Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fourierdlem35 Structured version   Visualization version   GIF version

Theorem fourierdlem35 45781
Description: There is a single point in (𝐴(,]𝐵) that's distant from 𝑋 a multiple integer of 𝑇. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypotheses
Ref Expression
fourierdlem35.a (𝜑𝐴 ∈ ℝ)
fourierdlem35.b (𝜑𝐵 ∈ ℝ)
fourierdlem35.altb (𝜑𝐴 < 𝐵)
fourierdlem35.t 𝑇 = (𝐵𝐴)
fourierdlem35.5 (𝜑𝑋 ∈ ℝ)
fourierdlem35.i (𝜑𝐼 ∈ ℤ)
fourierdlem35.j (𝜑𝐽 ∈ ℤ)
fourierdlem35.iel (𝜑 → (𝑋 + (𝐼 · 𝑇)) ∈ (𝐴(,]𝐵))
fourierdlem35.jel (𝜑 → (𝑋 + (𝐽 · 𝑇)) ∈ (𝐴(,]𝐵))
Assertion
Ref Expression
fourierdlem35 (𝜑𝐼 = 𝐽)

Proof of Theorem fourierdlem35
StepHypRef Expression
1 neqne 2938 . . 3 𝐼 = 𝐽𝐼𝐽)
2 fourierdlem35.a . . . . . . . 8 (𝜑𝐴 ∈ ℝ)
32adantr 479 . . . . . . 7 ((𝜑𝐼 < 𝐽) → 𝐴 ∈ ℝ)
4 fourierdlem35.b . . . . . . . 8 (𝜑𝐵 ∈ ℝ)
54adantr 479 . . . . . . 7 ((𝜑𝐼 < 𝐽) → 𝐵 ∈ ℝ)
6 fourierdlem35.altb . . . . . . . 8 (𝜑𝐴 < 𝐵)
76adantr 479 . . . . . . 7 ((𝜑𝐼 < 𝐽) → 𝐴 < 𝐵)
8 fourierdlem35.t . . . . . . 7 𝑇 = (𝐵𝐴)
9 fourierdlem35.5 . . . . . . . 8 (𝜑𝑋 ∈ ℝ)
109adantr 479 . . . . . . 7 ((𝜑𝐼 < 𝐽) → 𝑋 ∈ ℝ)
11 fourierdlem35.i . . . . . . . 8 (𝜑𝐼 ∈ ℤ)
1211adantr 479 . . . . . . 7 ((𝜑𝐼 < 𝐽) → 𝐼 ∈ ℤ)
13 fourierdlem35.j . . . . . . . 8 (𝜑𝐽 ∈ ℤ)
1413adantr 479 . . . . . . 7 ((𝜑𝐼 < 𝐽) → 𝐽 ∈ ℤ)
15 simpr 483 . . . . . . 7 ((𝜑𝐼 < 𝐽) → 𝐼 < 𝐽)
16 iocssicc 13470 . . . . . . . . 9 (𝐴(,]𝐵) ⊆ (𝐴[,]𝐵)
17 fourierdlem35.iel . . . . . . . . 9 (𝜑 → (𝑋 + (𝐼 · 𝑇)) ∈ (𝐴(,]𝐵))
1816, 17sselid 3977 . . . . . . . 8 (𝜑 → (𝑋 + (𝐼 · 𝑇)) ∈ (𝐴[,]𝐵))
1918adantr 479 . . . . . . 7 ((𝜑𝐼 < 𝐽) → (𝑋 + (𝐼 · 𝑇)) ∈ (𝐴[,]𝐵))
20 fourierdlem35.jel . . . . . . . . 9 (𝜑 → (𝑋 + (𝐽 · 𝑇)) ∈ (𝐴(,]𝐵))
2116, 20sselid 3977 . . . . . . . 8 (𝜑 → (𝑋 + (𝐽 · 𝑇)) ∈ (𝐴[,]𝐵))
2221adantr 479 . . . . . . 7 ((𝜑𝐼 < 𝐽) → (𝑋 + (𝐽 · 𝑇)) ∈ (𝐴[,]𝐵))
233, 5, 7, 8, 10, 12, 14, 15, 19, 22fourierdlem6 45752 . . . . . 6 ((𝜑𝐼 < 𝐽) → 𝐽 = (𝐼 + 1))
2423orcd 871 . . . . 5 ((𝜑𝐼 < 𝐽) → (𝐽 = (𝐼 + 1) ∨ 𝐼 = (𝐽 + 1)))
2524adantlr 713 . . . 4 (((𝜑𝐼𝐽) ∧ 𝐼 < 𝐽) → (𝐽 = (𝐼 + 1) ∨ 𝐼 = (𝐽 + 1)))
26 simpll 765 . . . . 5 (((𝜑𝐼𝐽) ∧ ¬ 𝐼 < 𝐽) → 𝜑)
2713zred 12720 . . . . . . 7 (𝜑𝐽 ∈ ℝ)
2826, 27syl 17 . . . . . 6 (((𝜑𝐼𝐽) ∧ ¬ 𝐼 < 𝐽) → 𝐽 ∈ ℝ)
2911zred 12720 . . . . . . 7 (𝜑𝐼 ∈ ℝ)
3026, 29syl 17 . . . . . 6 (((𝜑𝐼𝐽) ∧ ¬ 𝐼 < 𝐽) → 𝐼 ∈ ℝ)
31 id 22 . . . . . . . 8 (𝐼𝐽𝐼𝐽)
3231necomd 2986 . . . . . . 7 (𝐼𝐽𝐽𝐼)
3332ad2antlr 725 . . . . . 6 (((𝜑𝐼𝐽) ∧ ¬ 𝐼 < 𝐽) → 𝐽𝐼)
34 simpr 483 . . . . . 6 (((𝜑𝐼𝐽) ∧ ¬ 𝐼 < 𝐽) → ¬ 𝐼 < 𝐽)
3528, 30, 33, 34lttri5d 44932 . . . . 5 (((𝜑𝐼𝐽) ∧ ¬ 𝐼 < 𝐽) → 𝐽 < 𝐼)
362adantr 479 . . . . . . 7 ((𝜑𝐽 < 𝐼) → 𝐴 ∈ ℝ)
374adantr 479 . . . . . . 7 ((𝜑𝐽 < 𝐼) → 𝐵 ∈ ℝ)
386adantr 479 . . . . . . 7 ((𝜑𝐽 < 𝐼) → 𝐴 < 𝐵)
399adantr 479 . . . . . . 7 ((𝜑𝐽 < 𝐼) → 𝑋 ∈ ℝ)
4013adantr 479 . . . . . . 7 ((𝜑𝐽 < 𝐼) → 𝐽 ∈ ℤ)
4111adantr 479 . . . . . . 7 ((𝜑𝐽 < 𝐼) → 𝐼 ∈ ℤ)
42 simpr 483 . . . . . . 7 ((𝜑𝐽 < 𝐼) → 𝐽 < 𝐼)
4321adantr 479 . . . . . . 7 ((𝜑𝐽 < 𝐼) → (𝑋 + (𝐽 · 𝑇)) ∈ (𝐴[,]𝐵))
4418adantr 479 . . . . . . 7 ((𝜑𝐽 < 𝐼) → (𝑋 + (𝐼 · 𝑇)) ∈ (𝐴[,]𝐵))
4536, 37, 38, 8, 39, 40, 41, 42, 43, 44fourierdlem6 45752 . . . . . 6 ((𝜑𝐽 < 𝐼) → 𝐼 = (𝐽 + 1))
4645olcd 872 . . . . 5 ((𝜑𝐽 < 𝐼) → (𝐽 = (𝐼 + 1) ∨ 𝐼 = (𝐽 + 1)))
4726, 35, 46syl2anc 582 . . . 4 (((𝜑𝐼𝐽) ∧ ¬ 𝐼 < 𝐽) → (𝐽 = (𝐼 + 1) ∨ 𝐼 = (𝐽 + 1)))
4825, 47pm2.61dan 811 . . 3 ((𝜑𝐼𝐽) → (𝐽 = (𝐼 + 1) ∨ 𝐼 = (𝐽 + 1)))
491, 48sylan2 591 . 2 ((𝜑 ∧ ¬ 𝐼 = 𝐽) → (𝐽 = (𝐼 + 1) ∨ 𝐼 = (𝐽 + 1)))
502rexrd 11316 . . . . . . . 8 (𝜑𝐴 ∈ ℝ*)
514rexrd 11316 . . . . . . . 8 (𝜑𝐵 ∈ ℝ*)
52 iocleub 45139 . . . . . . . 8 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ* ∧ (𝑋 + (𝐽 · 𝑇)) ∈ (𝐴(,]𝐵)) → (𝑋 + (𝐽 · 𝑇)) ≤ 𝐵)
5350, 51, 20, 52syl3anc 1368 . . . . . . 7 (𝜑 → (𝑋 + (𝐽 · 𝑇)) ≤ 𝐵)
5453adantr 479 . . . . . 6 ((𝜑𝐽 = (𝐼 + 1)) → (𝑋 + (𝐽 · 𝑇)) ≤ 𝐵)
552adantr 479 . . . . . . . . 9 ((𝜑𝐽 = (𝐼 + 1)) → 𝐴 ∈ ℝ)
564, 2resubcld 11694 . . . . . . . . . . . . 13 (𝜑 → (𝐵𝐴) ∈ ℝ)
578, 56eqeltrid 2830 . . . . . . . . . . . 12 (𝜑𝑇 ∈ ℝ)
5829, 57remulcld 11296 . . . . . . . . . . 11 (𝜑 → (𝐼 · 𝑇) ∈ ℝ)
599, 58readdcld 11295 . . . . . . . . . 10 (𝜑 → (𝑋 + (𝐼 · 𝑇)) ∈ ℝ)
6059adantr 479 . . . . . . . . 9 ((𝜑𝐽 = (𝐼 + 1)) → (𝑋 + (𝐼 · 𝑇)) ∈ ℝ)
6157adantr 479 . . . . . . . . 9 ((𝜑𝐽 = (𝐼 + 1)) → 𝑇 ∈ ℝ)
62 iocgtlb 45138 . . . . . . . . . . 11 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ* ∧ (𝑋 + (𝐼 · 𝑇)) ∈ (𝐴(,]𝐵)) → 𝐴 < (𝑋 + (𝐼 · 𝑇)))
6350, 51, 17, 62syl3anc 1368 . . . . . . . . . 10 (𝜑𝐴 < (𝑋 + (𝐼 · 𝑇)))
6463adantr 479 . . . . . . . . 9 ((𝜑𝐽 = (𝐼 + 1)) → 𝐴 < (𝑋 + (𝐼 · 𝑇)))
6555, 60, 61, 64ltadd1dd 11877 . . . . . . . 8 ((𝜑𝐽 = (𝐼 + 1)) → (𝐴 + 𝑇) < ((𝑋 + (𝐼 · 𝑇)) + 𝑇))
668eqcomi 2735 . . . . . . . . . . 11 (𝐵𝐴) = 𝑇
674recnd 11294 . . . . . . . . . . . 12 (𝜑𝐵 ∈ ℂ)
682recnd 11294 . . . . . . . . . . . 12 (𝜑𝐴 ∈ ℂ)
6957recnd 11294 . . . . . . . . . . . 12 (𝜑𝑇 ∈ ℂ)
7067, 68, 69subaddd 11641 . . . . . . . . . . 11 (𝜑 → ((𝐵𝐴) = 𝑇 ↔ (𝐴 + 𝑇) = 𝐵))
7166, 70mpbii 232 . . . . . . . . . 10 (𝜑 → (𝐴 + 𝑇) = 𝐵)
7271eqcomd 2732 . . . . . . . . 9 (𝜑𝐵 = (𝐴 + 𝑇))
7372adantr 479 . . . . . . . 8 ((𝜑𝐽 = (𝐼 + 1)) → 𝐵 = (𝐴 + 𝑇))
749recnd 11294 . . . . . . . . . . 11 (𝜑𝑋 ∈ ℂ)
7558recnd 11294 . . . . . . . . . . 11 (𝜑 → (𝐼 · 𝑇) ∈ ℂ)
7674, 75, 69addassd 11288 . . . . . . . . . 10 (𝜑 → ((𝑋 + (𝐼 · 𝑇)) + 𝑇) = (𝑋 + ((𝐼 · 𝑇) + 𝑇)))
7776adantr 479 . . . . . . . . 9 ((𝜑𝐽 = (𝐼 + 1)) → ((𝑋 + (𝐼 · 𝑇)) + 𝑇) = (𝑋 + ((𝐼 · 𝑇) + 𝑇)))
7829recnd 11294 . . . . . . . . . . . . 13 (𝜑𝐼 ∈ ℂ)
7978, 69adddirp1d 11292 . . . . . . . . . . . 12 (𝜑 → ((𝐼 + 1) · 𝑇) = ((𝐼 · 𝑇) + 𝑇))
8079eqcomd 2732 . . . . . . . . . . 11 (𝜑 → ((𝐼 · 𝑇) + 𝑇) = ((𝐼 + 1) · 𝑇))
8180oveq2d 7442 . . . . . . . . . 10 (𝜑 → (𝑋 + ((𝐼 · 𝑇) + 𝑇)) = (𝑋 + ((𝐼 + 1) · 𝑇)))
8281adantr 479 . . . . . . . . 9 ((𝜑𝐽 = (𝐼 + 1)) → (𝑋 + ((𝐼 · 𝑇) + 𝑇)) = (𝑋 + ((𝐼 + 1) · 𝑇)))
83 oveq1 7433 . . . . . . . . . . . 12 (𝐽 = (𝐼 + 1) → (𝐽 · 𝑇) = ((𝐼 + 1) · 𝑇))
8483eqcomd 2732 . . . . . . . . . . 11 (𝐽 = (𝐼 + 1) → ((𝐼 + 1) · 𝑇) = (𝐽 · 𝑇))
8584oveq2d 7442 . . . . . . . . . 10 (𝐽 = (𝐼 + 1) → (𝑋 + ((𝐼 + 1) · 𝑇)) = (𝑋 + (𝐽 · 𝑇)))
8685adantl 480 . . . . . . . . 9 ((𝜑𝐽 = (𝐼 + 1)) → (𝑋 + ((𝐼 + 1) · 𝑇)) = (𝑋 + (𝐽 · 𝑇)))
8777, 82, 863eqtrrd 2771 . . . . . . . 8 ((𝜑𝐽 = (𝐼 + 1)) → (𝑋 + (𝐽 · 𝑇)) = ((𝑋 + (𝐼 · 𝑇)) + 𝑇))
8865, 73, 873brtr4d 5187 . . . . . . 7 ((𝜑𝐽 = (𝐼 + 1)) → 𝐵 < (𝑋 + (𝐽 · 𝑇)))
894adantr 479 . . . . . . . 8 ((𝜑𝐽 = (𝐼 + 1)) → 𝐵 ∈ ℝ)
9027, 57remulcld 11296 . . . . . . . . . 10 (𝜑 → (𝐽 · 𝑇) ∈ ℝ)
919, 90readdcld 11295 . . . . . . . . 9 (𝜑 → (𝑋 + (𝐽 · 𝑇)) ∈ ℝ)
9291adantr 479 . . . . . . . 8 ((𝜑𝐽 = (𝐼 + 1)) → (𝑋 + (𝐽 · 𝑇)) ∈ ℝ)
9389, 92ltnled 11413 . . . . . . 7 ((𝜑𝐽 = (𝐼 + 1)) → (𝐵 < (𝑋 + (𝐽 · 𝑇)) ↔ ¬ (𝑋 + (𝐽 · 𝑇)) ≤ 𝐵))
9488, 93mpbid 231 . . . . . 6 ((𝜑𝐽 = (𝐼 + 1)) → ¬ (𝑋 + (𝐽 · 𝑇)) ≤ 𝐵)
9554, 94pm2.65da 815 . . . . 5 (𝜑 → ¬ 𝐽 = (𝐼 + 1))
96 iocleub 45139 . . . . . . . 8 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ* ∧ (𝑋 + (𝐼 · 𝑇)) ∈ (𝐴(,]𝐵)) → (𝑋 + (𝐼 · 𝑇)) ≤ 𝐵)
9750, 51, 17, 96syl3anc 1368 . . . . . . 7 (𝜑 → (𝑋 + (𝐼 · 𝑇)) ≤ 𝐵)
9897adantr 479 . . . . . 6 ((𝜑𝐼 = (𝐽 + 1)) → (𝑋 + (𝐼 · 𝑇)) ≤ 𝐵)
992adantr 479 . . . . . . . . 9 ((𝜑𝐼 = (𝐽 + 1)) → 𝐴 ∈ ℝ)
10091adantr 479 . . . . . . . . 9 ((𝜑𝐼 = (𝐽 + 1)) → (𝑋 + (𝐽 · 𝑇)) ∈ ℝ)
10157adantr 479 . . . . . . . . 9 ((𝜑𝐼 = (𝐽 + 1)) → 𝑇 ∈ ℝ)
102 iocgtlb 45138 . . . . . . . . . . 11 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ* ∧ (𝑋 + (𝐽 · 𝑇)) ∈ (𝐴(,]𝐵)) → 𝐴 < (𝑋 + (𝐽 · 𝑇)))
10350, 51, 20, 102syl3anc 1368 . . . . . . . . . 10 (𝜑𝐴 < (𝑋 + (𝐽 · 𝑇)))
104103adantr 479 . . . . . . . . 9 ((𝜑𝐼 = (𝐽 + 1)) → 𝐴 < (𝑋 + (𝐽 · 𝑇)))
10599, 100, 101, 104ltadd1dd 11877 . . . . . . . 8 ((𝜑𝐼 = (𝐽 + 1)) → (𝐴 + 𝑇) < ((𝑋 + (𝐽 · 𝑇)) + 𝑇))
10672adantr 479 . . . . . . . 8 ((𝜑𝐼 = (𝐽 + 1)) → 𝐵 = (𝐴 + 𝑇))
10790recnd 11294 . . . . . . . . . . 11 (𝜑 → (𝐽 · 𝑇) ∈ ℂ)
10874, 107, 69addassd 11288 . . . . . . . . . 10 (𝜑 → ((𝑋 + (𝐽 · 𝑇)) + 𝑇) = (𝑋 + ((𝐽 · 𝑇) + 𝑇)))
109108adantr 479 . . . . . . . . 9 ((𝜑𝐼 = (𝐽 + 1)) → ((𝑋 + (𝐽 · 𝑇)) + 𝑇) = (𝑋 + ((𝐽 · 𝑇) + 𝑇)))
11027recnd 11294 . . . . . . . . . . . . 13 (𝜑𝐽 ∈ ℂ)
111110, 69adddirp1d 11292 . . . . . . . . . . . 12 (𝜑 → ((𝐽 + 1) · 𝑇) = ((𝐽 · 𝑇) + 𝑇))
112111eqcomd 2732 . . . . . . . . . . 11 (𝜑 → ((𝐽 · 𝑇) + 𝑇) = ((𝐽 + 1) · 𝑇))
113112oveq2d 7442 . . . . . . . . . 10 (𝜑 → (𝑋 + ((𝐽 · 𝑇) + 𝑇)) = (𝑋 + ((𝐽 + 1) · 𝑇)))
114113adantr 479 . . . . . . . . 9 ((𝜑𝐼 = (𝐽 + 1)) → (𝑋 + ((𝐽 · 𝑇) + 𝑇)) = (𝑋 + ((𝐽 + 1) · 𝑇)))
115 oveq1 7433 . . . . . . . . . . . 12 (𝐼 = (𝐽 + 1) → (𝐼 · 𝑇) = ((𝐽 + 1) · 𝑇))
116115eqcomd 2732 . . . . . . . . . . 11 (𝐼 = (𝐽 + 1) → ((𝐽 + 1) · 𝑇) = (𝐼 · 𝑇))
117116oveq2d 7442 . . . . . . . . . 10 (𝐼 = (𝐽 + 1) → (𝑋 + ((𝐽 + 1) · 𝑇)) = (𝑋 + (𝐼 · 𝑇)))
118117adantl 480 . . . . . . . . 9 ((𝜑𝐼 = (𝐽 + 1)) → (𝑋 + ((𝐽 + 1) · 𝑇)) = (𝑋 + (𝐼 · 𝑇)))
119109, 114, 1183eqtrrd 2771 . . . . . . . 8 ((𝜑𝐼 = (𝐽 + 1)) → (𝑋 + (𝐼 · 𝑇)) = ((𝑋 + (𝐽 · 𝑇)) + 𝑇))
120105, 106, 1193brtr4d 5187 . . . . . . 7 ((𝜑𝐼 = (𝐽 + 1)) → 𝐵 < (𝑋 + (𝐼 · 𝑇)))
1214adantr 479 . . . . . . . 8 ((𝜑𝐼 = (𝐽 + 1)) → 𝐵 ∈ ℝ)
12259adantr 479 . . . . . . . 8 ((𝜑𝐼 = (𝐽 + 1)) → (𝑋 + (𝐼 · 𝑇)) ∈ ℝ)
123121, 122ltnled 11413 . . . . . . 7 ((𝜑𝐼 = (𝐽 + 1)) → (𝐵 < (𝑋 + (𝐼 · 𝑇)) ↔ ¬ (𝑋 + (𝐼 · 𝑇)) ≤ 𝐵))
124120, 123mpbid 231 . . . . . 6 ((𝜑𝐼 = (𝐽 + 1)) → ¬ (𝑋 + (𝐼 · 𝑇)) ≤ 𝐵)
12598, 124pm2.65da 815 . . . . 5 (𝜑 → ¬ 𝐼 = (𝐽 + 1))
12695, 125jca 510 . . . 4 (𝜑 → (¬ 𝐽 = (𝐼 + 1) ∧ ¬ 𝐼 = (𝐽 + 1)))
127126adantr 479 . . 3 ((𝜑 ∧ ¬ 𝐼 = 𝐽) → (¬ 𝐽 = (𝐼 + 1) ∧ ¬ 𝐼 = (𝐽 + 1)))
128 pm4.56 986 . . 3 ((¬ 𝐽 = (𝐼 + 1) ∧ ¬ 𝐼 = (𝐽 + 1)) ↔ ¬ (𝐽 = (𝐼 + 1) ∨ 𝐼 = (𝐽 + 1)))
129127, 128sylib 217 . 2 ((𝜑 ∧ ¬ 𝐼 = 𝐽) → ¬ (𝐽 = (𝐼 + 1) ∨ 𝐼 = (𝐽 + 1)))
13049, 129condan 816 1 (𝜑𝐼 = 𝐽)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 394  wo 845   = wceq 1534  wcel 2099  wne 2930   class class class wbr 5155  (class class class)co 7426  cr 11159  1c1 11161   + caddc 11163   · cmul 11165  *cxr 11299   < clt 11300  cle 11301  cmin 11496  cz 12612  (,]cioc 13381  [,]cicc 13383
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2697  ax-sep 5306  ax-nul 5313  ax-pow 5371  ax-pr 5435  ax-un 7748  ax-cnex 11216  ax-resscn 11217  ax-1cn 11218  ax-icn 11219  ax-addcl 11220  ax-addrcl 11221  ax-mulcl 11222  ax-mulrcl 11223  ax-mulcom 11224  ax-addass 11225  ax-mulass 11226  ax-distr 11227  ax-i2m1 11228  ax-1ne0 11229  ax-1rid 11230  ax-rnegex 11231  ax-rrecex 11232  ax-cnre 11233  ax-pre-lttri 11234  ax-pre-lttrn 11235  ax-pre-ltadd 11236  ax-pre-mulgt0 11237
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2704  df-cleq 2718  df-clel 2803  df-nfc 2878  df-ne 2931  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3364  df-reu 3365  df-rab 3420  df-v 3464  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3967  df-nul 4326  df-if 4534  df-pw 4609  df-sn 4634  df-pr 4636  df-op 4640  df-uni 4916  df-iun 5005  df-br 5156  df-opab 5218  df-mpt 5239  df-tr 5273  df-id 5582  df-eprel 5588  df-po 5596  df-so 5597  df-fr 5639  df-we 5641  df-xp 5690  df-rel 5691  df-cnv 5692  df-co 5693  df-dm 5694  df-rn 5695  df-res 5696  df-ima 5697  df-pred 6314  df-ord 6381  df-on 6382  df-lim 6383  df-suc 6384  df-iota 6508  df-fun 6558  df-fn 6559  df-f 6560  df-f1 6561  df-fo 6562  df-f1o 6563  df-fv 6564  df-riota 7382  df-ov 7429  df-oprab 7430  df-mpo 7431  df-om 7879  df-2nd 8006  df-frecs 8298  df-wrecs 8329  df-recs 8403  df-rdg 8442  df-er 8736  df-en 8977  df-dom 8978  df-sdom 8979  df-pnf 11302  df-mnf 11303  df-xr 11304  df-ltxr 11305  df-le 11306  df-sub 11498  df-neg 11499  df-div 11924  df-nn 12267  df-n0 12527  df-z 12613  df-rp 13031  df-ioc 13385  df-icc 13387
This theorem is referenced by:  fourierdlem51  45796
  Copyright terms: Public domain W3C validator