Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cncfiooicc Structured version   Visualization version   GIF version

Theorem cncfiooicc 42536
Description: A continuous function 𝐹 on an open interval (𝐴(,)𝐵) can be extended to a continuous function 𝐺 on the corresponding closed interval, if it has a finite right limit 𝑅 in 𝐴 and a finite left limit 𝐿 in 𝐵. 𝐹 can be complex-valued. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypotheses
Ref Expression
cncfiooicc.x 𝑥𝜑
cncfiooicc.g 𝐺 = (𝑥 ∈ (𝐴[,]𝐵) ↦ if(𝑥 = 𝐴, 𝑅, if(𝑥 = 𝐵, 𝐿, (𝐹𝑥))))
cncfiooicc.a (𝜑𝐴 ∈ ℝ)
cncfiooicc.b (𝜑𝐵 ∈ ℝ)
cncfiooicc.f (𝜑𝐹 ∈ ((𝐴(,)𝐵)–cn→ℂ))
cncfiooicc.l (𝜑𝐿 ∈ (𝐹 lim 𝐵))
cncfiooicc.r (𝜑𝑅 ∈ (𝐹 lim 𝐴))
Assertion
Ref Expression
cncfiooicc (𝜑𝐺 ∈ ((𝐴[,]𝐵)–cn→ℂ))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑥,𝐹   𝑥,𝐿   𝑥,𝑅   𝜑,𝑥
Allowed substitution hint:   𝐺(𝑥)

Proof of Theorem cncfiooicc
StepHypRef Expression
1 nfv 1915 . . 3 𝑥(𝜑𝐴 < 𝐵)
2 cncfiooicc.g . . 3 𝐺 = (𝑥 ∈ (𝐴[,]𝐵) ↦ if(𝑥 = 𝐴, 𝑅, if(𝑥 = 𝐵, 𝐿, (𝐹𝑥))))
3 cncfiooicc.a . . . 4 (𝜑𝐴 ∈ ℝ)
43adantr 484 . . 3 ((𝜑𝐴 < 𝐵) → 𝐴 ∈ ℝ)
5 cncfiooicc.b . . . 4 (𝜑𝐵 ∈ ℝ)
65adantr 484 . . 3 ((𝜑𝐴 < 𝐵) → 𝐵 ∈ ℝ)
7 simpr 488 . . 3 ((𝜑𝐴 < 𝐵) → 𝐴 < 𝐵)
8 cncfiooicc.f . . . 4 (𝜑𝐹 ∈ ((𝐴(,)𝐵)–cn→ℂ))
98adantr 484 . . 3 ((𝜑𝐴 < 𝐵) → 𝐹 ∈ ((𝐴(,)𝐵)–cn→ℂ))
10 cncfiooicc.l . . . 4 (𝜑𝐿 ∈ (𝐹 lim 𝐵))
1110adantr 484 . . 3 ((𝜑𝐴 < 𝐵) → 𝐿 ∈ (𝐹 lim 𝐵))
12 cncfiooicc.r . . . 4 (𝜑𝑅 ∈ (𝐹 lim 𝐴))
1312adantr 484 . . 3 ((𝜑𝐴 < 𝐵) → 𝑅 ∈ (𝐹 lim 𝐴))
141, 2, 4, 6, 7, 9, 11, 13cncfiooicclem1 42535 . 2 ((𝜑𝐴 < 𝐵) → 𝐺 ∈ ((𝐴[,]𝐵)–cn→ℂ))
15 limccl 24478 . . . . . . . . . 10 (𝐹 lim 𝐴) ⊆ ℂ
1615, 12sseldi 3913 . . . . . . . . 9 (𝜑𝑅 ∈ ℂ)
1716snssd 4702 . . . . . . . 8 (𝜑 → {𝑅} ⊆ ℂ)
18 ssid 3937 . . . . . . . . 9 ℂ ⊆ ℂ
1918a1i 11 . . . . . . . 8 (𝜑 → ℂ ⊆ ℂ)
20 cncfss 23504 . . . . . . . 8 (({𝑅} ⊆ ℂ ∧ ℂ ⊆ ℂ) → ({𝐴}–cn→{𝑅}) ⊆ ({𝐴}–cn→ℂ))
2117, 19, 20syl2anc 587 . . . . . . 7 (𝜑 → ({𝐴}–cn→{𝑅}) ⊆ ({𝐴}–cn→ℂ))
2221adantr 484 . . . . . 6 ((𝜑𝐴 = 𝐵) → ({𝐴}–cn→{𝑅}) ⊆ ({𝐴}–cn→ℂ))
233rexrd 10680 . . . . . . . . . . . 12 (𝜑𝐴 ∈ ℝ*)
24 iccid 12771 . . . . . . . . . . . 12 (𝐴 ∈ ℝ* → (𝐴[,]𝐴) = {𝐴})
2523, 24syl 17 . . . . . . . . . . 11 (𝜑 → (𝐴[,]𝐴) = {𝐴})
26 oveq2 7143 . . . . . . . . . . 11 (𝐴 = 𝐵 → (𝐴[,]𝐴) = (𝐴[,]𝐵))
2725, 26sylan9req 2854 . . . . . . . . . 10 ((𝜑𝐴 = 𝐵) → {𝐴} = (𝐴[,]𝐵))
2827eqcomd 2804 . . . . . . . . 9 ((𝜑𝐴 = 𝐵) → (𝐴[,]𝐵) = {𝐴})
29 simpr 488 . . . . . . . . . . . 12 (((𝜑𝐴 = 𝐵) ∧ 𝑥 ∈ (𝐴[,]𝐵)) → 𝑥 ∈ (𝐴[,]𝐵))
3028adantr 484 . . . . . . . . . . . 12 (((𝜑𝐴 = 𝐵) ∧ 𝑥 ∈ (𝐴[,]𝐵)) → (𝐴[,]𝐵) = {𝐴})
3129, 30eleqtrd 2892 . . . . . . . . . . 11 (((𝜑𝐴 = 𝐵) ∧ 𝑥 ∈ (𝐴[,]𝐵)) → 𝑥 ∈ {𝐴})
32 elsni 4542 . . . . . . . . . . 11 (𝑥 ∈ {𝐴} → 𝑥 = 𝐴)
3331, 32syl 17 . . . . . . . . . 10 (((𝜑𝐴 = 𝐵) ∧ 𝑥 ∈ (𝐴[,]𝐵)) → 𝑥 = 𝐴)
3433iftrued 4433 . . . . . . . . 9 (((𝜑𝐴 = 𝐵) ∧ 𝑥 ∈ (𝐴[,]𝐵)) → if(𝑥 = 𝐴, 𝑅, if(𝑥 = 𝐵, 𝐿, (𝐹𝑥))) = 𝑅)
3528, 34mpteq12dva 5114 . . . . . . . 8 ((𝜑𝐴 = 𝐵) → (𝑥 ∈ (𝐴[,]𝐵) ↦ if(𝑥 = 𝐴, 𝑅, if(𝑥 = 𝐵, 𝐿, (𝐹𝑥)))) = (𝑥 ∈ {𝐴} ↦ 𝑅))
362, 35syl5eq 2845 . . . . . . 7 ((𝜑𝐴 = 𝐵) → 𝐺 = (𝑥 ∈ {𝐴} ↦ 𝑅))
373recnd 10658 . . . . . . . . 9 (𝜑𝐴 ∈ ℂ)
3837adantr 484 . . . . . . . 8 ((𝜑𝐴 = 𝐵) → 𝐴 ∈ ℂ)
3916adantr 484 . . . . . . . 8 ((𝜑𝐴 = 𝐵) → 𝑅 ∈ ℂ)
40 cncfdmsn 42532 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝑅 ∈ ℂ) → (𝑥 ∈ {𝐴} ↦ 𝑅) ∈ ({𝐴}–cn→{𝑅}))
4138, 39, 40syl2anc 587 . . . . . . 7 ((𝜑𝐴 = 𝐵) → (𝑥 ∈ {𝐴} ↦ 𝑅) ∈ ({𝐴}–cn→{𝑅}))
4236, 41eqeltrd 2890 . . . . . 6 ((𝜑𝐴 = 𝐵) → 𝐺 ∈ ({𝐴}–cn→{𝑅}))
4322, 42sseldd 3916 . . . . 5 ((𝜑𝐴 = 𝐵) → 𝐺 ∈ ({𝐴}–cn→ℂ))
4427oveq1d 7150 . . . . 5 ((𝜑𝐴 = 𝐵) → ({𝐴}–cn→ℂ) = ((𝐴[,]𝐵)–cn→ℂ))
4543, 44eleqtrd 2892 . . . 4 ((𝜑𝐴 = 𝐵) → 𝐺 ∈ ((𝐴[,]𝐵)–cn→ℂ))
4645adantlr 714 . . 3 (((𝜑 ∧ ¬ 𝐴 < 𝐵) ∧ 𝐴 = 𝐵) → 𝐺 ∈ ((𝐴[,]𝐵)–cn→ℂ))
47 simpll 766 . . . 4 (((𝜑 ∧ ¬ 𝐴 < 𝐵) ∧ ¬ 𝐴 = 𝐵) → 𝜑)
48 eqcom 2805 . . . . . . . . 9 (𝐵 = 𝐴𝐴 = 𝐵)
4948biimpi 219 . . . . . . . 8 (𝐵 = 𝐴𝐴 = 𝐵)
5049con3i 157 . . . . . . 7 𝐴 = 𝐵 → ¬ 𝐵 = 𝐴)
5150adantl 485 . . . . . 6 (((𝜑 ∧ ¬ 𝐴 < 𝐵) ∧ ¬ 𝐴 = 𝐵) → ¬ 𝐵 = 𝐴)
52 simplr 768 . . . . . 6 (((𝜑 ∧ ¬ 𝐴 < 𝐵) ∧ ¬ 𝐴 = 𝐵) → ¬ 𝐴 < 𝐵)
53 pm4.56 986 . . . . . . 7 ((¬ 𝐵 = 𝐴 ∧ ¬ 𝐴 < 𝐵) ↔ ¬ (𝐵 = 𝐴𝐴 < 𝐵))
5453biimpi 219 . . . . . 6 ((¬ 𝐵 = 𝐴 ∧ ¬ 𝐴 < 𝐵) → ¬ (𝐵 = 𝐴𝐴 < 𝐵))
5551, 52, 54syl2anc 587 . . . . 5 (((𝜑 ∧ ¬ 𝐴 < 𝐵) ∧ ¬ 𝐴 = 𝐵) → ¬ (𝐵 = 𝐴𝐴 < 𝐵))
5647, 5syl 17 . . . . . 6 (((𝜑 ∧ ¬ 𝐴 < 𝐵) ∧ ¬ 𝐴 = 𝐵) → 𝐵 ∈ ℝ)
5747, 3syl 17 . . . . . 6 (((𝜑 ∧ ¬ 𝐴 < 𝐵) ∧ ¬ 𝐴 = 𝐵) → 𝐴 ∈ ℝ)
5856, 57lttrid 10767 . . . . 5 (((𝜑 ∧ ¬ 𝐴 < 𝐵) ∧ ¬ 𝐴 = 𝐵) → (𝐵 < 𝐴 ↔ ¬ (𝐵 = 𝐴𝐴 < 𝐵)))
5955, 58mpbird 260 . . . 4 (((𝜑 ∧ ¬ 𝐴 < 𝐵) ∧ ¬ 𝐴 = 𝐵) → 𝐵 < 𝐴)
60 0ss 4304 . . . . . . . 8 ∅ ⊆ ℂ
61 eqid 2798 . . . . . . . . 9 (TopOpen‘ℂfld) = (TopOpen‘ℂfld)
6261cnfldtop 23389 . . . . . . . . . . 11 (TopOpen‘ℂfld) ∈ Top
63 rest0 21774 . . . . . . . . . . 11 ((TopOpen‘ℂfld) ∈ Top → ((TopOpen‘ℂfld) ↾t ∅) = {∅})
6462, 63ax-mp 5 . . . . . . . . . 10 ((TopOpen‘ℂfld) ↾t ∅) = {∅}
6564eqcomi 2807 . . . . . . . . 9 {∅} = ((TopOpen‘ℂfld) ↾t ∅)
6661, 65, 65cncfcn 23515 . . . . . . . 8 ((∅ ⊆ ℂ ∧ ∅ ⊆ ℂ) → (∅–cn→∅) = ({∅} Cn {∅}))
6760, 60, 66mp2an 691 . . . . . . 7 (∅–cn→∅) = ({∅} Cn {∅})
68 cncfss 23504 . . . . . . . 8 ((∅ ⊆ ℂ ∧ ℂ ⊆ ℂ) → (∅–cn→∅) ⊆ (∅–cn→ℂ))
6960, 18, 68mp2an 691 . . . . . . 7 (∅–cn→∅) ⊆ (∅–cn→ℂ)
7067, 69eqsstrri 3950 . . . . . 6 ({∅} Cn {∅}) ⊆ (∅–cn→ℂ)
712a1i 11 . . . . . . . 8 ((𝜑𝐵 < 𝐴) → 𝐺 = (𝑥 ∈ (𝐴[,]𝐵) ↦ if(𝑥 = 𝐴, 𝑅, if(𝑥 = 𝐵, 𝐿, (𝐹𝑥)))))
72 simpr 488 . . . . . . . . . 10 ((𝜑𝐵 < 𝐴) → 𝐵 < 𝐴)
7323adantr 484 . . . . . . . . . . 11 ((𝜑𝐵 < 𝐴) → 𝐴 ∈ ℝ*)
745rexrd 10680 . . . . . . . . . . . 12 (𝜑𝐵 ∈ ℝ*)
7574adantr 484 . . . . . . . . . . 11 ((𝜑𝐵 < 𝐴) → 𝐵 ∈ ℝ*)
76 icc0 12774 . . . . . . . . . . 11 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → ((𝐴[,]𝐵) = ∅ ↔ 𝐵 < 𝐴))
7773, 75, 76syl2anc 587 . . . . . . . . . 10 ((𝜑𝐵 < 𝐴) → ((𝐴[,]𝐵) = ∅ ↔ 𝐵 < 𝐴))
7872, 77mpbird 260 . . . . . . . . 9 ((𝜑𝐵 < 𝐴) → (𝐴[,]𝐵) = ∅)
7978mpteq1d 5119 . . . . . . . 8 ((𝜑𝐵 < 𝐴) → (𝑥 ∈ (𝐴[,]𝐵) ↦ if(𝑥 = 𝐴, 𝑅, if(𝑥 = 𝐵, 𝐿, (𝐹𝑥)))) = (𝑥 ∈ ∅ ↦ if(𝑥 = 𝐴, 𝑅, if(𝑥 = 𝐵, 𝐿, (𝐹𝑥)))))
80 mpt0 6462 . . . . . . . . 9 (𝑥 ∈ ∅ ↦ if(𝑥 = 𝐴, 𝑅, if(𝑥 = 𝐵, 𝐿, (𝐹𝑥)))) = ∅
8180a1i 11 . . . . . . . 8 ((𝜑𝐵 < 𝐴) → (𝑥 ∈ ∅ ↦ if(𝑥 = 𝐴, 𝑅, if(𝑥 = 𝐵, 𝐿, (𝐹𝑥)))) = ∅)
8271, 79, 813eqtrd 2837 . . . . . . 7 ((𝜑𝐵 < 𝐴) → 𝐺 = ∅)
83 0cnf 42519 . . . . . . 7 ∅ ∈ ({∅} Cn {∅})
8482, 83eqeltrdi 2898 . . . . . 6 ((𝜑𝐵 < 𝐴) → 𝐺 ∈ ({∅} Cn {∅}))
8570, 84sseldi 3913 . . . . 5 ((𝜑𝐵 < 𝐴) → 𝐺 ∈ (∅–cn→ℂ))
8678eqcomd 2804 . . . . . 6 ((𝜑𝐵 < 𝐴) → ∅ = (𝐴[,]𝐵))
8786oveq1d 7150 . . . . 5 ((𝜑𝐵 < 𝐴) → (∅–cn→ℂ) = ((𝐴[,]𝐵)–cn→ℂ))
8885, 87eleqtrd 2892 . . . 4 ((𝜑𝐵 < 𝐴) → 𝐺 ∈ ((𝐴[,]𝐵)–cn→ℂ))
8947, 59, 88syl2anc 587 . . 3 (((𝜑 ∧ ¬ 𝐴 < 𝐵) ∧ ¬ 𝐴 = 𝐵) → 𝐺 ∈ ((𝐴[,]𝐵)–cn→ℂ))
9046, 89pm2.61dan 812 . 2 ((𝜑 ∧ ¬ 𝐴 < 𝐵) → 𝐺 ∈ ((𝐴[,]𝐵)–cn→ℂ))
9114, 90pm2.61dan 812 1 (𝜑𝐺 ∈ ((𝐴[,]𝐵)–cn→ℂ))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 209  wa 399  wo 844   = wceq 1538  wnf 1785  wcel 2111  wss 3881  c0 4243  ifcif 4425  {csn 4525   class class class wbr 5030  cmpt 5110  cfv 6324  (class class class)co 7135  cc 10524  cr 10525  *cxr 10663   < clt 10664  (,)cioo 12726  [,]cicc 12729  t crest 16686  TopOpenctopn 16687  fldccnfld 20091  Topctop 21498   Cn ccn 21829  cnccncf 23481   lim climc 24465
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603  ax-pre-sup 10604
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rmo 3114  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-int 4839  df-iun 4883  df-iin 4884  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-riota 7093  df-ov 7138  df-oprab 7139  df-mpo 7140  df-om 7561  df-1st 7671  df-2nd 7672  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-1o 8085  df-oadd 8089  df-er 8272  df-map 8391  df-pm 8392  df-en 8493  df-dom 8494  df-sdom 8495  df-fin 8496  df-fi 8859  df-sup 8890  df-inf 8891  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-div 11287  df-nn 11626  df-2 11688  df-3 11689  df-4 11690  df-5 11691  df-6 11692  df-7 11693  df-8 11694  df-9 11695  df-n0 11886  df-z 11970  df-dec 12087  df-uz 12232  df-q 12337  df-rp 12378  df-xneg 12495  df-xadd 12496  df-xmul 12497  df-ioo 12730  df-ioc 12731  df-ico 12732  df-icc 12733  df-fz 12886  df-seq 13365  df-exp 13426  df-cj 14450  df-re 14451  df-im 14452  df-sqrt 14586  df-abs 14587  df-struct 16477  df-ndx 16478  df-slot 16479  df-base 16481  df-plusg 16570  df-mulr 16571  df-starv 16572  df-tset 16576  df-ple 16577  df-ds 16579  df-unif 16580  df-rest 16688  df-topn 16689  df-topgen 16709  df-psmet 20083  df-xmet 20084  df-met 20085  df-bl 20086  df-mopn 20087  df-cnfld 20092  df-top 21499  df-topon 21516  df-topsp 21538  df-bases 21551  df-cld 21624  df-ntr 21625  df-cls 21626  df-cn 21832  df-cnp 21833  df-xms 22927  df-ms 22928  df-cncf 23483  df-limc 24469
This theorem is referenced by:  cncfiooiccre  42537  cncfioobd  42539  itgioocnicc  42619  iblcncfioo  42620  fourierdlem73  42821  fourierdlem81  42829  fourierdlem82  42830
  Copyright terms: Public domain W3C validator