MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dif1enlemOLD Structured version   Visualization version   GIF version

Theorem dif1enlemOLD 9098
Description: Obsolete version of dif1enlem 9097 as of 5-Jan-2025. (Contributed by BTernaryTau, 18-Aug-2024.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
dif1enlemOLD ((𝐹𝑉𝑀 ∈ ω ∧ 𝐹:𝐴1-1-onto→suc 𝑀) → (𝐴 ∖ {(𝐹𝑀)}) ≈ 𝑀)

Proof of Theorem dif1enlemOLD
StepHypRef Expression
1 simp1 1136 . 2 ((𝐹𝑉𝑀 ∈ ω ∧ 𝐹:𝐴1-1-onto→suc 𝑀) → 𝐹𝑉)
2 sucidg 6403 . . . . . 6 (𝑀 ∈ ω → 𝑀 ∈ suc 𝑀)
3 dff1o3 6788 . . . . . . . . 9 (𝐹:𝐴1-1-onto→suc 𝑀 ↔ (𝐹:𝐴onto→suc 𝑀 ∧ Fun 𝐹))
43simprbi 496 . . . . . . . 8 (𝐹:𝐴1-1-onto→suc 𝑀 → Fun 𝐹)
54adantr 480 . . . . . . 7 ((𝐹:𝐴1-1-onto→suc 𝑀𝑀 ∈ suc 𝑀) → Fun 𝐹)
6 f1ofo 6789 . . . . . . . . 9 (𝐹:𝐴1-1-onto→suc 𝑀𝐹:𝐴onto→suc 𝑀)
7 f1ofn 6783 . . . . . . . . . 10 (𝐹:𝐴1-1-onto→suc 𝑀𝐹 Fn 𝐴)
8 fnresdm 6619 . . . . . . . . . 10 (𝐹 Fn 𝐴 → (𝐹𝐴) = 𝐹)
9 foeq1 6750 . . . . . . . . . 10 ((𝐹𝐴) = 𝐹 → ((𝐹𝐴):𝐴onto→suc 𝑀𝐹:𝐴onto→suc 𝑀))
107, 8, 93syl 18 . . . . . . . . 9 (𝐹:𝐴1-1-onto→suc 𝑀 → ((𝐹𝐴):𝐴onto→suc 𝑀𝐹:𝐴onto→suc 𝑀))
116, 10mpbird 257 . . . . . . . 8 (𝐹:𝐴1-1-onto→suc 𝑀 → (𝐹𝐴):𝐴onto→suc 𝑀)
1211adantr 480 . . . . . . 7 ((𝐹:𝐴1-1-onto→suc 𝑀𝑀 ∈ suc 𝑀) → (𝐹𝐴):𝐴onto→suc 𝑀)
137adantr 480 . . . . . . . . 9 ((𝐹:𝐴1-1-onto→suc 𝑀𝑀 ∈ suc 𝑀) → 𝐹 Fn 𝐴)
14 f1ocnvdm 7242 . . . . . . . . 9 ((𝐹:𝐴1-1-onto→suc 𝑀𝑀 ∈ suc 𝑀) → (𝐹𝑀) ∈ 𝐴)
15 f1ocnvfv2 7234 . . . . . . . . . 10 ((𝐹:𝐴1-1-onto→suc 𝑀𝑀 ∈ suc 𝑀) → (𝐹‘(𝐹𝑀)) = 𝑀)
16 snidg 4620 . . . . . . . . . . 11 (𝑀 ∈ suc 𝑀𝑀 ∈ {𝑀})
1716adantl 481 . . . . . . . . . 10 ((𝐹:𝐴1-1-onto→suc 𝑀𝑀 ∈ suc 𝑀) → 𝑀 ∈ {𝑀})
1815, 17eqeltrd 2828 . . . . . . . . 9 ((𝐹:𝐴1-1-onto→suc 𝑀𝑀 ∈ suc 𝑀) → (𝐹‘(𝐹𝑀)) ∈ {𝑀})
19 fressnfv 7114 . . . . . . . . . 10 ((𝐹 Fn 𝐴 ∧ (𝐹𝑀) ∈ 𝐴) → ((𝐹 ↾ {(𝐹𝑀)}):{(𝐹𝑀)}⟶{𝑀} ↔ (𝐹‘(𝐹𝑀)) ∈ {𝑀}))
2019biimp3ar 1472 . . . . . . . . 9 ((𝐹 Fn 𝐴 ∧ (𝐹𝑀) ∈ 𝐴 ∧ (𝐹‘(𝐹𝑀)) ∈ {𝑀}) → (𝐹 ↾ {(𝐹𝑀)}):{(𝐹𝑀)}⟶{𝑀})
2113, 14, 18, 20syl3anc 1373 . . . . . . . 8 ((𝐹:𝐴1-1-onto→suc 𝑀𝑀 ∈ suc 𝑀) → (𝐹 ↾ {(𝐹𝑀)}):{(𝐹𝑀)}⟶{𝑀})
22 disjsn 4671 . . . . . . . . . . . 12 ((𝐴 ∩ {(𝐹𝑀)}) = ∅ ↔ ¬ (𝐹𝑀) ∈ 𝐴)
2322con2bii 357 . . . . . . . . . . 11 ((𝐹𝑀) ∈ 𝐴 ↔ ¬ (𝐴 ∩ {(𝐹𝑀)}) = ∅)
2414, 23sylib 218 . . . . . . . . . 10 ((𝐹:𝐴1-1-onto→suc 𝑀𝑀 ∈ suc 𝑀) → ¬ (𝐴 ∩ {(𝐹𝑀)}) = ∅)
25 fnresdisj 6620 . . . . . . . . . . . 12 (𝐹 Fn 𝐴 → ((𝐴 ∩ {(𝐹𝑀)}) = ∅ ↔ (𝐹 ↾ {(𝐹𝑀)}) = ∅))
267, 25syl 17 . . . . . . . . . . 11 (𝐹:𝐴1-1-onto→suc 𝑀 → ((𝐴 ∩ {(𝐹𝑀)}) = ∅ ↔ (𝐹 ↾ {(𝐹𝑀)}) = ∅))
2726adantr 480 . . . . . . . . . 10 ((𝐹:𝐴1-1-onto→suc 𝑀𝑀 ∈ suc 𝑀) → ((𝐴 ∩ {(𝐹𝑀)}) = ∅ ↔ (𝐹 ↾ {(𝐹𝑀)}) = ∅))
2824, 27mtbid 324 . . . . . . . . 9 ((𝐹:𝐴1-1-onto→suc 𝑀𝑀 ∈ suc 𝑀) → ¬ (𝐹 ↾ {(𝐹𝑀)}) = ∅)
2928neqned 2932 . . . . . . . 8 ((𝐹:𝐴1-1-onto→suc 𝑀𝑀 ∈ suc 𝑀) → (𝐹 ↾ {(𝐹𝑀)}) ≠ ∅)
30 foconst 6769 . . . . . . . 8 (((𝐹 ↾ {(𝐹𝑀)}):{(𝐹𝑀)}⟶{𝑀} ∧ (𝐹 ↾ {(𝐹𝑀)}) ≠ ∅) → (𝐹 ↾ {(𝐹𝑀)}):{(𝐹𝑀)}–onto→{𝑀})
3121, 29, 30syl2anc 584 . . . . . . 7 ((𝐹:𝐴1-1-onto→suc 𝑀𝑀 ∈ suc 𝑀) → (𝐹 ↾ {(𝐹𝑀)}):{(𝐹𝑀)}–onto→{𝑀})
32 resdif 6803 . . . . . . 7 ((Fun 𝐹 ∧ (𝐹𝐴):𝐴onto→suc 𝑀 ∧ (𝐹 ↾ {(𝐹𝑀)}):{(𝐹𝑀)}–onto→{𝑀}) → (𝐹 ↾ (𝐴 ∖ {(𝐹𝑀)})):(𝐴 ∖ {(𝐹𝑀)})–1-1-onto→(suc 𝑀 ∖ {𝑀}))
335, 12, 31, 32syl3anc 1373 . . . . . 6 ((𝐹:𝐴1-1-onto→suc 𝑀𝑀 ∈ suc 𝑀) → (𝐹 ↾ (𝐴 ∖ {(𝐹𝑀)})):(𝐴 ∖ {(𝐹𝑀)})–1-1-onto→(suc 𝑀 ∖ {𝑀}))
342, 33sylan2 593 . . . . 5 ((𝐹:𝐴1-1-onto→suc 𝑀𝑀 ∈ ω) → (𝐹 ↾ (𝐴 ∖ {(𝐹𝑀)})):(𝐴 ∖ {(𝐹𝑀)})–1-1-onto→(suc 𝑀 ∖ {𝑀}))
35 nnord 7830 . . . . . . . 8 (𝑀 ∈ ω → Ord 𝑀)
36 orddif 6418 . . . . . . . 8 (Ord 𝑀𝑀 = (suc 𝑀 ∖ {𝑀}))
3735, 36syl 17 . . . . . . 7 (𝑀 ∈ ω → 𝑀 = (suc 𝑀 ∖ {𝑀}))
3837f1oeq3d 6779 . . . . . 6 (𝑀 ∈ ω → ((𝐹 ↾ (𝐴 ∖ {(𝐹𝑀)})):(𝐴 ∖ {(𝐹𝑀)})–1-1-onto𝑀 ↔ (𝐹 ↾ (𝐴 ∖ {(𝐹𝑀)})):(𝐴 ∖ {(𝐹𝑀)})–1-1-onto→(suc 𝑀 ∖ {𝑀})))
3938adantl 481 . . . . 5 ((𝐹:𝐴1-1-onto→suc 𝑀𝑀 ∈ ω) → ((𝐹 ↾ (𝐴 ∖ {(𝐹𝑀)})):(𝐴 ∖ {(𝐹𝑀)})–1-1-onto𝑀 ↔ (𝐹 ↾ (𝐴 ∖ {(𝐹𝑀)})):(𝐴 ∖ {(𝐹𝑀)})–1-1-onto→(suc 𝑀 ∖ {𝑀})))
4034, 39mpbird 257 . . . 4 ((𝐹:𝐴1-1-onto→suc 𝑀𝑀 ∈ ω) → (𝐹 ↾ (𝐴 ∖ {(𝐹𝑀)})):(𝐴 ∖ {(𝐹𝑀)})–1-1-onto𝑀)
4140ancoms 458 . . 3 ((𝑀 ∈ ω ∧ 𝐹:𝐴1-1-onto→suc 𝑀) → (𝐹 ↾ (𝐴 ∖ {(𝐹𝑀)})):(𝐴 ∖ {(𝐹𝑀)})–1-1-onto𝑀)
42413adant1 1130 . 2 ((𝐹𝑉𝑀 ∈ ω ∧ 𝐹:𝐴1-1-onto→suc 𝑀) → (𝐹 ↾ (𝐴 ∖ {(𝐹𝑀)})):(𝐴 ∖ {(𝐹𝑀)})–1-1-onto𝑀)
43 resexg 5987 . . 3 (𝐹𝑉 → (𝐹 ↾ (𝐴 ∖ {(𝐹𝑀)})) ∈ V)
44 f1oen3g 8915 . . 3 (((𝐹 ↾ (𝐴 ∖ {(𝐹𝑀)})) ∈ V ∧ (𝐹 ↾ (𝐴 ∖ {(𝐹𝑀)})):(𝐴 ∖ {(𝐹𝑀)})–1-1-onto𝑀) → (𝐴 ∖ {(𝐹𝑀)}) ≈ 𝑀)
4543, 44sylan 580 . 2 ((𝐹𝑉 ∧ (𝐹 ↾ (𝐴 ∖ {(𝐹𝑀)})):(𝐴 ∖ {(𝐹𝑀)})–1-1-onto𝑀) → (𝐴 ∖ {(𝐹𝑀)}) ≈ 𝑀)
461, 42, 45syl2anc 584 1 ((𝐹𝑉𝑀 ∈ ω ∧ 𝐹:𝐴1-1-onto→suc 𝑀) → (𝐴 ∖ {(𝐹𝑀)}) ≈ 𝑀)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wne 2925  Vcvv 3444  cdif 3908  cin 3910  c0 4292  {csn 4585   class class class wbr 5102  ccnv 5630  cres 5633  Ord word 6319  suc csuc 6322  Fun wfun 6493   Fn wfn 6494  wf 6495  ontowfo 6497  1-1-ontowf1o 6498  cfv 6499  ωcom 7822  cen 8892
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5246  ax-nul 5256  ax-pr 5382  ax-un 7691
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3352  df-rab 3403  df-v 3446  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-br 5103  df-opab 5165  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-ord 6323  df-on 6324  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-om 7823  df-en 8896
This theorem is referenced by:  rexdif1enOLD  9100  dif1enOLD  9103
  Copyright terms: Public domain W3C validator