Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fourierdlem35 Structured version   Visualization version   GIF version

Theorem fourierdlem35 43573
Description: There is a single point in (𝐴(,]𝐵) that's distant from 𝑋 a multiple integer of 𝑇. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypotheses
Ref Expression
fourierdlem35.a (𝜑𝐴 ∈ ℝ)
fourierdlem35.b (𝜑𝐵 ∈ ℝ)
fourierdlem35.altb (𝜑𝐴 < 𝐵)
fourierdlem35.t 𝑇 = (𝐵𝐴)
fourierdlem35.5 (𝜑𝑋 ∈ ℝ)
fourierdlem35.i (𝜑𝐼 ∈ ℤ)
fourierdlem35.j (𝜑𝐽 ∈ ℤ)
fourierdlem35.iel (𝜑 → (𝑋 + (𝐼 · 𝑇)) ∈ (𝐴(,]𝐵))
fourierdlem35.jel (𝜑 → (𝑋 + (𝐽 · 𝑇)) ∈ (𝐴(,]𝐵))
Assertion
Ref Expression
fourierdlem35 (𝜑𝐼 = 𝐽)

Proof of Theorem fourierdlem35
StepHypRef Expression
1 neqne 2950 . . 3 𝐼 = 𝐽𝐼𝐽)
2 fourierdlem35.a . . . . . . . 8 (𝜑𝐴 ∈ ℝ)
32adantr 480 . . . . . . 7 ((𝜑𝐼 < 𝐽) → 𝐴 ∈ ℝ)
4 fourierdlem35.b . . . . . . . 8 (𝜑𝐵 ∈ ℝ)
54adantr 480 . . . . . . 7 ((𝜑𝐼 < 𝐽) → 𝐵 ∈ ℝ)
6 fourierdlem35.altb . . . . . . . 8 (𝜑𝐴 < 𝐵)
76adantr 480 . . . . . . 7 ((𝜑𝐼 < 𝐽) → 𝐴 < 𝐵)
8 fourierdlem35.t . . . . . . 7 𝑇 = (𝐵𝐴)
9 fourierdlem35.5 . . . . . . . 8 (𝜑𝑋 ∈ ℝ)
109adantr 480 . . . . . . 7 ((𝜑𝐼 < 𝐽) → 𝑋 ∈ ℝ)
11 fourierdlem35.i . . . . . . . 8 (𝜑𝐼 ∈ ℤ)
1211adantr 480 . . . . . . 7 ((𝜑𝐼 < 𝐽) → 𝐼 ∈ ℤ)
13 fourierdlem35.j . . . . . . . 8 (𝜑𝐽 ∈ ℤ)
1413adantr 480 . . . . . . 7 ((𝜑𝐼 < 𝐽) → 𝐽 ∈ ℤ)
15 simpr 484 . . . . . . 7 ((𝜑𝐼 < 𝐽) → 𝐼 < 𝐽)
16 iocssicc 13098 . . . . . . . . 9 (𝐴(,]𝐵) ⊆ (𝐴[,]𝐵)
17 fourierdlem35.iel . . . . . . . . 9 (𝜑 → (𝑋 + (𝐼 · 𝑇)) ∈ (𝐴(,]𝐵))
1816, 17sselid 3915 . . . . . . . 8 (𝜑 → (𝑋 + (𝐼 · 𝑇)) ∈ (𝐴[,]𝐵))
1918adantr 480 . . . . . . 7 ((𝜑𝐼 < 𝐽) → (𝑋 + (𝐼 · 𝑇)) ∈ (𝐴[,]𝐵))
20 fourierdlem35.jel . . . . . . . . 9 (𝜑 → (𝑋 + (𝐽 · 𝑇)) ∈ (𝐴(,]𝐵))
2116, 20sselid 3915 . . . . . . . 8 (𝜑 → (𝑋 + (𝐽 · 𝑇)) ∈ (𝐴[,]𝐵))
2221adantr 480 . . . . . . 7 ((𝜑𝐼 < 𝐽) → (𝑋 + (𝐽 · 𝑇)) ∈ (𝐴[,]𝐵))
233, 5, 7, 8, 10, 12, 14, 15, 19, 22fourierdlem6 43544 . . . . . 6 ((𝜑𝐼 < 𝐽) → 𝐽 = (𝐼 + 1))
2423orcd 869 . . . . 5 ((𝜑𝐼 < 𝐽) → (𝐽 = (𝐼 + 1) ∨ 𝐼 = (𝐽 + 1)))
2524adantlr 711 . . . 4 (((𝜑𝐼𝐽) ∧ 𝐼 < 𝐽) → (𝐽 = (𝐼 + 1) ∨ 𝐼 = (𝐽 + 1)))
26 simpll 763 . . . . 5 (((𝜑𝐼𝐽) ∧ ¬ 𝐼 < 𝐽) → 𝜑)
2713zred 12355 . . . . . . 7 (𝜑𝐽 ∈ ℝ)
2826, 27syl 17 . . . . . 6 (((𝜑𝐼𝐽) ∧ ¬ 𝐼 < 𝐽) → 𝐽 ∈ ℝ)
2911zred 12355 . . . . . . 7 (𝜑𝐼 ∈ ℝ)
3026, 29syl 17 . . . . . 6 (((𝜑𝐼𝐽) ∧ ¬ 𝐼 < 𝐽) → 𝐼 ∈ ℝ)
31 id 22 . . . . . . . 8 (𝐼𝐽𝐼𝐽)
3231necomd 2998 . . . . . . 7 (𝐼𝐽𝐽𝐼)
3332ad2antlr 723 . . . . . 6 (((𝜑𝐼𝐽) ∧ ¬ 𝐼 < 𝐽) → 𝐽𝐼)
34 simpr 484 . . . . . 6 (((𝜑𝐼𝐽) ∧ ¬ 𝐼 < 𝐽) → ¬ 𝐼 < 𝐽)
3528, 30, 33, 34lttri5d 42728 . . . . 5 (((𝜑𝐼𝐽) ∧ ¬ 𝐼 < 𝐽) → 𝐽 < 𝐼)
362adantr 480 . . . . . . 7 ((𝜑𝐽 < 𝐼) → 𝐴 ∈ ℝ)
374adantr 480 . . . . . . 7 ((𝜑𝐽 < 𝐼) → 𝐵 ∈ ℝ)
386adantr 480 . . . . . . 7 ((𝜑𝐽 < 𝐼) → 𝐴 < 𝐵)
399adantr 480 . . . . . . 7 ((𝜑𝐽 < 𝐼) → 𝑋 ∈ ℝ)
4013adantr 480 . . . . . . 7 ((𝜑𝐽 < 𝐼) → 𝐽 ∈ ℤ)
4111adantr 480 . . . . . . 7 ((𝜑𝐽 < 𝐼) → 𝐼 ∈ ℤ)
42 simpr 484 . . . . . . 7 ((𝜑𝐽 < 𝐼) → 𝐽 < 𝐼)
4321adantr 480 . . . . . . 7 ((𝜑𝐽 < 𝐼) → (𝑋 + (𝐽 · 𝑇)) ∈ (𝐴[,]𝐵))
4418adantr 480 . . . . . . 7 ((𝜑𝐽 < 𝐼) → (𝑋 + (𝐼 · 𝑇)) ∈ (𝐴[,]𝐵))
4536, 37, 38, 8, 39, 40, 41, 42, 43, 44fourierdlem6 43544 . . . . . 6 ((𝜑𝐽 < 𝐼) → 𝐼 = (𝐽 + 1))
4645olcd 870 . . . . 5 ((𝜑𝐽 < 𝐼) → (𝐽 = (𝐼 + 1) ∨ 𝐼 = (𝐽 + 1)))
4726, 35, 46syl2anc 583 . . . 4 (((𝜑𝐼𝐽) ∧ ¬ 𝐼 < 𝐽) → (𝐽 = (𝐼 + 1) ∨ 𝐼 = (𝐽 + 1)))
4825, 47pm2.61dan 809 . . 3 ((𝜑𝐼𝐽) → (𝐽 = (𝐼 + 1) ∨ 𝐼 = (𝐽 + 1)))
491, 48sylan2 592 . 2 ((𝜑 ∧ ¬ 𝐼 = 𝐽) → (𝐽 = (𝐼 + 1) ∨ 𝐼 = (𝐽 + 1)))
502rexrd 10956 . . . . . . . 8 (𝜑𝐴 ∈ ℝ*)
514rexrd 10956 . . . . . . . 8 (𝜑𝐵 ∈ ℝ*)
52 iocleub 42931 . . . . . . . 8 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ* ∧ (𝑋 + (𝐽 · 𝑇)) ∈ (𝐴(,]𝐵)) → (𝑋 + (𝐽 · 𝑇)) ≤ 𝐵)
5350, 51, 20, 52syl3anc 1369 . . . . . . 7 (𝜑 → (𝑋 + (𝐽 · 𝑇)) ≤ 𝐵)
5453adantr 480 . . . . . 6 ((𝜑𝐽 = (𝐼 + 1)) → (𝑋 + (𝐽 · 𝑇)) ≤ 𝐵)
552adantr 480 . . . . . . . . 9 ((𝜑𝐽 = (𝐼 + 1)) → 𝐴 ∈ ℝ)
564, 2resubcld 11333 . . . . . . . . . . . . 13 (𝜑 → (𝐵𝐴) ∈ ℝ)
578, 56eqeltrid 2843 . . . . . . . . . . . 12 (𝜑𝑇 ∈ ℝ)
5829, 57remulcld 10936 . . . . . . . . . . 11 (𝜑 → (𝐼 · 𝑇) ∈ ℝ)
599, 58readdcld 10935 . . . . . . . . . 10 (𝜑 → (𝑋 + (𝐼 · 𝑇)) ∈ ℝ)
6059adantr 480 . . . . . . . . 9 ((𝜑𝐽 = (𝐼 + 1)) → (𝑋 + (𝐼 · 𝑇)) ∈ ℝ)
6157adantr 480 . . . . . . . . 9 ((𝜑𝐽 = (𝐼 + 1)) → 𝑇 ∈ ℝ)
62 iocgtlb 42930 . . . . . . . . . . 11 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ* ∧ (𝑋 + (𝐼 · 𝑇)) ∈ (𝐴(,]𝐵)) → 𝐴 < (𝑋 + (𝐼 · 𝑇)))
6350, 51, 17, 62syl3anc 1369 . . . . . . . . . 10 (𝜑𝐴 < (𝑋 + (𝐼 · 𝑇)))
6463adantr 480 . . . . . . . . 9 ((𝜑𝐽 = (𝐼 + 1)) → 𝐴 < (𝑋 + (𝐼 · 𝑇)))
6555, 60, 61, 64ltadd1dd 11516 . . . . . . . 8 ((𝜑𝐽 = (𝐼 + 1)) → (𝐴 + 𝑇) < ((𝑋 + (𝐼 · 𝑇)) + 𝑇))
668eqcomi 2747 . . . . . . . . . . 11 (𝐵𝐴) = 𝑇
674recnd 10934 . . . . . . . . . . . 12 (𝜑𝐵 ∈ ℂ)
682recnd 10934 . . . . . . . . . . . 12 (𝜑𝐴 ∈ ℂ)
6957recnd 10934 . . . . . . . . . . . 12 (𝜑𝑇 ∈ ℂ)
7067, 68, 69subaddd 11280 . . . . . . . . . . 11 (𝜑 → ((𝐵𝐴) = 𝑇 ↔ (𝐴 + 𝑇) = 𝐵))
7166, 70mpbii 232 . . . . . . . . . 10 (𝜑 → (𝐴 + 𝑇) = 𝐵)
7271eqcomd 2744 . . . . . . . . 9 (𝜑𝐵 = (𝐴 + 𝑇))
7372adantr 480 . . . . . . . 8 ((𝜑𝐽 = (𝐼 + 1)) → 𝐵 = (𝐴 + 𝑇))
749recnd 10934 . . . . . . . . . . 11 (𝜑𝑋 ∈ ℂ)
7558recnd 10934 . . . . . . . . . . 11 (𝜑 → (𝐼 · 𝑇) ∈ ℂ)
7674, 75, 69addassd 10928 . . . . . . . . . 10 (𝜑 → ((𝑋 + (𝐼 · 𝑇)) + 𝑇) = (𝑋 + ((𝐼 · 𝑇) + 𝑇)))
7776adantr 480 . . . . . . . . 9 ((𝜑𝐽 = (𝐼 + 1)) → ((𝑋 + (𝐼 · 𝑇)) + 𝑇) = (𝑋 + ((𝐼 · 𝑇) + 𝑇)))
7829recnd 10934 . . . . . . . . . . . . 13 (𝜑𝐼 ∈ ℂ)
7978, 69adddirp1d 10932 . . . . . . . . . . . 12 (𝜑 → ((𝐼 + 1) · 𝑇) = ((𝐼 · 𝑇) + 𝑇))
8079eqcomd 2744 . . . . . . . . . . 11 (𝜑 → ((𝐼 · 𝑇) + 𝑇) = ((𝐼 + 1) · 𝑇))
8180oveq2d 7271 . . . . . . . . . 10 (𝜑 → (𝑋 + ((𝐼 · 𝑇) + 𝑇)) = (𝑋 + ((𝐼 + 1) · 𝑇)))
8281adantr 480 . . . . . . . . 9 ((𝜑𝐽 = (𝐼 + 1)) → (𝑋 + ((𝐼 · 𝑇) + 𝑇)) = (𝑋 + ((𝐼 + 1) · 𝑇)))
83 oveq1 7262 . . . . . . . . . . . 12 (𝐽 = (𝐼 + 1) → (𝐽 · 𝑇) = ((𝐼 + 1) · 𝑇))
8483eqcomd 2744 . . . . . . . . . . 11 (𝐽 = (𝐼 + 1) → ((𝐼 + 1) · 𝑇) = (𝐽 · 𝑇))
8584oveq2d 7271 . . . . . . . . . 10 (𝐽 = (𝐼 + 1) → (𝑋 + ((𝐼 + 1) · 𝑇)) = (𝑋 + (𝐽 · 𝑇)))
8685adantl 481 . . . . . . . . 9 ((𝜑𝐽 = (𝐼 + 1)) → (𝑋 + ((𝐼 + 1) · 𝑇)) = (𝑋 + (𝐽 · 𝑇)))
8777, 82, 863eqtrrd 2783 . . . . . . . 8 ((𝜑𝐽 = (𝐼 + 1)) → (𝑋 + (𝐽 · 𝑇)) = ((𝑋 + (𝐼 · 𝑇)) + 𝑇))
8865, 73, 873brtr4d 5102 . . . . . . 7 ((𝜑𝐽 = (𝐼 + 1)) → 𝐵 < (𝑋 + (𝐽 · 𝑇)))
894adantr 480 . . . . . . . 8 ((𝜑𝐽 = (𝐼 + 1)) → 𝐵 ∈ ℝ)
9027, 57remulcld 10936 . . . . . . . . . 10 (𝜑 → (𝐽 · 𝑇) ∈ ℝ)
919, 90readdcld 10935 . . . . . . . . 9 (𝜑 → (𝑋 + (𝐽 · 𝑇)) ∈ ℝ)
9291adantr 480 . . . . . . . 8 ((𝜑𝐽 = (𝐼 + 1)) → (𝑋 + (𝐽 · 𝑇)) ∈ ℝ)
9389, 92ltnled 11052 . . . . . . 7 ((𝜑𝐽 = (𝐼 + 1)) → (𝐵 < (𝑋 + (𝐽 · 𝑇)) ↔ ¬ (𝑋 + (𝐽 · 𝑇)) ≤ 𝐵))
9488, 93mpbid 231 . . . . . 6 ((𝜑𝐽 = (𝐼 + 1)) → ¬ (𝑋 + (𝐽 · 𝑇)) ≤ 𝐵)
9554, 94pm2.65da 813 . . . . 5 (𝜑 → ¬ 𝐽 = (𝐼 + 1))
96 iocleub 42931 . . . . . . . 8 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ* ∧ (𝑋 + (𝐼 · 𝑇)) ∈ (𝐴(,]𝐵)) → (𝑋 + (𝐼 · 𝑇)) ≤ 𝐵)
9750, 51, 17, 96syl3anc 1369 . . . . . . 7 (𝜑 → (𝑋 + (𝐼 · 𝑇)) ≤ 𝐵)
9897adantr 480 . . . . . 6 ((𝜑𝐼 = (𝐽 + 1)) → (𝑋 + (𝐼 · 𝑇)) ≤ 𝐵)
992adantr 480 . . . . . . . . 9 ((𝜑𝐼 = (𝐽 + 1)) → 𝐴 ∈ ℝ)
10091adantr 480 . . . . . . . . 9 ((𝜑𝐼 = (𝐽 + 1)) → (𝑋 + (𝐽 · 𝑇)) ∈ ℝ)
10157adantr 480 . . . . . . . . 9 ((𝜑𝐼 = (𝐽 + 1)) → 𝑇 ∈ ℝ)
102 iocgtlb 42930 . . . . . . . . . . 11 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ* ∧ (𝑋 + (𝐽 · 𝑇)) ∈ (𝐴(,]𝐵)) → 𝐴 < (𝑋 + (𝐽 · 𝑇)))
10350, 51, 20, 102syl3anc 1369 . . . . . . . . . 10 (𝜑𝐴 < (𝑋 + (𝐽 · 𝑇)))
104103adantr 480 . . . . . . . . 9 ((𝜑𝐼 = (𝐽 + 1)) → 𝐴 < (𝑋 + (𝐽 · 𝑇)))
10599, 100, 101, 104ltadd1dd 11516 . . . . . . . 8 ((𝜑𝐼 = (𝐽 + 1)) → (𝐴 + 𝑇) < ((𝑋 + (𝐽 · 𝑇)) + 𝑇))
10672adantr 480 . . . . . . . 8 ((𝜑𝐼 = (𝐽 + 1)) → 𝐵 = (𝐴 + 𝑇))
10790recnd 10934 . . . . . . . . . . 11 (𝜑 → (𝐽 · 𝑇) ∈ ℂ)
10874, 107, 69addassd 10928 . . . . . . . . . 10 (𝜑 → ((𝑋 + (𝐽 · 𝑇)) + 𝑇) = (𝑋 + ((𝐽 · 𝑇) + 𝑇)))
109108adantr 480 . . . . . . . . 9 ((𝜑𝐼 = (𝐽 + 1)) → ((𝑋 + (𝐽 · 𝑇)) + 𝑇) = (𝑋 + ((𝐽 · 𝑇) + 𝑇)))
11027recnd 10934 . . . . . . . . . . . . 13 (𝜑𝐽 ∈ ℂ)
111110, 69adddirp1d 10932 . . . . . . . . . . . 12 (𝜑 → ((𝐽 + 1) · 𝑇) = ((𝐽 · 𝑇) + 𝑇))
112111eqcomd 2744 . . . . . . . . . . 11 (𝜑 → ((𝐽 · 𝑇) + 𝑇) = ((𝐽 + 1) · 𝑇))
113112oveq2d 7271 . . . . . . . . . 10 (𝜑 → (𝑋 + ((𝐽 · 𝑇) + 𝑇)) = (𝑋 + ((𝐽 + 1) · 𝑇)))
114113adantr 480 . . . . . . . . 9 ((𝜑𝐼 = (𝐽 + 1)) → (𝑋 + ((𝐽 · 𝑇) + 𝑇)) = (𝑋 + ((𝐽 + 1) · 𝑇)))
115 oveq1 7262 . . . . . . . . . . . 12 (𝐼 = (𝐽 + 1) → (𝐼 · 𝑇) = ((𝐽 + 1) · 𝑇))
116115eqcomd 2744 . . . . . . . . . . 11 (𝐼 = (𝐽 + 1) → ((𝐽 + 1) · 𝑇) = (𝐼 · 𝑇))
117116oveq2d 7271 . . . . . . . . . 10 (𝐼 = (𝐽 + 1) → (𝑋 + ((𝐽 + 1) · 𝑇)) = (𝑋 + (𝐼 · 𝑇)))
118117adantl 481 . . . . . . . . 9 ((𝜑𝐼 = (𝐽 + 1)) → (𝑋 + ((𝐽 + 1) · 𝑇)) = (𝑋 + (𝐼 · 𝑇)))
119109, 114, 1183eqtrrd 2783 . . . . . . . 8 ((𝜑𝐼 = (𝐽 + 1)) → (𝑋 + (𝐼 · 𝑇)) = ((𝑋 + (𝐽 · 𝑇)) + 𝑇))
120105, 106, 1193brtr4d 5102 . . . . . . 7 ((𝜑𝐼 = (𝐽 + 1)) → 𝐵 < (𝑋 + (𝐼 · 𝑇)))
1214adantr 480 . . . . . . . 8 ((𝜑𝐼 = (𝐽 + 1)) → 𝐵 ∈ ℝ)
12259adantr 480 . . . . . . . 8 ((𝜑𝐼 = (𝐽 + 1)) → (𝑋 + (𝐼 · 𝑇)) ∈ ℝ)
123121, 122ltnled 11052 . . . . . . 7 ((𝜑𝐼 = (𝐽 + 1)) → (𝐵 < (𝑋 + (𝐼 · 𝑇)) ↔ ¬ (𝑋 + (𝐼 · 𝑇)) ≤ 𝐵))
124120, 123mpbid 231 . . . . . 6 ((𝜑𝐼 = (𝐽 + 1)) → ¬ (𝑋 + (𝐼 · 𝑇)) ≤ 𝐵)
12598, 124pm2.65da 813 . . . . 5 (𝜑 → ¬ 𝐼 = (𝐽 + 1))
12695, 125jca 511 . . . 4 (𝜑 → (¬ 𝐽 = (𝐼 + 1) ∧ ¬ 𝐼 = (𝐽 + 1)))
127126adantr 480 . . 3 ((𝜑 ∧ ¬ 𝐼 = 𝐽) → (¬ 𝐽 = (𝐼 + 1) ∧ ¬ 𝐼 = (𝐽 + 1)))
128 pm4.56 985 . . 3 ((¬ 𝐽 = (𝐼 + 1) ∧ ¬ 𝐼 = (𝐽 + 1)) ↔ ¬ (𝐽 = (𝐼 + 1) ∨ 𝐼 = (𝐽 + 1)))
129127, 128sylib 217 . 2 ((𝜑 ∧ ¬ 𝐼 = 𝐽) → ¬ (𝐽 = (𝐼 + 1) ∨ 𝐼 = (𝐽 + 1)))
13049, 129condan 814 1 (𝜑𝐼 = 𝐽)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  wo 843   = wceq 1539  wcel 2108  wne 2942   class class class wbr 5070  (class class class)co 7255  cr 10801  1c1 10803   + caddc 10805   · cmul 10807  *cxr 10939   < clt 10940  cle 10941  cmin 11135  cz 12249  (,]cioc 13009  [,]cicc 13011
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-er 8456  df-en 8692  df-dom 8693  df-sdom 8694  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-div 11563  df-nn 11904  df-n0 12164  df-z 12250  df-rp 12660  df-ioc 13013  df-icc 13015
This theorem is referenced by:  fourierdlem51  43588
  Copyright terms: Public domain W3C validator