Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fourierdlem35 Structured version   Visualization version   GIF version

Theorem fourierdlem35 44373
Description: There is a single point in (𝐴(,]𝐵) that's distant from 𝑋 a multiple integer of 𝑇. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypotheses
Ref Expression
fourierdlem35.a (𝜑𝐴 ∈ ℝ)
fourierdlem35.b (𝜑𝐵 ∈ ℝ)
fourierdlem35.altb (𝜑𝐴 < 𝐵)
fourierdlem35.t 𝑇 = (𝐵𝐴)
fourierdlem35.5 (𝜑𝑋 ∈ ℝ)
fourierdlem35.i (𝜑𝐼 ∈ ℤ)
fourierdlem35.j (𝜑𝐽 ∈ ℤ)
fourierdlem35.iel (𝜑 → (𝑋 + (𝐼 · 𝑇)) ∈ (𝐴(,]𝐵))
fourierdlem35.jel (𝜑 → (𝑋 + (𝐽 · 𝑇)) ∈ (𝐴(,]𝐵))
Assertion
Ref Expression
fourierdlem35 (𝜑𝐼 = 𝐽)

Proof of Theorem fourierdlem35
StepHypRef Expression
1 neqne 2951 . . 3 𝐼 = 𝐽𝐼𝐽)
2 fourierdlem35.a . . . . . . . 8 (𝜑𝐴 ∈ ℝ)
32adantr 481 . . . . . . 7 ((𝜑𝐼 < 𝐽) → 𝐴 ∈ ℝ)
4 fourierdlem35.b . . . . . . . 8 (𝜑𝐵 ∈ ℝ)
54adantr 481 . . . . . . 7 ((𝜑𝐼 < 𝐽) → 𝐵 ∈ ℝ)
6 fourierdlem35.altb . . . . . . . 8 (𝜑𝐴 < 𝐵)
76adantr 481 . . . . . . 7 ((𝜑𝐼 < 𝐽) → 𝐴 < 𝐵)
8 fourierdlem35.t . . . . . . 7 𝑇 = (𝐵𝐴)
9 fourierdlem35.5 . . . . . . . 8 (𝜑𝑋 ∈ ℝ)
109adantr 481 . . . . . . 7 ((𝜑𝐼 < 𝐽) → 𝑋 ∈ ℝ)
11 fourierdlem35.i . . . . . . . 8 (𝜑𝐼 ∈ ℤ)
1211adantr 481 . . . . . . 7 ((𝜑𝐼 < 𝐽) → 𝐼 ∈ ℤ)
13 fourierdlem35.j . . . . . . . 8 (𝜑𝐽 ∈ ℤ)
1413adantr 481 . . . . . . 7 ((𝜑𝐼 < 𝐽) → 𝐽 ∈ ℤ)
15 simpr 485 . . . . . . 7 ((𝜑𝐼 < 𝐽) → 𝐼 < 𝐽)
16 iocssicc 13354 . . . . . . . . 9 (𝐴(,]𝐵) ⊆ (𝐴[,]𝐵)
17 fourierdlem35.iel . . . . . . . . 9 (𝜑 → (𝑋 + (𝐼 · 𝑇)) ∈ (𝐴(,]𝐵))
1816, 17sselid 3942 . . . . . . . 8 (𝜑 → (𝑋 + (𝐼 · 𝑇)) ∈ (𝐴[,]𝐵))
1918adantr 481 . . . . . . 7 ((𝜑𝐼 < 𝐽) → (𝑋 + (𝐼 · 𝑇)) ∈ (𝐴[,]𝐵))
20 fourierdlem35.jel . . . . . . . . 9 (𝜑 → (𝑋 + (𝐽 · 𝑇)) ∈ (𝐴(,]𝐵))
2116, 20sselid 3942 . . . . . . . 8 (𝜑 → (𝑋 + (𝐽 · 𝑇)) ∈ (𝐴[,]𝐵))
2221adantr 481 . . . . . . 7 ((𝜑𝐼 < 𝐽) → (𝑋 + (𝐽 · 𝑇)) ∈ (𝐴[,]𝐵))
233, 5, 7, 8, 10, 12, 14, 15, 19, 22fourierdlem6 44344 . . . . . 6 ((𝜑𝐼 < 𝐽) → 𝐽 = (𝐼 + 1))
2423orcd 871 . . . . 5 ((𝜑𝐼 < 𝐽) → (𝐽 = (𝐼 + 1) ∨ 𝐼 = (𝐽 + 1)))
2524adantlr 713 . . . 4 (((𝜑𝐼𝐽) ∧ 𝐼 < 𝐽) → (𝐽 = (𝐼 + 1) ∨ 𝐼 = (𝐽 + 1)))
26 simpll 765 . . . . 5 (((𝜑𝐼𝐽) ∧ ¬ 𝐼 < 𝐽) → 𝜑)
2713zred 12607 . . . . . . 7 (𝜑𝐽 ∈ ℝ)
2826, 27syl 17 . . . . . 6 (((𝜑𝐼𝐽) ∧ ¬ 𝐼 < 𝐽) → 𝐽 ∈ ℝ)
2911zred 12607 . . . . . . 7 (𝜑𝐼 ∈ ℝ)
3026, 29syl 17 . . . . . 6 (((𝜑𝐼𝐽) ∧ ¬ 𝐼 < 𝐽) → 𝐼 ∈ ℝ)
31 id 22 . . . . . . . 8 (𝐼𝐽𝐼𝐽)
3231necomd 2999 . . . . . . 7 (𝐼𝐽𝐽𝐼)
3332ad2antlr 725 . . . . . 6 (((𝜑𝐼𝐽) ∧ ¬ 𝐼 < 𝐽) → 𝐽𝐼)
34 simpr 485 . . . . . 6 (((𝜑𝐼𝐽) ∧ ¬ 𝐼 < 𝐽) → ¬ 𝐼 < 𝐽)
3528, 30, 33, 34lttri5d 43523 . . . . 5 (((𝜑𝐼𝐽) ∧ ¬ 𝐼 < 𝐽) → 𝐽 < 𝐼)
362adantr 481 . . . . . . 7 ((𝜑𝐽 < 𝐼) → 𝐴 ∈ ℝ)
374adantr 481 . . . . . . 7 ((𝜑𝐽 < 𝐼) → 𝐵 ∈ ℝ)
386adantr 481 . . . . . . 7 ((𝜑𝐽 < 𝐼) → 𝐴 < 𝐵)
399adantr 481 . . . . . . 7 ((𝜑𝐽 < 𝐼) → 𝑋 ∈ ℝ)
4013adantr 481 . . . . . . 7 ((𝜑𝐽 < 𝐼) → 𝐽 ∈ ℤ)
4111adantr 481 . . . . . . 7 ((𝜑𝐽 < 𝐼) → 𝐼 ∈ ℤ)
42 simpr 485 . . . . . . 7 ((𝜑𝐽 < 𝐼) → 𝐽 < 𝐼)
4321adantr 481 . . . . . . 7 ((𝜑𝐽 < 𝐼) → (𝑋 + (𝐽 · 𝑇)) ∈ (𝐴[,]𝐵))
4418adantr 481 . . . . . . 7 ((𝜑𝐽 < 𝐼) → (𝑋 + (𝐼 · 𝑇)) ∈ (𝐴[,]𝐵))
4536, 37, 38, 8, 39, 40, 41, 42, 43, 44fourierdlem6 44344 . . . . . 6 ((𝜑𝐽 < 𝐼) → 𝐼 = (𝐽 + 1))
4645olcd 872 . . . . 5 ((𝜑𝐽 < 𝐼) → (𝐽 = (𝐼 + 1) ∨ 𝐼 = (𝐽 + 1)))
4726, 35, 46syl2anc 584 . . . 4 (((𝜑𝐼𝐽) ∧ ¬ 𝐼 < 𝐽) → (𝐽 = (𝐼 + 1) ∨ 𝐼 = (𝐽 + 1)))
4825, 47pm2.61dan 811 . . 3 ((𝜑𝐼𝐽) → (𝐽 = (𝐼 + 1) ∨ 𝐼 = (𝐽 + 1)))
491, 48sylan2 593 . 2 ((𝜑 ∧ ¬ 𝐼 = 𝐽) → (𝐽 = (𝐼 + 1) ∨ 𝐼 = (𝐽 + 1)))
502rexrd 11205 . . . . . . . 8 (𝜑𝐴 ∈ ℝ*)
514rexrd 11205 . . . . . . . 8 (𝜑𝐵 ∈ ℝ*)
52 iocleub 43731 . . . . . . . 8 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ* ∧ (𝑋 + (𝐽 · 𝑇)) ∈ (𝐴(,]𝐵)) → (𝑋 + (𝐽 · 𝑇)) ≤ 𝐵)
5350, 51, 20, 52syl3anc 1371 . . . . . . 7 (𝜑 → (𝑋 + (𝐽 · 𝑇)) ≤ 𝐵)
5453adantr 481 . . . . . 6 ((𝜑𝐽 = (𝐼 + 1)) → (𝑋 + (𝐽 · 𝑇)) ≤ 𝐵)
552adantr 481 . . . . . . . . 9 ((𝜑𝐽 = (𝐼 + 1)) → 𝐴 ∈ ℝ)
564, 2resubcld 11583 . . . . . . . . . . . . 13 (𝜑 → (𝐵𝐴) ∈ ℝ)
578, 56eqeltrid 2842 . . . . . . . . . . . 12 (𝜑𝑇 ∈ ℝ)
5829, 57remulcld 11185 . . . . . . . . . . 11 (𝜑 → (𝐼 · 𝑇) ∈ ℝ)
599, 58readdcld 11184 . . . . . . . . . 10 (𝜑 → (𝑋 + (𝐼 · 𝑇)) ∈ ℝ)
6059adantr 481 . . . . . . . . 9 ((𝜑𝐽 = (𝐼 + 1)) → (𝑋 + (𝐼 · 𝑇)) ∈ ℝ)
6157adantr 481 . . . . . . . . 9 ((𝜑𝐽 = (𝐼 + 1)) → 𝑇 ∈ ℝ)
62 iocgtlb 43730 . . . . . . . . . . 11 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ* ∧ (𝑋 + (𝐼 · 𝑇)) ∈ (𝐴(,]𝐵)) → 𝐴 < (𝑋 + (𝐼 · 𝑇)))
6350, 51, 17, 62syl3anc 1371 . . . . . . . . . 10 (𝜑𝐴 < (𝑋 + (𝐼 · 𝑇)))
6463adantr 481 . . . . . . . . 9 ((𝜑𝐽 = (𝐼 + 1)) → 𝐴 < (𝑋 + (𝐼 · 𝑇)))
6555, 60, 61, 64ltadd1dd 11766 . . . . . . . 8 ((𝜑𝐽 = (𝐼 + 1)) → (𝐴 + 𝑇) < ((𝑋 + (𝐼 · 𝑇)) + 𝑇))
668eqcomi 2745 . . . . . . . . . . 11 (𝐵𝐴) = 𝑇
674recnd 11183 . . . . . . . . . . . 12 (𝜑𝐵 ∈ ℂ)
682recnd 11183 . . . . . . . . . . . 12 (𝜑𝐴 ∈ ℂ)
6957recnd 11183 . . . . . . . . . . . 12 (𝜑𝑇 ∈ ℂ)
7067, 68, 69subaddd 11530 . . . . . . . . . . 11 (𝜑 → ((𝐵𝐴) = 𝑇 ↔ (𝐴 + 𝑇) = 𝐵))
7166, 70mpbii 232 . . . . . . . . . 10 (𝜑 → (𝐴 + 𝑇) = 𝐵)
7271eqcomd 2742 . . . . . . . . 9 (𝜑𝐵 = (𝐴 + 𝑇))
7372adantr 481 . . . . . . . 8 ((𝜑𝐽 = (𝐼 + 1)) → 𝐵 = (𝐴 + 𝑇))
749recnd 11183 . . . . . . . . . . 11 (𝜑𝑋 ∈ ℂ)
7558recnd 11183 . . . . . . . . . . 11 (𝜑 → (𝐼 · 𝑇) ∈ ℂ)
7674, 75, 69addassd 11177 . . . . . . . . . 10 (𝜑 → ((𝑋 + (𝐼 · 𝑇)) + 𝑇) = (𝑋 + ((𝐼 · 𝑇) + 𝑇)))
7776adantr 481 . . . . . . . . 9 ((𝜑𝐽 = (𝐼 + 1)) → ((𝑋 + (𝐼 · 𝑇)) + 𝑇) = (𝑋 + ((𝐼 · 𝑇) + 𝑇)))
7829recnd 11183 . . . . . . . . . . . . 13 (𝜑𝐼 ∈ ℂ)
7978, 69adddirp1d 11181 . . . . . . . . . . . 12 (𝜑 → ((𝐼 + 1) · 𝑇) = ((𝐼 · 𝑇) + 𝑇))
8079eqcomd 2742 . . . . . . . . . . 11 (𝜑 → ((𝐼 · 𝑇) + 𝑇) = ((𝐼 + 1) · 𝑇))
8180oveq2d 7373 . . . . . . . . . 10 (𝜑 → (𝑋 + ((𝐼 · 𝑇) + 𝑇)) = (𝑋 + ((𝐼 + 1) · 𝑇)))
8281adantr 481 . . . . . . . . 9 ((𝜑𝐽 = (𝐼 + 1)) → (𝑋 + ((𝐼 · 𝑇) + 𝑇)) = (𝑋 + ((𝐼 + 1) · 𝑇)))
83 oveq1 7364 . . . . . . . . . . . 12 (𝐽 = (𝐼 + 1) → (𝐽 · 𝑇) = ((𝐼 + 1) · 𝑇))
8483eqcomd 2742 . . . . . . . . . . 11 (𝐽 = (𝐼 + 1) → ((𝐼 + 1) · 𝑇) = (𝐽 · 𝑇))
8584oveq2d 7373 . . . . . . . . . 10 (𝐽 = (𝐼 + 1) → (𝑋 + ((𝐼 + 1) · 𝑇)) = (𝑋 + (𝐽 · 𝑇)))
8685adantl 482 . . . . . . . . 9 ((𝜑𝐽 = (𝐼 + 1)) → (𝑋 + ((𝐼 + 1) · 𝑇)) = (𝑋 + (𝐽 · 𝑇)))
8777, 82, 863eqtrrd 2781 . . . . . . . 8 ((𝜑𝐽 = (𝐼 + 1)) → (𝑋 + (𝐽 · 𝑇)) = ((𝑋 + (𝐼 · 𝑇)) + 𝑇))
8865, 73, 873brtr4d 5137 . . . . . . 7 ((𝜑𝐽 = (𝐼 + 1)) → 𝐵 < (𝑋 + (𝐽 · 𝑇)))
894adantr 481 . . . . . . . 8 ((𝜑𝐽 = (𝐼 + 1)) → 𝐵 ∈ ℝ)
9027, 57remulcld 11185 . . . . . . . . . 10 (𝜑 → (𝐽 · 𝑇) ∈ ℝ)
919, 90readdcld 11184 . . . . . . . . 9 (𝜑 → (𝑋 + (𝐽 · 𝑇)) ∈ ℝ)
9291adantr 481 . . . . . . . 8 ((𝜑𝐽 = (𝐼 + 1)) → (𝑋 + (𝐽 · 𝑇)) ∈ ℝ)
9389, 92ltnled 11302 . . . . . . 7 ((𝜑𝐽 = (𝐼 + 1)) → (𝐵 < (𝑋 + (𝐽 · 𝑇)) ↔ ¬ (𝑋 + (𝐽 · 𝑇)) ≤ 𝐵))
9488, 93mpbid 231 . . . . . 6 ((𝜑𝐽 = (𝐼 + 1)) → ¬ (𝑋 + (𝐽 · 𝑇)) ≤ 𝐵)
9554, 94pm2.65da 815 . . . . 5 (𝜑 → ¬ 𝐽 = (𝐼 + 1))
96 iocleub 43731 . . . . . . . 8 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ* ∧ (𝑋 + (𝐼 · 𝑇)) ∈ (𝐴(,]𝐵)) → (𝑋 + (𝐼 · 𝑇)) ≤ 𝐵)
9750, 51, 17, 96syl3anc 1371 . . . . . . 7 (𝜑 → (𝑋 + (𝐼 · 𝑇)) ≤ 𝐵)
9897adantr 481 . . . . . 6 ((𝜑𝐼 = (𝐽 + 1)) → (𝑋 + (𝐼 · 𝑇)) ≤ 𝐵)
992adantr 481 . . . . . . . . 9 ((𝜑𝐼 = (𝐽 + 1)) → 𝐴 ∈ ℝ)
10091adantr 481 . . . . . . . . 9 ((𝜑𝐼 = (𝐽 + 1)) → (𝑋 + (𝐽 · 𝑇)) ∈ ℝ)
10157adantr 481 . . . . . . . . 9 ((𝜑𝐼 = (𝐽 + 1)) → 𝑇 ∈ ℝ)
102 iocgtlb 43730 . . . . . . . . . . 11 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ* ∧ (𝑋 + (𝐽 · 𝑇)) ∈ (𝐴(,]𝐵)) → 𝐴 < (𝑋 + (𝐽 · 𝑇)))
10350, 51, 20, 102syl3anc 1371 . . . . . . . . . 10 (𝜑𝐴 < (𝑋 + (𝐽 · 𝑇)))
104103adantr 481 . . . . . . . . 9 ((𝜑𝐼 = (𝐽 + 1)) → 𝐴 < (𝑋 + (𝐽 · 𝑇)))
10599, 100, 101, 104ltadd1dd 11766 . . . . . . . 8 ((𝜑𝐼 = (𝐽 + 1)) → (𝐴 + 𝑇) < ((𝑋 + (𝐽 · 𝑇)) + 𝑇))
10672adantr 481 . . . . . . . 8 ((𝜑𝐼 = (𝐽 + 1)) → 𝐵 = (𝐴 + 𝑇))
10790recnd 11183 . . . . . . . . . . 11 (𝜑 → (𝐽 · 𝑇) ∈ ℂ)
10874, 107, 69addassd 11177 . . . . . . . . . 10 (𝜑 → ((𝑋 + (𝐽 · 𝑇)) + 𝑇) = (𝑋 + ((𝐽 · 𝑇) + 𝑇)))
109108adantr 481 . . . . . . . . 9 ((𝜑𝐼 = (𝐽 + 1)) → ((𝑋 + (𝐽 · 𝑇)) + 𝑇) = (𝑋 + ((𝐽 · 𝑇) + 𝑇)))
11027recnd 11183 . . . . . . . . . . . . 13 (𝜑𝐽 ∈ ℂ)
111110, 69adddirp1d 11181 . . . . . . . . . . . 12 (𝜑 → ((𝐽 + 1) · 𝑇) = ((𝐽 · 𝑇) + 𝑇))
112111eqcomd 2742 . . . . . . . . . . 11 (𝜑 → ((𝐽 · 𝑇) + 𝑇) = ((𝐽 + 1) · 𝑇))
113112oveq2d 7373 . . . . . . . . . 10 (𝜑 → (𝑋 + ((𝐽 · 𝑇) + 𝑇)) = (𝑋 + ((𝐽 + 1) · 𝑇)))
114113adantr 481 . . . . . . . . 9 ((𝜑𝐼 = (𝐽 + 1)) → (𝑋 + ((𝐽 · 𝑇) + 𝑇)) = (𝑋 + ((𝐽 + 1) · 𝑇)))
115 oveq1 7364 . . . . . . . . . . . 12 (𝐼 = (𝐽 + 1) → (𝐼 · 𝑇) = ((𝐽 + 1) · 𝑇))
116115eqcomd 2742 . . . . . . . . . . 11 (𝐼 = (𝐽 + 1) → ((𝐽 + 1) · 𝑇) = (𝐼 · 𝑇))
117116oveq2d 7373 . . . . . . . . . 10 (𝐼 = (𝐽 + 1) → (𝑋 + ((𝐽 + 1) · 𝑇)) = (𝑋 + (𝐼 · 𝑇)))
118117adantl 482 . . . . . . . . 9 ((𝜑𝐼 = (𝐽 + 1)) → (𝑋 + ((𝐽 + 1) · 𝑇)) = (𝑋 + (𝐼 · 𝑇)))
119109, 114, 1183eqtrrd 2781 . . . . . . . 8 ((𝜑𝐼 = (𝐽 + 1)) → (𝑋 + (𝐼 · 𝑇)) = ((𝑋 + (𝐽 · 𝑇)) + 𝑇))
120105, 106, 1193brtr4d 5137 . . . . . . 7 ((𝜑𝐼 = (𝐽 + 1)) → 𝐵 < (𝑋 + (𝐼 · 𝑇)))
1214adantr 481 . . . . . . . 8 ((𝜑𝐼 = (𝐽 + 1)) → 𝐵 ∈ ℝ)
12259adantr 481 . . . . . . . 8 ((𝜑𝐼 = (𝐽 + 1)) → (𝑋 + (𝐼 · 𝑇)) ∈ ℝ)
123121, 122ltnled 11302 . . . . . . 7 ((𝜑𝐼 = (𝐽 + 1)) → (𝐵 < (𝑋 + (𝐼 · 𝑇)) ↔ ¬ (𝑋 + (𝐼 · 𝑇)) ≤ 𝐵))
124120, 123mpbid 231 . . . . . 6 ((𝜑𝐼 = (𝐽 + 1)) → ¬ (𝑋 + (𝐼 · 𝑇)) ≤ 𝐵)
12598, 124pm2.65da 815 . . . . 5 (𝜑 → ¬ 𝐼 = (𝐽 + 1))
12695, 125jca 512 . . . 4 (𝜑 → (¬ 𝐽 = (𝐼 + 1) ∧ ¬ 𝐼 = (𝐽 + 1)))
127126adantr 481 . . 3 ((𝜑 ∧ ¬ 𝐼 = 𝐽) → (¬ 𝐽 = (𝐼 + 1) ∧ ¬ 𝐼 = (𝐽 + 1)))
128 pm4.56 987 . . 3 ((¬ 𝐽 = (𝐼 + 1) ∧ ¬ 𝐼 = (𝐽 + 1)) ↔ ¬ (𝐽 = (𝐼 + 1) ∨ 𝐼 = (𝐽 + 1)))
129127, 128sylib 217 . 2 ((𝜑 ∧ ¬ 𝐼 = 𝐽) → ¬ (𝐽 = (𝐼 + 1) ∨ 𝐼 = (𝐽 + 1)))
13049, 129condan 816 1 (𝜑𝐼 = 𝐽)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 396  wo 845   = wceq 1541  wcel 2106  wne 2943   class class class wbr 5105  (class class class)co 7357  cr 11050  1c1 11052   + caddc 11054   · cmul 11056  *cxr 11188   < clt 11189  cle 11190  cmin 11385  cz 12499  (,]cioc 13265  [,]cicc 13267
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7672  ax-cnex 11107  ax-resscn 11108  ax-1cn 11109  ax-icn 11110  ax-addcl 11111  ax-addrcl 11112  ax-mulcl 11113  ax-mulrcl 11114  ax-mulcom 11115  ax-addass 11116  ax-mulass 11117  ax-distr 11118  ax-i2m1 11119  ax-1ne0 11120  ax-1rid 11121  ax-rnegex 11122  ax-rrecex 11123  ax-cnre 11124  ax-pre-lttri 11125  ax-pre-lttrn 11126  ax-pre-ltadd 11127  ax-pre-mulgt0 11128
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3065  df-rex 3074  df-rmo 3353  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-op 4593  df-uni 4866  df-iun 4956  df-br 5106  df-opab 5168  df-mpt 5189  df-tr 5223  df-id 5531  df-eprel 5537  df-po 5545  df-so 5546  df-fr 5588  df-we 5590  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-pred 6253  df-ord 6320  df-on 6321  df-lim 6322  df-suc 6323  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-riota 7313  df-ov 7360  df-oprab 7361  df-mpo 7362  df-om 7803  df-2nd 7922  df-frecs 8212  df-wrecs 8243  df-recs 8317  df-rdg 8356  df-er 8648  df-en 8884  df-dom 8885  df-sdom 8886  df-pnf 11191  df-mnf 11192  df-xr 11193  df-ltxr 11194  df-le 11195  df-sub 11387  df-neg 11388  df-div 11813  df-nn 12154  df-n0 12414  df-z 12500  df-rp 12916  df-ioc 13269  df-icc 13271
This theorem is referenced by:  fourierdlem51  44388
  Copyright terms: Public domain W3C validator