| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > orddisj | Structured version Visualization version GIF version | ||
| Description: An ordinal class and its singleton are disjoint. (Contributed by NM, 19-May-1998.) |
| Ref | Expression |
|---|---|
| orddisj | ⊢ (Ord 𝐴 → (𝐴 ∩ {𝐴}) = ∅) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ordirr 6324 | . 2 ⊢ (Ord 𝐴 → ¬ 𝐴 ∈ 𝐴) | |
| 2 | disjsn 4661 | . 2 ⊢ ((𝐴 ∩ {𝐴}) = ∅ ↔ ¬ 𝐴 ∈ 𝐴) | |
| 3 | 1, 2 | sylibr 234 | 1 ⊢ (Ord 𝐴 → (𝐴 ∩ {𝐴}) = ∅) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 = wceq 1541 ∈ wcel 2111 ∩ cin 3896 ∅c0 4280 {csn 4573 Ord word 6305 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pr 5368 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-ne 2929 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-br 5090 df-opab 5152 df-eprel 5514 df-fr 5567 df-we 5569 df-ord 6309 |
| This theorem is referenced by: orddif 6404 omsucne 7815 tfrlem10 8306 enrefnn 8968 pssnn 9078 unfi 9080 isinf 9149 dif1ennnALT 9161 ackbij1lem5 10114 ackbij1lem14 10123 ackbij1lem16 10125 unsnen 10444 pwfi2f1o 43137 |
| Copyright terms: Public domain | W3C validator |