MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ordelpss Structured version   Visualization version   GIF version

Theorem ordelpss 6339
Description: For ordinal classes, membership is equivalent to strict inclusion. Corollary 7.8 of [TakeutiZaring] p. 37. (Contributed by NM, 17-Jun-1998.)
Assertion
Ref Expression
ordelpss ((Ord 𝐴 ∧ Ord 𝐵) → (𝐴𝐵𝐴𝐵))

Proof of Theorem ordelpss
StepHypRef Expression
1 ordelssne 6338 . 2 ((Ord 𝐴 ∧ Ord 𝐵) → (𝐴𝐵 ↔ (𝐴𝐵𝐴𝐵)))
2 df-pss 3925 . 2 (𝐴𝐵 ↔ (𝐴𝐵𝐴𝐵))
31, 2bitr4di 289 1 ((Ord 𝐴 ∧ Ord 𝐵) → (𝐴𝐵𝐴𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wcel 2109  wne 2925  wss 3905  wpss 3906  Ord word 6310
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701  ax-sep 5238  ax-nul 5248  ax-pr 5374
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3397  df-v 3440  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-pss 3925  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-br 5096  df-opab 5158  df-tr 5203  df-eprel 5523  df-po 5531  df-so 5532  df-fr 5576  df-we 5578  df-ord 6314
This theorem is referenced by:  ordsseleq  6340  ordtri3or  6343  ordtr2  6356  onpsssuc  7758  php4  9134  nndomog  9137  onomeneq  9138  findcard3  9187  ordsssucb  43328  oaun3lem1  43367  oaun3lem2  43368  ordpss  44444
  Copyright terms: Public domain W3C validator