MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ordelpss Structured version   Visualization version   GIF version

Theorem ordelpss 6192
Description: For ordinal classes, membership is equivalent to strict inclusion. Corollary 7.8 of [TakeutiZaring] p. 37. (Contributed by NM, 17-Jun-1998.)
Assertion
Ref Expression
ordelpss ((Ord 𝐴 ∧ Ord 𝐵) → (𝐴𝐵𝐴𝐵))

Proof of Theorem ordelpss
StepHypRef Expression
1 ordelssne 6191 . 2 ((Ord 𝐴 ∧ Ord 𝐵) → (𝐴𝐵 ↔ (𝐴𝐵𝐴𝐵)))
2 df-pss 3929 . 2 (𝐴𝐵 ↔ (𝐴𝐵𝐴𝐵))
31, 2syl6bbr 292 1 ((Ord 𝐴 ∧ Ord 𝐵) → (𝐴𝐵𝐴𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399  wcel 2115  wne 3007  wss 3910  wpss 3911  Ord word 6163
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2117  ax-9 2125  ax-10 2146  ax-11 2162  ax-12 2178  ax-ext 2793  ax-sep 5176  ax-nul 5183  ax-pr 5303
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2071  df-mo 2623  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2892  df-nfc 2960  df-ne 3008  df-ral 3131  df-rex 3132  df-rab 3135  df-v 3473  df-sbc 3750  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4267  df-if 4441  df-sn 4541  df-pr 4543  df-op 4547  df-uni 4812  df-br 5040  df-opab 5102  df-tr 5146  df-eprel 5438  df-po 5447  df-so 5448  df-fr 5487  df-we 5489  df-ord 6167
This theorem is referenced by:  ordsseleq  6193  ordtri3or  6196  ordtr2  6208  onpsssuc  7509  php4  8680  nndomog  8684  ordpss  40938
  Copyright terms: Public domain W3C validator