Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fourierdlem35 Structured version   Visualization version   GIF version

Theorem fourierdlem35 41991
Description: There is a single point in (𝐴(,]𝐵) that's distant from 𝑋 a multiple integer of 𝑇. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypotheses
Ref Expression
fourierdlem35.a (𝜑𝐴 ∈ ℝ)
fourierdlem35.b (𝜑𝐵 ∈ ℝ)
fourierdlem35.altb (𝜑𝐴 < 𝐵)
fourierdlem35.t 𝑇 = (𝐵𝐴)
fourierdlem35.5 (𝜑𝑋 ∈ ℝ)
fourierdlem35.i (𝜑𝐼 ∈ ℤ)
fourierdlem35.j (𝜑𝐽 ∈ ℤ)
fourierdlem35.iel (𝜑 → (𝑋 + (𝐼 · 𝑇)) ∈ (𝐴(,]𝐵))
fourierdlem35.jel (𝜑 → (𝑋 + (𝐽 · 𝑇)) ∈ (𝐴(,]𝐵))
Assertion
Ref Expression
fourierdlem35 (𝜑𝐼 = 𝐽)

Proof of Theorem fourierdlem35
StepHypRef Expression
1 neqne 2994 . . 3 𝐼 = 𝐽𝐼𝐽)
2 fourierdlem35.a . . . . . . . 8 (𝜑𝐴 ∈ ℝ)
32adantr 481 . . . . . . 7 ((𝜑𝐼 < 𝐽) → 𝐴 ∈ ℝ)
4 fourierdlem35.b . . . . . . . 8 (𝜑𝐵 ∈ ℝ)
54adantr 481 . . . . . . 7 ((𝜑𝐼 < 𝐽) → 𝐵 ∈ ℝ)
6 fourierdlem35.altb . . . . . . . 8 (𝜑𝐴 < 𝐵)
76adantr 481 . . . . . . 7 ((𝜑𝐼 < 𝐽) → 𝐴 < 𝐵)
8 fourierdlem35.t . . . . . . 7 𝑇 = (𝐵𝐴)
9 fourierdlem35.5 . . . . . . . 8 (𝜑𝑋 ∈ ℝ)
109adantr 481 . . . . . . 7 ((𝜑𝐼 < 𝐽) → 𝑋 ∈ ℝ)
11 fourierdlem35.i . . . . . . . 8 (𝜑𝐼 ∈ ℤ)
1211adantr 481 . . . . . . 7 ((𝜑𝐼 < 𝐽) → 𝐼 ∈ ℤ)
13 fourierdlem35.j . . . . . . . 8 (𝜑𝐽 ∈ ℤ)
1413adantr 481 . . . . . . 7 ((𝜑𝐼 < 𝐽) → 𝐽 ∈ ℤ)
15 simpr 485 . . . . . . 7 ((𝜑𝐼 < 𝐽) → 𝐼 < 𝐽)
16 iocssicc 12679 . . . . . . . . 9 (𝐴(,]𝐵) ⊆ (𝐴[,]𝐵)
17 fourierdlem35.iel . . . . . . . . 9 (𝜑 → (𝑋 + (𝐼 · 𝑇)) ∈ (𝐴(,]𝐵))
1816, 17sseldi 3893 . . . . . . . 8 (𝜑 → (𝑋 + (𝐼 · 𝑇)) ∈ (𝐴[,]𝐵))
1918adantr 481 . . . . . . 7 ((𝜑𝐼 < 𝐽) → (𝑋 + (𝐼 · 𝑇)) ∈ (𝐴[,]𝐵))
20 fourierdlem35.jel . . . . . . . . 9 (𝜑 → (𝑋 + (𝐽 · 𝑇)) ∈ (𝐴(,]𝐵))
2116, 20sseldi 3893 . . . . . . . 8 (𝜑 → (𝑋 + (𝐽 · 𝑇)) ∈ (𝐴[,]𝐵))
2221adantr 481 . . . . . . 7 ((𝜑𝐼 < 𝐽) → (𝑋 + (𝐽 · 𝑇)) ∈ (𝐴[,]𝐵))
233, 5, 7, 8, 10, 12, 14, 15, 19, 22fourierdlem6 41962 . . . . . 6 ((𝜑𝐼 < 𝐽) → 𝐽 = (𝐼 + 1))
2423orcd 870 . . . . 5 ((𝜑𝐼 < 𝐽) → (𝐽 = (𝐼 + 1) ∨ 𝐼 = (𝐽 + 1)))
2524adantlr 711 . . . 4 (((𝜑𝐼𝐽) ∧ 𝐼 < 𝐽) → (𝐽 = (𝐼 + 1) ∨ 𝐼 = (𝐽 + 1)))
26 simpll 763 . . . . 5 (((𝜑𝐼𝐽) ∧ ¬ 𝐼 < 𝐽) → 𝜑)
2713zred 11941 . . . . . . 7 (𝜑𝐽 ∈ ℝ)
2826, 27syl 17 . . . . . 6 (((𝜑𝐼𝐽) ∧ ¬ 𝐼 < 𝐽) → 𝐽 ∈ ℝ)
2911zred 11941 . . . . . . 7 (𝜑𝐼 ∈ ℝ)
3026, 29syl 17 . . . . . 6 (((𝜑𝐼𝐽) ∧ ¬ 𝐼 < 𝐽) → 𝐼 ∈ ℝ)
31 id 22 . . . . . . . 8 (𝐼𝐽𝐼𝐽)
3231necomd 3041 . . . . . . 7 (𝐼𝐽𝐽𝐼)
3332ad2antlr 723 . . . . . 6 (((𝜑𝐼𝐽) ∧ ¬ 𝐼 < 𝐽) → 𝐽𝐼)
34 simpr 485 . . . . . 6 (((𝜑𝐼𝐽) ∧ ¬ 𝐼 < 𝐽) → ¬ 𝐼 < 𝐽)
3528, 30, 33, 34lttri5d 41128 . . . . 5 (((𝜑𝐼𝐽) ∧ ¬ 𝐼 < 𝐽) → 𝐽 < 𝐼)
362adantr 481 . . . . . . 7 ((𝜑𝐽 < 𝐼) → 𝐴 ∈ ℝ)
374adantr 481 . . . . . . 7 ((𝜑𝐽 < 𝐼) → 𝐵 ∈ ℝ)
386adantr 481 . . . . . . 7 ((𝜑𝐽 < 𝐼) → 𝐴 < 𝐵)
399adantr 481 . . . . . . 7 ((𝜑𝐽 < 𝐼) → 𝑋 ∈ ℝ)
4013adantr 481 . . . . . . 7 ((𝜑𝐽 < 𝐼) → 𝐽 ∈ ℤ)
4111adantr 481 . . . . . . 7 ((𝜑𝐽 < 𝐼) → 𝐼 ∈ ℤ)
42 simpr 485 . . . . . . 7 ((𝜑𝐽 < 𝐼) → 𝐽 < 𝐼)
4321adantr 481 . . . . . . 7 ((𝜑𝐽 < 𝐼) → (𝑋 + (𝐽 · 𝑇)) ∈ (𝐴[,]𝐵))
4418adantr 481 . . . . . . 7 ((𝜑𝐽 < 𝐼) → (𝑋 + (𝐼 · 𝑇)) ∈ (𝐴[,]𝐵))
4536, 37, 38, 8, 39, 40, 41, 42, 43, 44fourierdlem6 41962 . . . . . 6 ((𝜑𝐽 < 𝐼) → 𝐼 = (𝐽 + 1))
4645olcd 871 . . . . 5 ((𝜑𝐽 < 𝐼) → (𝐽 = (𝐼 + 1) ∨ 𝐼 = (𝐽 + 1)))
4726, 35, 46syl2anc 584 . . . 4 (((𝜑𝐼𝐽) ∧ ¬ 𝐼 < 𝐽) → (𝐽 = (𝐼 + 1) ∨ 𝐼 = (𝐽 + 1)))
4825, 47pm2.61dan 809 . . 3 ((𝜑𝐼𝐽) → (𝐽 = (𝐼 + 1) ∨ 𝐼 = (𝐽 + 1)))
491, 48sylan2 592 . 2 ((𝜑 ∧ ¬ 𝐼 = 𝐽) → (𝐽 = (𝐼 + 1) ∨ 𝐼 = (𝐽 + 1)))
502rexrd 10544 . . . . . . . 8 (𝜑𝐴 ∈ ℝ*)
514rexrd 10544 . . . . . . . 8 (𝜑𝐵 ∈ ℝ*)
52 iocleub 41341 . . . . . . . 8 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ* ∧ (𝑋 + (𝐽 · 𝑇)) ∈ (𝐴(,]𝐵)) → (𝑋 + (𝐽 · 𝑇)) ≤ 𝐵)
5350, 51, 20, 52syl3anc 1364 . . . . . . 7 (𝜑 → (𝑋 + (𝐽 · 𝑇)) ≤ 𝐵)
5453adantr 481 . . . . . 6 ((𝜑𝐽 = (𝐼 + 1)) → (𝑋 + (𝐽 · 𝑇)) ≤ 𝐵)
552adantr 481 . . . . . . . . 9 ((𝜑𝐽 = (𝐼 + 1)) → 𝐴 ∈ ℝ)
564, 2resubcld 10922 . . . . . . . . . . . . 13 (𝜑 → (𝐵𝐴) ∈ ℝ)
578, 56syl5eqel 2889 . . . . . . . . . . . 12 (𝜑𝑇 ∈ ℝ)
5829, 57remulcld 10524 . . . . . . . . . . 11 (𝜑 → (𝐼 · 𝑇) ∈ ℝ)
599, 58readdcld 10523 . . . . . . . . . 10 (𝜑 → (𝑋 + (𝐼 · 𝑇)) ∈ ℝ)
6059adantr 481 . . . . . . . . 9 ((𝜑𝐽 = (𝐼 + 1)) → (𝑋 + (𝐼 · 𝑇)) ∈ ℝ)
6157adantr 481 . . . . . . . . 9 ((𝜑𝐽 = (𝐼 + 1)) → 𝑇 ∈ ℝ)
62 iocgtlb 41340 . . . . . . . . . . 11 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ* ∧ (𝑋 + (𝐼 · 𝑇)) ∈ (𝐴(,]𝐵)) → 𝐴 < (𝑋 + (𝐼 · 𝑇)))
6350, 51, 17, 62syl3anc 1364 . . . . . . . . . 10 (𝜑𝐴 < (𝑋 + (𝐼 · 𝑇)))
6463adantr 481 . . . . . . . . 9 ((𝜑𝐽 = (𝐼 + 1)) → 𝐴 < (𝑋 + (𝐼 · 𝑇)))
6555, 60, 61, 64ltadd1dd 11105 . . . . . . . 8 ((𝜑𝐽 = (𝐼 + 1)) → (𝐴 + 𝑇) < ((𝑋 + (𝐼 · 𝑇)) + 𝑇))
668eqcomi 2806 . . . . . . . . . . 11 (𝐵𝐴) = 𝑇
674recnd 10522 . . . . . . . . . . . 12 (𝜑𝐵 ∈ ℂ)
682recnd 10522 . . . . . . . . . . . 12 (𝜑𝐴 ∈ ℂ)
6957recnd 10522 . . . . . . . . . . . 12 (𝜑𝑇 ∈ ℂ)
7067, 68, 69subaddd 10869 . . . . . . . . . . 11 (𝜑 → ((𝐵𝐴) = 𝑇 ↔ (𝐴 + 𝑇) = 𝐵))
7166, 70mpbii 234 . . . . . . . . . 10 (𝜑 → (𝐴 + 𝑇) = 𝐵)
7271eqcomd 2803 . . . . . . . . 9 (𝜑𝐵 = (𝐴 + 𝑇))
7372adantr 481 . . . . . . . 8 ((𝜑𝐽 = (𝐼 + 1)) → 𝐵 = (𝐴 + 𝑇))
749recnd 10522 . . . . . . . . . . 11 (𝜑𝑋 ∈ ℂ)
7558recnd 10522 . . . . . . . . . . 11 (𝜑 → (𝐼 · 𝑇) ∈ ℂ)
7674, 75, 69addassd 10516 . . . . . . . . . 10 (𝜑 → ((𝑋 + (𝐼 · 𝑇)) + 𝑇) = (𝑋 + ((𝐼 · 𝑇) + 𝑇)))
7776adantr 481 . . . . . . . . 9 ((𝜑𝐽 = (𝐼 + 1)) → ((𝑋 + (𝐼 · 𝑇)) + 𝑇) = (𝑋 + ((𝐼 · 𝑇) + 𝑇)))
7829recnd 10522 . . . . . . . . . . . . 13 (𝜑𝐼 ∈ ℂ)
7978, 69adddirp1d 10520 . . . . . . . . . . . 12 (𝜑 → ((𝐼 + 1) · 𝑇) = ((𝐼 · 𝑇) + 𝑇))
8079eqcomd 2803 . . . . . . . . . . 11 (𝜑 → ((𝐼 · 𝑇) + 𝑇) = ((𝐼 + 1) · 𝑇))
8180oveq2d 7039 . . . . . . . . . 10 (𝜑 → (𝑋 + ((𝐼 · 𝑇) + 𝑇)) = (𝑋 + ((𝐼 + 1) · 𝑇)))
8281adantr 481 . . . . . . . . 9 ((𝜑𝐽 = (𝐼 + 1)) → (𝑋 + ((𝐼 · 𝑇) + 𝑇)) = (𝑋 + ((𝐼 + 1) · 𝑇)))
83 oveq1 7030 . . . . . . . . . . . 12 (𝐽 = (𝐼 + 1) → (𝐽 · 𝑇) = ((𝐼 + 1) · 𝑇))
8483eqcomd 2803 . . . . . . . . . . 11 (𝐽 = (𝐼 + 1) → ((𝐼 + 1) · 𝑇) = (𝐽 · 𝑇))
8584oveq2d 7039 . . . . . . . . . 10 (𝐽 = (𝐼 + 1) → (𝑋 + ((𝐼 + 1) · 𝑇)) = (𝑋 + (𝐽 · 𝑇)))
8685adantl 482 . . . . . . . . 9 ((𝜑𝐽 = (𝐼 + 1)) → (𝑋 + ((𝐼 + 1) · 𝑇)) = (𝑋 + (𝐽 · 𝑇)))
8777, 82, 863eqtrrd 2838 . . . . . . . 8 ((𝜑𝐽 = (𝐼 + 1)) → (𝑋 + (𝐽 · 𝑇)) = ((𝑋 + (𝐼 · 𝑇)) + 𝑇))
8865, 73, 873brtr4d 5000 . . . . . . 7 ((𝜑𝐽 = (𝐼 + 1)) → 𝐵 < (𝑋 + (𝐽 · 𝑇)))
894adantr 481 . . . . . . . 8 ((𝜑𝐽 = (𝐼 + 1)) → 𝐵 ∈ ℝ)
9027, 57remulcld 10524 . . . . . . . . . 10 (𝜑 → (𝐽 · 𝑇) ∈ ℝ)
919, 90readdcld 10523 . . . . . . . . 9 (𝜑 → (𝑋 + (𝐽 · 𝑇)) ∈ ℝ)
9291adantr 481 . . . . . . . 8 ((𝜑𝐽 = (𝐼 + 1)) → (𝑋 + (𝐽 · 𝑇)) ∈ ℝ)
9389, 92ltnled 10640 . . . . . . 7 ((𝜑𝐽 = (𝐼 + 1)) → (𝐵 < (𝑋 + (𝐽 · 𝑇)) ↔ ¬ (𝑋 + (𝐽 · 𝑇)) ≤ 𝐵))
9488, 93mpbid 233 . . . . . 6 ((𝜑𝐽 = (𝐼 + 1)) → ¬ (𝑋 + (𝐽 · 𝑇)) ≤ 𝐵)
9554, 94pm2.65da 813 . . . . 5 (𝜑 → ¬ 𝐽 = (𝐼 + 1))
96 iocleub 41341 . . . . . . . 8 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ* ∧ (𝑋 + (𝐼 · 𝑇)) ∈ (𝐴(,]𝐵)) → (𝑋 + (𝐼 · 𝑇)) ≤ 𝐵)
9750, 51, 17, 96syl3anc 1364 . . . . . . 7 (𝜑 → (𝑋 + (𝐼 · 𝑇)) ≤ 𝐵)
9897adantr 481 . . . . . 6 ((𝜑𝐼 = (𝐽 + 1)) → (𝑋 + (𝐼 · 𝑇)) ≤ 𝐵)
992adantr 481 . . . . . . . . 9 ((𝜑𝐼 = (𝐽 + 1)) → 𝐴 ∈ ℝ)
10091adantr 481 . . . . . . . . 9 ((𝜑𝐼 = (𝐽 + 1)) → (𝑋 + (𝐽 · 𝑇)) ∈ ℝ)
10157adantr 481 . . . . . . . . 9 ((𝜑𝐼 = (𝐽 + 1)) → 𝑇 ∈ ℝ)
102 iocgtlb 41340 . . . . . . . . . . 11 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ* ∧ (𝑋 + (𝐽 · 𝑇)) ∈ (𝐴(,]𝐵)) → 𝐴 < (𝑋 + (𝐽 · 𝑇)))
10350, 51, 20, 102syl3anc 1364 . . . . . . . . . 10 (𝜑𝐴 < (𝑋 + (𝐽 · 𝑇)))
104103adantr 481 . . . . . . . . 9 ((𝜑𝐼 = (𝐽 + 1)) → 𝐴 < (𝑋 + (𝐽 · 𝑇)))
10599, 100, 101, 104ltadd1dd 11105 . . . . . . . 8 ((𝜑𝐼 = (𝐽 + 1)) → (𝐴 + 𝑇) < ((𝑋 + (𝐽 · 𝑇)) + 𝑇))
10672adantr 481 . . . . . . . 8 ((𝜑𝐼 = (𝐽 + 1)) → 𝐵 = (𝐴 + 𝑇))
10790recnd 10522 . . . . . . . . . . 11 (𝜑 → (𝐽 · 𝑇) ∈ ℂ)
10874, 107, 69addassd 10516 . . . . . . . . . 10 (𝜑 → ((𝑋 + (𝐽 · 𝑇)) + 𝑇) = (𝑋 + ((𝐽 · 𝑇) + 𝑇)))
109108adantr 481 . . . . . . . . 9 ((𝜑𝐼 = (𝐽 + 1)) → ((𝑋 + (𝐽 · 𝑇)) + 𝑇) = (𝑋 + ((𝐽 · 𝑇) + 𝑇)))
11027recnd 10522 . . . . . . . . . . . . 13 (𝜑𝐽 ∈ ℂ)
111110, 69adddirp1d 10520 . . . . . . . . . . . 12 (𝜑 → ((𝐽 + 1) · 𝑇) = ((𝐽 · 𝑇) + 𝑇))
112111eqcomd 2803 . . . . . . . . . . 11 (𝜑 → ((𝐽 · 𝑇) + 𝑇) = ((𝐽 + 1) · 𝑇))
113112oveq2d 7039 . . . . . . . . . 10 (𝜑 → (𝑋 + ((𝐽 · 𝑇) + 𝑇)) = (𝑋 + ((𝐽 + 1) · 𝑇)))
114113adantr 481 . . . . . . . . 9 ((𝜑𝐼 = (𝐽 + 1)) → (𝑋 + ((𝐽 · 𝑇) + 𝑇)) = (𝑋 + ((𝐽 + 1) · 𝑇)))
115 oveq1 7030 . . . . . . . . . . . 12 (𝐼 = (𝐽 + 1) → (𝐼 · 𝑇) = ((𝐽 + 1) · 𝑇))
116115eqcomd 2803 . . . . . . . . . . 11 (𝐼 = (𝐽 + 1) → ((𝐽 + 1) · 𝑇) = (𝐼 · 𝑇))
117116oveq2d 7039 . . . . . . . . . 10 (𝐼 = (𝐽 + 1) → (𝑋 + ((𝐽 + 1) · 𝑇)) = (𝑋 + (𝐼 · 𝑇)))
118117adantl 482 . . . . . . . . 9 ((𝜑𝐼 = (𝐽 + 1)) → (𝑋 + ((𝐽 + 1) · 𝑇)) = (𝑋 + (𝐼 · 𝑇)))
119109, 114, 1183eqtrrd 2838 . . . . . . . 8 ((𝜑𝐼 = (𝐽 + 1)) → (𝑋 + (𝐼 · 𝑇)) = ((𝑋 + (𝐽 · 𝑇)) + 𝑇))
120105, 106, 1193brtr4d 5000 . . . . . . 7 ((𝜑𝐼 = (𝐽 + 1)) → 𝐵 < (𝑋 + (𝐼 · 𝑇)))
1214adantr 481 . . . . . . . 8 ((𝜑𝐼 = (𝐽 + 1)) → 𝐵 ∈ ℝ)
12259adantr 481 . . . . . . . 8 ((𝜑𝐼 = (𝐽 + 1)) → (𝑋 + (𝐼 · 𝑇)) ∈ ℝ)
123121, 122ltnled 10640 . . . . . . 7 ((𝜑𝐼 = (𝐽 + 1)) → (𝐵 < (𝑋 + (𝐼 · 𝑇)) ↔ ¬ (𝑋 + (𝐼 · 𝑇)) ≤ 𝐵))
124120, 123mpbid 233 . . . . . 6 ((𝜑𝐼 = (𝐽 + 1)) → ¬ (𝑋 + (𝐼 · 𝑇)) ≤ 𝐵)
12598, 124pm2.65da 813 . . . . 5 (𝜑 → ¬ 𝐼 = (𝐽 + 1))
12695, 125jca 512 . . . 4 (𝜑 → (¬ 𝐽 = (𝐼 + 1) ∧ ¬ 𝐼 = (𝐽 + 1)))
127126adantr 481 . . 3 ((𝜑 ∧ ¬ 𝐼 = 𝐽) → (¬ 𝐽 = (𝐼 + 1) ∧ ¬ 𝐼 = (𝐽 + 1)))
128 pm4.56 983 . . 3 ((¬ 𝐽 = (𝐼 + 1) ∧ ¬ 𝐼 = (𝐽 + 1)) ↔ ¬ (𝐽 = (𝐼 + 1) ∨ 𝐼 = (𝐽 + 1)))
129127, 128sylib 219 . 2 ((𝜑 ∧ ¬ 𝐼 = 𝐽) → ¬ (𝐽 = (𝐼 + 1) ∨ 𝐼 = (𝐽 + 1)))
13049, 129condan 814 1 (𝜑𝐼 = 𝐽)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 396  wo 842   = wceq 1525  wcel 2083  wne 2986   class class class wbr 4968  (class class class)co 7023  cr 10389  1c1 10391   + caddc 10393   · cmul 10395  *cxr 10527   < clt 10528  cle 10529  cmin 10723  cz 11835  (,]cioc 12593  [,]cicc 12595
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1781  ax-4 1795  ax-5 1892  ax-6 1951  ax-7 1996  ax-8 2085  ax-9 2093  ax-10 2114  ax-11 2128  ax-12 2143  ax-13 2346  ax-ext 2771  ax-sep 5101  ax-nul 5108  ax-pow 5164  ax-pr 5228  ax-un 7326  ax-cnex 10446  ax-resscn 10447  ax-1cn 10448  ax-icn 10449  ax-addcl 10450  ax-addrcl 10451  ax-mulcl 10452  ax-mulrcl 10453  ax-mulcom 10454  ax-addass 10455  ax-mulass 10456  ax-distr 10457  ax-i2m1 10458  ax-1ne0 10459  ax-1rid 10460  ax-rnegex 10461  ax-rrecex 10462  ax-cnre 10463  ax-pre-lttri 10464  ax-pre-lttrn 10465  ax-pre-ltadd 10466  ax-pre-mulgt0 10467
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 843  df-3or 1081  df-3an 1082  df-tru 1528  df-ex 1766  df-nf 1770  df-sb 2045  df-mo 2578  df-eu 2614  df-clab 2778  df-cleq 2790  df-clel 2865  df-nfc 2937  df-ne 2987  df-nel 3093  df-ral 3112  df-rex 3113  df-reu 3114  df-rmo 3115  df-rab 3116  df-v 3442  df-sbc 3712  df-csb 3818  df-dif 3868  df-un 3870  df-in 3872  df-ss 3880  df-pss 3882  df-nul 4218  df-if 4388  df-pw 4461  df-sn 4479  df-pr 4481  df-tp 4483  df-op 4485  df-uni 4752  df-iun 4833  df-br 4969  df-opab 5031  df-mpt 5048  df-tr 5071  df-id 5355  df-eprel 5360  df-po 5369  df-so 5370  df-fr 5409  df-we 5411  df-xp 5456  df-rel 5457  df-cnv 5458  df-co 5459  df-dm 5460  df-rn 5461  df-res 5462  df-ima 5463  df-pred 6030  df-ord 6076  df-on 6077  df-lim 6078  df-suc 6079  df-iota 6196  df-fun 6234  df-fn 6235  df-f 6236  df-f1 6237  df-fo 6238  df-f1o 6239  df-fv 6240  df-riota 6984  df-ov 7026  df-oprab 7027  df-mpo 7028  df-om 7444  df-wrecs 7805  df-recs 7867  df-rdg 7905  df-er 8146  df-en 8365  df-dom 8366  df-sdom 8367  df-pnf 10530  df-mnf 10531  df-xr 10532  df-ltxr 10533  df-le 10534  df-sub 10725  df-neg 10726  df-div 11152  df-nn 11493  df-n0 11752  df-z 11836  df-rp 12244  df-ioc 12597  df-icc 12599
This theorem is referenced by:  fourierdlem51  42006
  Copyright terms: Public domain W3C validator