1ennnALT 9222 ackbij1lem5 10176 ackbij1lem14 10185 ackbij1lem16 10187 unsnen 10506 pwfi2f1o 43085 |
| Copyright terms: Public domain | W3C validator |