Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  digexp Structured version   Visualization version   GIF version

Theorem digexp 45841
Description: The 𝐾 th digit of a power to the base is either 1 or 0. (Contributed by AV, 24-May-2020.)
Assertion
Ref Expression
digexp ((𝐵 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0𝑁 ∈ ℕ0) → (𝐾(digit‘𝐵)(𝐵𝑁)) = if(𝐾 = 𝑁, 1, 0))

Proof of Theorem digexp
StepHypRef Expression
1 eluzelcn 12523 . . . . . . . 8 (𝐵 ∈ (ℤ‘2) → 𝐵 ∈ ℂ)
2 eluz2nn 12553 . . . . . . . . 9 (𝐵 ∈ (ℤ‘2) → 𝐵 ∈ ℕ)
32nnne0d 11953 . . . . . . . 8 (𝐵 ∈ (ℤ‘2) → 𝐵 ≠ 0)
41, 3jca 511 . . . . . . 7 (𝐵 ∈ (ℤ‘2) → (𝐵 ∈ ℂ ∧ 𝐵 ≠ 0))
543ad2ant1 1131 . . . . . 6 ((𝐵 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0𝑁 ∈ ℕ0) → (𝐵 ∈ ℂ ∧ 𝐵 ≠ 0))
6 nn0z 12273 . . . . . . . . 9 (𝐾 ∈ ℕ0𝐾 ∈ ℤ)
7 nn0z 12273 . . . . . . . . 9 (𝑁 ∈ ℕ0𝑁 ∈ ℤ)
86, 7anim12i 612 . . . . . . . 8 ((𝐾 ∈ ℕ0𝑁 ∈ ℕ0) → (𝐾 ∈ ℤ ∧ 𝑁 ∈ ℤ))
98ancomd 461 . . . . . . 7 ((𝐾 ∈ ℕ0𝑁 ∈ ℕ0) → (𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ))
1093adant1 1128 . . . . . 6 ((𝐵 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0𝑁 ∈ ℕ0) → (𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ))
11 expsub 13759 . . . . . 6 (((𝐵 ∈ ℂ ∧ 𝐵 ≠ 0) ∧ (𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ)) → (𝐵↑(𝑁𝐾)) = ((𝐵𝑁) / (𝐵𝐾)))
125, 10, 11syl2anc 583 . . . . 5 ((𝐵 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0𝑁 ∈ ℕ0) → (𝐵↑(𝑁𝐾)) = ((𝐵𝑁) / (𝐵𝐾)))
1312eqcomd 2744 . . . 4 ((𝐵 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0𝑁 ∈ ℕ0) → ((𝐵𝑁) / (𝐵𝐾)) = (𝐵↑(𝑁𝐾)))
1413fveq2d 6760 . . 3 ((𝐵 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0𝑁 ∈ ℕ0) → (⌊‘((𝐵𝑁) / (𝐵𝐾))) = (⌊‘(𝐵↑(𝑁𝐾))))
1514oveq1d 7270 . 2 ((𝐵 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0𝑁 ∈ ℕ0) → ((⌊‘((𝐵𝑁) / (𝐵𝐾))) mod 𝐵) = ((⌊‘(𝐵↑(𝑁𝐾))) mod 𝐵))
1623ad2ant1 1131 . . 3 ((𝐵 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0𝑁 ∈ ℕ0) → 𝐵 ∈ ℕ)
17 simp2 1135 . . 3 ((𝐵 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0𝑁 ∈ ℕ0) → 𝐾 ∈ ℕ0)
18 eluzelre 12522 . . . . . . 7 (𝐵 ∈ (ℤ‘2) → 𝐵 ∈ ℝ)
19 reexpcl 13727 . . . . . . 7 ((𝐵 ∈ ℝ ∧ 𝑁 ∈ ℕ0) → (𝐵𝑁) ∈ ℝ)
2018, 19sylan 579 . . . . . 6 ((𝐵 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ0) → (𝐵𝑁) ∈ ℝ)
2118adantr 480 . . . . . . 7 ((𝐵 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ0) → 𝐵 ∈ ℝ)
22 simpr 484 . . . . . . 7 ((𝐵 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ0) → 𝑁 ∈ ℕ0)
23 eluzge2nn0 12556 . . . . . . . . 9 (𝐵 ∈ (ℤ‘2) → 𝐵 ∈ ℕ0)
2423nn0ge0d 12226 . . . . . . . 8 (𝐵 ∈ (ℤ‘2) → 0 ≤ 𝐵)
2524adantr 480 . . . . . . 7 ((𝐵 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ0) → 0 ≤ 𝐵)
2621, 22, 25expge0d 13810 . . . . . 6 ((𝐵 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ0) → 0 ≤ (𝐵𝑁))
2720, 26jca 511 . . . . 5 ((𝐵 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ0) → ((𝐵𝑁) ∈ ℝ ∧ 0 ≤ (𝐵𝑁)))
28273adant2 1129 . . . 4 ((𝐵 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0𝑁 ∈ ℕ0) → ((𝐵𝑁) ∈ ℝ ∧ 0 ≤ (𝐵𝑁)))
29 elrege0 13115 . . . 4 ((𝐵𝑁) ∈ (0[,)+∞) ↔ ((𝐵𝑁) ∈ ℝ ∧ 0 ≤ (𝐵𝑁)))
3028, 29sylibr 233 . . 3 ((𝐵 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0𝑁 ∈ ℕ0) → (𝐵𝑁) ∈ (0[,)+∞))
31 nn0digval 45834 . . 3 ((𝐵 ∈ ℕ ∧ 𝐾 ∈ ℕ0 ∧ (𝐵𝑁) ∈ (0[,)+∞)) → (𝐾(digit‘𝐵)(𝐵𝑁)) = ((⌊‘((𝐵𝑁) / (𝐵𝐾))) mod 𝐵))
3216, 17, 30, 31syl3anc 1369 . 2 ((𝐵 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0𝑁 ∈ ℕ0) → (𝐾(digit‘𝐵)(𝐵𝑁)) = ((⌊‘((𝐵𝑁) / (𝐵𝐾))) mod 𝐵))
33 simpr 484 . . . . . . . . . . 11 (((𝐵 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0𝑁 ∈ ℕ0) ∧ 𝐾 = 𝑁) → 𝐾 = 𝑁)
3433eqcomd 2744 . . . . . . . . . 10 (((𝐵 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0𝑁 ∈ ℕ0) ∧ 𝐾 = 𝑁) → 𝑁 = 𝐾)
35 nn0cn 12173 . . . . . . . . . . . . 13 (𝑁 ∈ ℕ0𝑁 ∈ ℂ)
36353ad2ant3 1133 . . . . . . . . . . . 12 ((𝐵 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0𝑁 ∈ ℕ0) → 𝑁 ∈ ℂ)
37 nn0cn 12173 . . . . . . . . . . . . 13 (𝐾 ∈ ℕ0𝐾 ∈ ℂ)
38373ad2ant2 1132 . . . . . . . . . . . 12 ((𝐵 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0𝑁 ∈ ℕ0) → 𝐾 ∈ ℂ)
3936, 38subeq0ad 11272 . . . . . . . . . . 11 ((𝐵 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0𝑁 ∈ ℕ0) → ((𝑁𝐾) = 0 ↔ 𝑁 = 𝐾))
4039adantr 480 . . . . . . . . . 10 (((𝐵 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0𝑁 ∈ ℕ0) ∧ 𝐾 = 𝑁) → ((𝑁𝐾) = 0 ↔ 𝑁 = 𝐾))
4134, 40mpbird 256 . . . . . . . . 9 (((𝐵 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0𝑁 ∈ ℕ0) ∧ 𝐾 = 𝑁) → (𝑁𝐾) = 0)
4241oveq2d 7271 . . . . . . . 8 (((𝐵 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0𝑁 ∈ ℕ0) ∧ 𝐾 = 𝑁) → (𝐵↑(𝑁𝐾)) = (𝐵↑0))
431exp0d 13786 . . . . . . . . . 10 (𝐵 ∈ (ℤ‘2) → (𝐵↑0) = 1)
44433ad2ant1 1131 . . . . . . . . 9 ((𝐵 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0𝑁 ∈ ℕ0) → (𝐵↑0) = 1)
4544adantr 480 . . . . . . . 8 (((𝐵 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0𝑁 ∈ ℕ0) ∧ 𝐾 = 𝑁) → (𝐵↑0) = 1)
4642, 45eqtrd 2778 . . . . . . 7 (((𝐵 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0𝑁 ∈ ℕ0) ∧ 𝐾 = 𝑁) → (𝐵↑(𝑁𝐾)) = 1)
4746fveq2d 6760 . . . . . 6 (((𝐵 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0𝑁 ∈ ℕ0) ∧ 𝐾 = 𝑁) → (⌊‘(𝐵↑(𝑁𝐾))) = (⌊‘1))
48 1zzd 12281 . . . . . . 7 (((𝐵 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0𝑁 ∈ ℕ0) ∧ 𝐾 = 𝑁) → 1 ∈ ℤ)
49 flid 13456 . . . . . . 7 (1 ∈ ℤ → (⌊‘1) = 1)
5048, 49syl 17 . . . . . 6 (((𝐵 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0𝑁 ∈ ℕ0) ∧ 𝐾 = 𝑁) → (⌊‘1) = 1)
5147, 50eqtrd 2778 . . . . 5 (((𝐵 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0𝑁 ∈ ℕ0) ∧ 𝐾 = 𝑁) → (⌊‘(𝐵↑(𝑁𝐾))) = 1)
5251oveq1d 7270 . . . 4 (((𝐵 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0𝑁 ∈ ℕ0) ∧ 𝐾 = 𝑁) → ((⌊‘(𝐵↑(𝑁𝐾))) mod 𝐵) = (1 mod 𝐵))
53 eluz2gt1 12589 . . . . . . 7 (𝐵 ∈ (ℤ‘2) → 1 < 𝐵)
54 1mod 13551 . . . . . . 7 ((𝐵 ∈ ℝ ∧ 1 < 𝐵) → (1 mod 𝐵) = 1)
5518, 53, 54syl2anc 583 . . . . . 6 (𝐵 ∈ (ℤ‘2) → (1 mod 𝐵) = 1)
56553ad2ant1 1131 . . . . 5 ((𝐵 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0𝑁 ∈ ℕ0) → (1 mod 𝐵) = 1)
5756adantr 480 . . . 4 (((𝐵 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0𝑁 ∈ ℕ0) ∧ 𝐾 = 𝑁) → (1 mod 𝐵) = 1)
5852, 57eqtr2d 2779 . . 3 (((𝐵 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0𝑁 ∈ ℕ0) ∧ 𝐾 = 𝑁) → 1 = ((⌊‘(𝐵↑(𝑁𝐾))) mod 𝐵))
59 simprl1 1216 . . . . . . . . 9 ((𝑁 < 𝐾 ∧ ((𝐵 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0𝑁 ∈ ℕ0) ∧ ¬ 𝐾 = 𝑁)) → 𝐵 ∈ (ℤ‘2))
607adantl 481 . . . . . . . . . . . 12 ((𝐾 ∈ ℕ0𝑁 ∈ ℕ0) → 𝑁 ∈ ℤ)
616adantr 480 . . . . . . . . . . . 12 ((𝐾 ∈ ℕ0𝑁 ∈ ℕ0) → 𝐾 ∈ ℤ)
6260, 61zsubcld 12360 . . . . . . . . . . 11 ((𝐾 ∈ ℕ0𝑁 ∈ ℕ0) → (𝑁𝐾) ∈ ℤ)
63623adant1 1128 . . . . . . . . . 10 ((𝐵 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0𝑁 ∈ ℕ0) → (𝑁𝐾) ∈ ℤ)
6463ad2antrl 724 . . . . . . . . 9 ((𝑁 < 𝐾 ∧ ((𝐵 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0𝑁 ∈ ℕ0) ∧ ¬ 𝐾 = 𝑁)) → (𝑁𝐾) ∈ ℤ)
65 nn0re 12172 . . . . . . . . . . . . . 14 (𝑁 ∈ ℕ0𝑁 ∈ ℝ)
66653ad2ant3 1133 . . . . . . . . . . . . 13 ((𝐵 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0𝑁 ∈ ℕ0) → 𝑁 ∈ ℝ)
67 nn0re 12172 . . . . . . . . . . . . . 14 (𝐾 ∈ ℕ0𝐾 ∈ ℝ)
68673ad2ant2 1132 . . . . . . . . . . . . 13 ((𝐵 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0𝑁 ∈ ℕ0) → 𝐾 ∈ ℝ)
6966, 68sublt0d 11531 . . . . . . . . . . . 12 ((𝐵 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0𝑁 ∈ ℕ0) → ((𝑁𝐾) < 0 ↔ 𝑁 < 𝐾))
7069biimprd 247 . . . . . . . . . . 11 ((𝐵 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0𝑁 ∈ ℕ0) → (𝑁 < 𝐾 → (𝑁𝐾) < 0))
7170adantr 480 . . . . . . . . . 10 (((𝐵 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0𝑁 ∈ ℕ0) ∧ ¬ 𝐾 = 𝑁) → (𝑁 < 𝐾 → (𝑁𝐾) < 0))
7271impcom 407 . . . . . . . . 9 ((𝑁 < 𝐾 ∧ ((𝐵 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0𝑁 ∈ ℕ0) ∧ ¬ 𝐾 = 𝑁)) → (𝑁𝐾) < 0)
73 expnegico01 45747 . . . . . . . . 9 ((𝐵 ∈ (ℤ‘2) ∧ (𝑁𝐾) ∈ ℤ ∧ (𝑁𝐾) < 0) → (𝐵↑(𝑁𝐾)) ∈ (0[,)1))
7459, 64, 72, 73syl3anc 1369 . . . . . . . 8 ((𝑁 < 𝐾 ∧ ((𝐵 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0𝑁 ∈ ℕ0) ∧ ¬ 𝐾 = 𝑁)) → (𝐵↑(𝑁𝐾)) ∈ (0[,)1))
75 ico01fl0 13467 . . . . . . . 8 ((𝐵↑(𝑁𝐾)) ∈ (0[,)1) → (⌊‘(𝐵↑(𝑁𝐾))) = 0)
7674, 75syl 17 . . . . . . 7 ((𝑁 < 𝐾 ∧ ((𝐵 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0𝑁 ∈ ℕ0) ∧ ¬ 𝐾 = 𝑁)) → (⌊‘(𝐵↑(𝑁𝐾))) = 0)
7776oveq1d 7270 . . . . . 6 ((𝑁 < 𝐾 ∧ ((𝐵 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0𝑁 ∈ ℕ0) ∧ ¬ 𝐾 = 𝑁)) → ((⌊‘(𝐵↑(𝑁𝐾))) mod 𝐵) = (0 mod 𝐵))
782nnrpd 12699 . . . . . . . . 9 (𝐵 ∈ (ℤ‘2) → 𝐵 ∈ ℝ+)
79 0mod 13550 . . . . . . . . 9 (𝐵 ∈ ℝ+ → (0 mod 𝐵) = 0)
8078, 79syl 17 . . . . . . . 8 (𝐵 ∈ (ℤ‘2) → (0 mod 𝐵) = 0)
81803ad2ant1 1131 . . . . . . 7 ((𝐵 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0𝑁 ∈ ℕ0) → (0 mod 𝐵) = 0)
8281ad2antrl 724 . . . . . 6 ((𝑁 < 𝐾 ∧ ((𝐵 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0𝑁 ∈ ℕ0) ∧ ¬ 𝐾 = 𝑁)) → (0 mod 𝐵) = 0)
8377, 82eqtrd 2778 . . . . 5 ((𝑁 < 𝐾 ∧ ((𝐵 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0𝑁 ∈ ℕ0) ∧ ¬ 𝐾 = 𝑁)) → ((⌊‘(𝐵↑(𝑁𝐾))) mod 𝐵) = 0)
84 eluzelz 12521 . . . . . . . . . . 11 (𝐵 ∈ (ℤ‘2) → 𝐵 ∈ ℤ)
85843ad2ant1 1131 . . . . . . . . . 10 ((𝐵 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0𝑁 ∈ ℕ0) → 𝐵 ∈ ℤ)
8685ad2antrl 724 . . . . . . . . 9 ((¬ 𝑁 < 𝐾 ∧ ((𝐵 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0𝑁 ∈ ℕ0) ∧ ¬ 𝐾 = 𝑁)) → 𝐵 ∈ ℤ)
8767, 65anim12i 612 . . . . . . . . . . . . . . 15 ((𝐾 ∈ ℕ0𝑁 ∈ ℕ0) → (𝐾 ∈ ℝ ∧ 𝑁 ∈ ℝ))
88 lenlt 10984 . . . . . . . . . . . . . . . 16 ((𝐾 ∈ ℝ ∧ 𝑁 ∈ ℝ) → (𝐾𝑁 ↔ ¬ 𝑁 < 𝐾))
8988bicomd 222 . . . . . . . . . . . . . . 15 ((𝐾 ∈ ℝ ∧ 𝑁 ∈ ℝ) → (¬ 𝑁 < 𝐾𝐾𝑁))
9087, 89syl 17 . . . . . . . . . . . . . 14 ((𝐾 ∈ ℕ0𝑁 ∈ ℕ0) → (¬ 𝑁 < 𝐾𝐾𝑁))
9190biimpd 228 . . . . . . . . . . . . 13 ((𝐾 ∈ ℕ0𝑁 ∈ ℕ0) → (¬ 𝑁 < 𝐾𝐾𝑁))
92913adant1 1128 . . . . . . . . . . . 12 ((𝐵 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0𝑁 ∈ ℕ0) → (¬ 𝑁 < 𝐾𝐾𝑁))
9392adantr 480 . . . . . . . . . . 11 (((𝐵 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0𝑁 ∈ ℕ0) ∧ ¬ 𝐾 = 𝑁) → (¬ 𝑁 < 𝐾𝐾𝑁))
9493impcom 407 . . . . . . . . . 10 ((¬ 𝑁 < 𝐾 ∧ ((𝐵 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0𝑁 ∈ ℕ0) ∧ ¬ 𝐾 = 𝑁)) → 𝐾𝑁)
95 3simpc 1148 . . . . . . . . . . . 12 ((𝐵 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0𝑁 ∈ ℕ0) → (𝐾 ∈ ℕ0𝑁 ∈ ℕ0))
9695ad2antrl 724 . . . . . . . . . . 11 ((¬ 𝑁 < 𝐾 ∧ ((𝐵 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0𝑁 ∈ ℕ0) ∧ ¬ 𝐾 = 𝑁)) → (𝐾 ∈ ℕ0𝑁 ∈ ℕ0))
97 nn0sub 12213 . . . . . . . . . . 11 ((𝐾 ∈ ℕ0𝑁 ∈ ℕ0) → (𝐾𝑁 ↔ (𝑁𝐾) ∈ ℕ0))
9896, 97syl 17 . . . . . . . . . 10 ((¬ 𝑁 < 𝐾 ∧ ((𝐵 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0𝑁 ∈ ℕ0) ∧ ¬ 𝐾 = 𝑁)) → (𝐾𝑁 ↔ (𝑁𝐾) ∈ ℕ0))
9994, 98mpbid 231 . . . . . . . . 9 ((¬ 𝑁 < 𝐾 ∧ ((𝐵 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0𝑁 ∈ ℕ0) ∧ ¬ 𝐾 = 𝑁)) → (𝑁𝐾) ∈ ℕ0)
100 zexpcl 13725 . . . . . . . . 9 ((𝐵 ∈ ℤ ∧ (𝑁𝐾) ∈ ℕ0) → (𝐵↑(𝑁𝐾)) ∈ ℤ)
10186, 99, 100syl2anc 583 . . . . . . . 8 ((¬ 𝑁 < 𝐾 ∧ ((𝐵 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0𝑁 ∈ ℕ0) ∧ ¬ 𝐾 = 𝑁)) → (𝐵↑(𝑁𝐾)) ∈ ℤ)
102 flid 13456 . . . . . . . 8 ((𝐵↑(𝑁𝐾)) ∈ ℤ → (⌊‘(𝐵↑(𝑁𝐾))) = (𝐵↑(𝑁𝐾)))
103101, 102syl 17 . . . . . . 7 ((¬ 𝑁 < 𝐾 ∧ ((𝐵 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0𝑁 ∈ ℕ0) ∧ ¬ 𝐾 = 𝑁)) → (⌊‘(𝐵↑(𝑁𝐾))) = (𝐵↑(𝑁𝐾)))
104103oveq1d 7270 . . . . . 6 ((¬ 𝑁 < 𝐾 ∧ ((𝐵 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0𝑁 ∈ ℕ0) ∧ ¬ 𝐾 = 𝑁)) → ((⌊‘(𝐵↑(𝑁𝐾))) mod 𝐵) = ((𝐵↑(𝑁𝐾)) mod 𝐵))
10513ad2ant1 1131 . . . . . . . . . . 11 ((𝐵 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0𝑁 ∈ ℕ0) → 𝐵 ∈ ℂ)
10633ad2ant1 1131 . . . . . . . . . . 11 ((𝐵 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0𝑁 ∈ ℕ0) → 𝐵 ≠ 0)
107105, 106, 63expm1d 13802 . . . . . . . . . 10 ((𝐵 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0𝑁 ∈ ℕ0) → (𝐵↑((𝑁𝐾) − 1)) = ((𝐵↑(𝑁𝐾)) / 𝐵))
108107eqcomd 2744 . . . . . . . . 9 ((𝐵 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0𝑁 ∈ ℕ0) → ((𝐵↑(𝑁𝐾)) / 𝐵) = (𝐵↑((𝑁𝐾) − 1)))
109108ad2antrl 724 . . . . . . . 8 ((¬ 𝑁 < 𝐾 ∧ ((𝐵 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0𝑁 ∈ ℕ0) ∧ ¬ 𝐾 = 𝑁)) → ((𝐵↑(𝑁𝐾)) / 𝐵) = (𝐵↑((𝑁𝐾) − 1)))
110 pm4.56 985 . . . . . . . . . . . . . 14 ((¬ 𝐾 = 𝑁 ∧ ¬ 𝑁 < 𝐾) ↔ ¬ (𝐾 = 𝑁𝑁 < 𝐾))
111873adant1 1128 . . . . . . . . . . . . . . . 16 ((𝐵 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0𝑁 ∈ ℕ0) → (𝐾 ∈ ℝ ∧ 𝑁 ∈ ℝ))
112 axlttri 10977 . . . . . . . . . . . . . . . 16 ((𝐾 ∈ ℝ ∧ 𝑁 ∈ ℝ) → (𝐾 < 𝑁 ↔ ¬ (𝐾 = 𝑁𝑁 < 𝐾)))
113111, 112syl 17 . . . . . . . . . . . . . . 15 ((𝐵 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0𝑁 ∈ ℕ0) → (𝐾 < 𝑁 ↔ ¬ (𝐾 = 𝑁𝑁 < 𝐾)))
114113biimprd 247 . . . . . . . . . . . . . 14 ((𝐵 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0𝑁 ∈ ℕ0) → (¬ (𝐾 = 𝑁𝑁 < 𝐾) → 𝐾 < 𝑁))
115110, 114syl5bi 241 . . . . . . . . . . . . 13 ((𝐵 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0𝑁 ∈ ℕ0) → ((¬ 𝐾 = 𝑁 ∧ ¬ 𝑁 < 𝐾) → 𝐾 < 𝑁))
116115expdimp 452 . . . . . . . . . . . 12 (((𝐵 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0𝑁 ∈ ℕ0) ∧ ¬ 𝐾 = 𝑁) → (¬ 𝑁 < 𝐾𝐾 < 𝑁))
117116impcom 407 . . . . . . . . . . 11 ((¬ 𝑁 < 𝐾 ∧ ((𝐵 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0𝑁 ∈ ℕ0) ∧ ¬ 𝐾 = 𝑁)) → 𝐾 < 𝑁)
11883adant1 1128 . . . . . . . . . . . . 13 ((𝐵 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0𝑁 ∈ ℕ0) → (𝐾 ∈ ℤ ∧ 𝑁 ∈ ℤ))
119118ad2antrl 724 . . . . . . . . . . . 12 ((¬ 𝑁 < 𝐾 ∧ ((𝐵 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0𝑁 ∈ ℕ0) ∧ ¬ 𝐾 = 𝑁)) → (𝐾 ∈ ℤ ∧ 𝑁 ∈ ℤ))
120 znnsub 12296 . . . . . . . . . . . 12 ((𝐾 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐾 < 𝑁 ↔ (𝑁𝐾) ∈ ℕ))
121119, 120syl 17 . . . . . . . . . . 11 ((¬ 𝑁 < 𝐾 ∧ ((𝐵 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0𝑁 ∈ ℕ0) ∧ ¬ 𝐾 = 𝑁)) → (𝐾 < 𝑁 ↔ (𝑁𝐾) ∈ ℕ))
122117, 121mpbid 231 . . . . . . . . . 10 ((¬ 𝑁 < 𝐾 ∧ ((𝐵 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0𝑁 ∈ ℕ0) ∧ ¬ 𝐾 = 𝑁)) → (𝑁𝐾) ∈ ℕ)
123 nnm1nn0 12204 . . . . . . . . . 10 ((𝑁𝐾) ∈ ℕ → ((𝑁𝐾) − 1) ∈ ℕ0)
124122, 123syl 17 . . . . . . . . 9 ((¬ 𝑁 < 𝐾 ∧ ((𝐵 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0𝑁 ∈ ℕ0) ∧ ¬ 𝐾 = 𝑁)) → ((𝑁𝐾) − 1) ∈ ℕ0)
125 zexpcl 13725 . . . . . . . . 9 ((𝐵 ∈ ℤ ∧ ((𝑁𝐾) − 1) ∈ ℕ0) → (𝐵↑((𝑁𝐾) − 1)) ∈ ℤ)
12686, 124, 125syl2anc 583 . . . . . . . 8 ((¬ 𝑁 < 𝐾 ∧ ((𝐵 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0𝑁 ∈ ℕ0) ∧ ¬ 𝐾 = 𝑁)) → (𝐵↑((𝑁𝐾) − 1)) ∈ ℤ)
127109, 126eqeltrd 2839 . . . . . . 7 ((¬ 𝑁 < 𝐾 ∧ ((𝐵 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0𝑁 ∈ ℕ0) ∧ ¬ 𝐾 = 𝑁)) → ((𝐵↑(𝑁𝐾)) / 𝐵) ∈ ℤ)
128183ad2ant1 1131 . . . . . . . . . 10 ((𝐵 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0𝑁 ∈ ℕ0) → 𝐵 ∈ ℝ)
129128, 106, 63reexpclzd 13892 . . . . . . . . 9 ((𝐵 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0𝑁 ∈ ℕ0) → (𝐵↑(𝑁𝐾)) ∈ ℝ)
130783ad2ant1 1131 . . . . . . . . 9 ((𝐵 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0𝑁 ∈ ℕ0) → 𝐵 ∈ ℝ+)
131 mod0 13524 . . . . . . . . 9 (((𝐵↑(𝑁𝐾)) ∈ ℝ ∧ 𝐵 ∈ ℝ+) → (((𝐵↑(𝑁𝐾)) mod 𝐵) = 0 ↔ ((𝐵↑(𝑁𝐾)) / 𝐵) ∈ ℤ))
132129, 130, 131syl2anc 583 . . . . . . . 8 ((𝐵 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0𝑁 ∈ ℕ0) → (((𝐵↑(𝑁𝐾)) mod 𝐵) = 0 ↔ ((𝐵↑(𝑁𝐾)) / 𝐵) ∈ ℤ))
133132ad2antrl 724 . . . . . . 7 ((¬ 𝑁 < 𝐾 ∧ ((𝐵 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0𝑁 ∈ ℕ0) ∧ ¬ 𝐾 = 𝑁)) → (((𝐵↑(𝑁𝐾)) mod 𝐵) = 0 ↔ ((𝐵↑(𝑁𝐾)) / 𝐵) ∈ ℤ))
134127, 133mpbird 256 . . . . . 6 ((¬ 𝑁 < 𝐾 ∧ ((𝐵 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0𝑁 ∈ ℕ0) ∧ ¬ 𝐾 = 𝑁)) → ((𝐵↑(𝑁𝐾)) mod 𝐵) = 0)
135104, 134eqtrd 2778 . . . . 5 ((¬ 𝑁 < 𝐾 ∧ ((𝐵 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0𝑁 ∈ ℕ0) ∧ ¬ 𝐾 = 𝑁)) → ((⌊‘(𝐵↑(𝑁𝐾))) mod 𝐵) = 0)
13683, 135pm2.61ian 808 . . . 4 (((𝐵 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0𝑁 ∈ ℕ0) ∧ ¬ 𝐾 = 𝑁) → ((⌊‘(𝐵↑(𝑁𝐾))) mod 𝐵) = 0)
137136eqcomd 2744 . . 3 (((𝐵 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0𝑁 ∈ ℕ0) ∧ ¬ 𝐾 = 𝑁) → 0 = ((⌊‘(𝐵↑(𝑁𝐾))) mod 𝐵))
13858, 137ifeqda 4492 . 2 ((𝐵 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0𝑁 ∈ ℕ0) → if(𝐾 = 𝑁, 1, 0) = ((⌊‘(𝐵↑(𝑁𝐾))) mod 𝐵))
13915, 32, 1383eqtr4d 2788 1 ((𝐵 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0𝑁 ∈ ℕ0) → (𝐾(digit‘𝐵)(𝐵𝑁)) = if(𝐾 = 𝑁, 1, 0))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 395  wo 843  w3a 1085   = wceq 1539  wcel 2108  wne 2942  ifcif 4456   class class class wbr 5070  cfv 6418  (class class class)co 7255  cc 10800  cr 10801  0cc0 10802  1c1 10803  +∞cpnf 10937   < clt 10940  cle 10941  cmin 11135   / cdiv 11562  cn 11903  2c2 11958  0cn0 12163  cz 12249  cuz 12511  +crp 12659  [,)cico 13010  cfl 13438   mod cmo 13517  cexp 13710  digitcdig 45829
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879  ax-pre-sup 10880
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-1st 7804  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-er 8456  df-en 8692  df-dom 8693  df-sdom 8694  df-sup 9131  df-inf 9132  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-div 11563  df-nn 11904  df-2 11966  df-n0 12164  df-z 12250  df-uz 12512  df-rp 12660  df-ico 13014  df-fl 13440  df-mod 13518  df-seq 13650  df-exp 13711  df-dig 45830
This theorem is referenced by:  dig1  45842
  Copyright terms: Public domain W3C validator