Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cncfiooicc Structured version   Visualization version   GIF version

Theorem cncfiooicc 43435
Description: A continuous function 𝐹 on an open interval (𝐴(,)𝐵) can be extended to a continuous function 𝐺 on the corresponding closed interval, if it has a finite right limit 𝑅 in 𝐴 and a finite left limit 𝐿 in 𝐵. 𝐹 can be complex-valued. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypotheses
Ref Expression
cncfiooicc.x 𝑥𝜑
cncfiooicc.g 𝐺 = (𝑥 ∈ (𝐴[,]𝐵) ↦ if(𝑥 = 𝐴, 𝑅, if(𝑥 = 𝐵, 𝐿, (𝐹𝑥))))
cncfiooicc.a (𝜑𝐴 ∈ ℝ)
cncfiooicc.b (𝜑𝐵 ∈ ℝ)
cncfiooicc.f (𝜑𝐹 ∈ ((𝐴(,)𝐵)–cn→ℂ))
cncfiooicc.l (𝜑𝐿 ∈ (𝐹 lim 𝐵))
cncfiooicc.r (𝜑𝑅 ∈ (𝐹 lim 𝐴))
Assertion
Ref Expression
cncfiooicc (𝜑𝐺 ∈ ((𝐴[,]𝐵)–cn→ℂ))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑥,𝐹   𝑥,𝐿   𝑥,𝑅   𝜑,𝑥
Allowed substitution hint:   𝐺(𝑥)

Proof of Theorem cncfiooicc
StepHypRef Expression
1 nfv 1917 . . 3 𝑥(𝜑𝐴 < 𝐵)
2 cncfiooicc.g . . 3 𝐺 = (𝑥 ∈ (𝐴[,]𝐵) ↦ if(𝑥 = 𝐴, 𝑅, if(𝑥 = 𝐵, 𝐿, (𝐹𝑥))))
3 cncfiooicc.a . . . 4 (𝜑𝐴 ∈ ℝ)
43adantr 481 . . 3 ((𝜑𝐴 < 𝐵) → 𝐴 ∈ ℝ)
5 cncfiooicc.b . . . 4 (𝜑𝐵 ∈ ℝ)
65adantr 481 . . 3 ((𝜑𝐴 < 𝐵) → 𝐵 ∈ ℝ)
7 simpr 485 . . 3 ((𝜑𝐴 < 𝐵) → 𝐴 < 𝐵)
8 cncfiooicc.f . . . 4 (𝜑𝐹 ∈ ((𝐴(,)𝐵)–cn→ℂ))
98adantr 481 . . 3 ((𝜑𝐴 < 𝐵) → 𝐹 ∈ ((𝐴(,)𝐵)–cn→ℂ))
10 cncfiooicc.l . . . 4 (𝜑𝐿 ∈ (𝐹 lim 𝐵))
1110adantr 481 . . 3 ((𝜑𝐴 < 𝐵) → 𝐿 ∈ (𝐹 lim 𝐵))
12 cncfiooicc.r . . . 4 (𝜑𝑅 ∈ (𝐹 lim 𝐴))
1312adantr 481 . . 3 ((𝜑𝐴 < 𝐵) → 𝑅 ∈ (𝐹 lim 𝐴))
141, 2, 4, 6, 7, 9, 11, 13cncfiooicclem1 43434 . 2 ((𝜑𝐴 < 𝐵) → 𝐺 ∈ ((𝐴[,]𝐵)–cn→ℂ))
15 limccl 25039 . . . . . . . . . 10 (𝐹 lim 𝐴) ⊆ ℂ
1615, 12sselid 3919 . . . . . . . . 9 (𝜑𝑅 ∈ ℂ)
1716snssd 4742 . . . . . . . 8 (𝜑 → {𝑅} ⊆ ℂ)
18 ssid 3943 . . . . . . . . 9 ℂ ⊆ ℂ
1918a1i 11 . . . . . . . 8 (𝜑 → ℂ ⊆ ℂ)
20 cncfss 24062 . . . . . . . 8 (({𝑅} ⊆ ℂ ∧ ℂ ⊆ ℂ) → ({𝐴}–cn→{𝑅}) ⊆ ({𝐴}–cn→ℂ))
2117, 19, 20syl2anc 584 . . . . . . 7 (𝜑 → ({𝐴}–cn→{𝑅}) ⊆ ({𝐴}–cn→ℂ))
2221adantr 481 . . . . . 6 ((𝜑𝐴 = 𝐵) → ({𝐴}–cn→{𝑅}) ⊆ ({𝐴}–cn→ℂ))
233rexrd 11025 . . . . . . . . . . . 12 (𝜑𝐴 ∈ ℝ*)
24 iccid 13124 . . . . . . . . . . . 12 (𝐴 ∈ ℝ* → (𝐴[,]𝐴) = {𝐴})
2523, 24syl 17 . . . . . . . . . . 11 (𝜑 → (𝐴[,]𝐴) = {𝐴})
26 oveq2 7283 . . . . . . . . . . 11 (𝐴 = 𝐵 → (𝐴[,]𝐴) = (𝐴[,]𝐵))
2725, 26sylan9req 2799 . . . . . . . . . 10 ((𝜑𝐴 = 𝐵) → {𝐴} = (𝐴[,]𝐵))
2827eqcomd 2744 . . . . . . . . 9 ((𝜑𝐴 = 𝐵) → (𝐴[,]𝐵) = {𝐴})
29 simpr 485 . . . . . . . . . . . 12 (((𝜑𝐴 = 𝐵) ∧ 𝑥 ∈ (𝐴[,]𝐵)) → 𝑥 ∈ (𝐴[,]𝐵))
3028adantr 481 . . . . . . . . . . . 12 (((𝜑𝐴 = 𝐵) ∧ 𝑥 ∈ (𝐴[,]𝐵)) → (𝐴[,]𝐵) = {𝐴})
3129, 30eleqtrd 2841 . . . . . . . . . . 11 (((𝜑𝐴 = 𝐵) ∧ 𝑥 ∈ (𝐴[,]𝐵)) → 𝑥 ∈ {𝐴})
32 elsni 4578 . . . . . . . . . . 11 (𝑥 ∈ {𝐴} → 𝑥 = 𝐴)
3331, 32syl 17 . . . . . . . . . 10 (((𝜑𝐴 = 𝐵) ∧ 𝑥 ∈ (𝐴[,]𝐵)) → 𝑥 = 𝐴)
3433iftrued 4467 . . . . . . . . 9 (((𝜑𝐴 = 𝐵) ∧ 𝑥 ∈ (𝐴[,]𝐵)) → if(𝑥 = 𝐴, 𝑅, if(𝑥 = 𝐵, 𝐿, (𝐹𝑥))) = 𝑅)
3528, 34mpteq12dva 5163 . . . . . . . 8 ((𝜑𝐴 = 𝐵) → (𝑥 ∈ (𝐴[,]𝐵) ↦ if(𝑥 = 𝐴, 𝑅, if(𝑥 = 𝐵, 𝐿, (𝐹𝑥)))) = (𝑥 ∈ {𝐴} ↦ 𝑅))
362, 35eqtrid 2790 . . . . . . 7 ((𝜑𝐴 = 𝐵) → 𝐺 = (𝑥 ∈ {𝐴} ↦ 𝑅))
373recnd 11003 . . . . . . . . 9 (𝜑𝐴 ∈ ℂ)
3837adantr 481 . . . . . . . 8 ((𝜑𝐴 = 𝐵) → 𝐴 ∈ ℂ)
3916adantr 481 . . . . . . . 8 ((𝜑𝐴 = 𝐵) → 𝑅 ∈ ℂ)
40 cncfdmsn 43431 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝑅 ∈ ℂ) → (𝑥 ∈ {𝐴} ↦ 𝑅) ∈ ({𝐴}–cn→{𝑅}))
4138, 39, 40syl2anc 584 . . . . . . 7 ((𝜑𝐴 = 𝐵) → (𝑥 ∈ {𝐴} ↦ 𝑅) ∈ ({𝐴}–cn→{𝑅}))
4236, 41eqeltrd 2839 . . . . . 6 ((𝜑𝐴 = 𝐵) → 𝐺 ∈ ({𝐴}–cn→{𝑅}))
4322, 42sseldd 3922 . . . . 5 ((𝜑𝐴 = 𝐵) → 𝐺 ∈ ({𝐴}–cn→ℂ))
4427oveq1d 7290 . . . . 5 ((𝜑𝐴 = 𝐵) → ({𝐴}–cn→ℂ) = ((𝐴[,]𝐵)–cn→ℂ))
4543, 44eleqtrd 2841 . . . 4 ((𝜑𝐴 = 𝐵) → 𝐺 ∈ ((𝐴[,]𝐵)–cn→ℂ))
4645adantlr 712 . . 3 (((𝜑 ∧ ¬ 𝐴 < 𝐵) ∧ 𝐴 = 𝐵) → 𝐺 ∈ ((𝐴[,]𝐵)–cn→ℂ))
47 simpll 764 . . . 4 (((𝜑 ∧ ¬ 𝐴 < 𝐵) ∧ ¬ 𝐴 = 𝐵) → 𝜑)
48 eqcom 2745 . . . . . . . . 9 (𝐵 = 𝐴𝐴 = 𝐵)
4948biimpi 215 . . . . . . . 8 (𝐵 = 𝐴𝐴 = 𝐵)
5049con3i 154 . . . . . . 7 𝐴 = 𝐵 → ¬ 𝐵 = 𝐴)
5150adantl 482 . . . . . 6 (((𝜑 ∧ ¬ 𝐴 < 𝐵) ∧ ¬ 𝐴 = 𝐵) → ¬ 𝐵 = 𝐴)
52 simplr 766 . . . . . 6 (((𝜑 ∧ ¬ 𝐴 < 𝐵) ∧ ¬ 𝐴 = 𝐵) → ¬ 𝐴 < 𝐵)
53 pm4.56 986 . . . . . . 7 ((¬ 𝐵 = 𝐴 ∧ ¬ 𝐴 < 𝐵) ↔ ¬ (𝐵 = 𝐴𝐴 < 𝐵))
5453biimpi 215 . . . . . 6 ((¬ 𝐵 = 𝐴 ∧ ¬ 𝐴 < 𝐵) → ¬ (𝐵 = 𝐴𝐴 < 𝐵))
5551, 52, 54syl2anc 584 . . . . 5 (((𝜑 ∧ ¬ 𝐴 < 𝐵) ∧ ¬ 𝐴 = 𝐵) → ¬ (𝐵 = 𝐴𝐴 < 𝐵))
5647, 5syl 17 . . . . . 6 (((𝜑 ∧ ¬ 𝐴 < 𝐵) ∧ ¬ 𝐴 = 𝐵) → 𝐵 ∈ ℝ)
5747, 3syl 17 . . . . . 6 (((𝜑 ∧ ¬ 𝐴 < 𝐵) ∧ ¬ 𝐴 = 𝐵) → 𝐴 ∈ ℝ)
5856, 57lttrid 11113 . . . . 5 (((𝜑 ∧ ¬ 𝐴 < 𝐵) ∧ ¬ 𝐴 = 𝐵) → (𝐵 < 𝐴 ↔ ¬ (𝐵 = 𝐴𝐴 < 𝐵)))
5955, 58mpbird 256 . . . 4 (((𝜑 ∧ ¬ 𝐴 < 𝐵) ∧ ¬ 𝐴 = 𝐵) → 𝐵 < 𝐴)
60 0ss 4330 . . . . . . . 8 ∅ ⊆ ℂ
61 eqid 2738 . . . . . . . . 9 (TopOpen‘ℂfld) = (TopOpen‘ℂfld)
6261cnfldtop 23947 . . . . . . . . . . 11 (TopOpen‘ℂfld) ∈ Top
63 rest0 22320 . . . . . . . . . . 11 ((TopOpen‘ℂfld) ∈ Top → ((TopOpen‘ℂfld) ↾t ∅) = {∅})
6462, 63ax-mp 5 . . . . . . . . . 10 ((TopOpen‘ℂfld) ↾t ∅) = {∅}
6564eqcomi 2747 . . . . . . . . 9 {∅} = ((TopOpen‘ℂfld) ↾t ∅)
6661, 65, 65cncfcn 24073 . . . . . . . 8 ((∅ ⊆ ℂ ∧ ∅ ⊆ ℂ) → (∅–cn→∅) = ({∅} Cn {∅}))
6760, 60, 66mp2an 689 . . . . . . 7 (∅–cn→∅) = ({∅} Cn {∅})
68 cncfss 24062 . . . . . . . 8 ((∅ ⊆ ℂ ∧ ℂ ⊆ ℂ) → (∅–cn→∅) ⊆ (∅–cn→ℂ))
6960, 18, 68mp2an 689 . . . . . . 7 (∅–cn→∅) ⊆ (∅–cn→ℂ)
7067, 69eqsstrri 3956 . . . . . 6 ({∅} Cn {∅}) ⊆ (∅–cn→ℂ)
712a1i 11 . . . . . . . 8 ((𝜑𝐵 < 𝐴) → 𝐺 = (𝑥 ∈ (𝐴[,]𝐵) ↦ if(𝑥 = 𝐴, 𝑅, if(𝑥 = 𝐵, 𝐿, (𝐹𝑥)))))
72 simpr 485 . . . . . . . . . 10 ((𝜑𝐵 < 𝐴) → 𝐵 < 𝐴)
7323adantr 481 . . . . . . . . . . 11 ((𝜑𝐵 < 𝐴) → 𝐴 ∈ ℝ*)
745rexrd 11025 . . . . . . . . . . . 12 (𝜑𝐵 ∈ ℝ*)
7574adantr 481 . . . . . . . . . . 11 ((𝜑𝐵 < 𝐴) → 𝐵 ∈ ℝ*)
76 icc0 13127 . . . . . . . . . . 11 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → ((𝐴[,]𝐵) = ∅ ↔ 𝐵 < 𝐴))
7773, 75, 76syl2anc 584 . . . . . . . . . 10 ((𝜑𝐵 < 𝐴) → ((𝐴[,]𝐵) = ∅ ↔ 𝐵 < 𝐴))
7872, 77mpbird 256 . . . . . . . . 9 ((𝜑𝐵 < 𝐴) → (𝐴[,]𝐵) = ∅)
7978mpteq1d 5169 . . . . . . . 8 ((𝜑𝐵 < 𝐴) → (𝑥 ∈ (𝐴[,]𝐵) ↦ if(𝑥 = 𝐴, 𝑅, if(𝑥 = 𝐵, 𝐿, (𝐹𝑥)))) = (𝑥 ∈ ∅ ↦ if(𝑥 = 𝐴, 𝑅, if(𝑥 = 𝐵, 𝐿, (𝐹𝑥)))))
80 mpt0 6575 . . . . . . . . 9 (𝑥 ∈ ∅ ↦ if(𝑥 = 𝐴, 𝑅, if(𝑥 = 𝐵, 𝐿, (𝐹𝑥)))) = ∅
8180a1i 11 . . . . . . . 8 ((𝜑𝐵 < 𝐴) → (𝑥 ∈ ∅ ↦ if(𝑥 = 𝐴, 𝑅, if(𝑥 = 𝐵, 𝐿, (𝐹𝑥)))) = ∅)
8271, 79, 813eqtrd 2782 . . . . . . 7 ((𝜑𝐵 < 𝐴) → 𝐺 = ∅)
83 0cnf 43418 . . . . . . 7 ∅ ∈ ({∅} Cn {∅})
8482, 83eqeltrdi 2847 . . . . . 6 ((𝜑𝐵 < 𝐴) → 𝐺 ∈ ({∅} Cn {∅}))
8570, 84sselid 3919 . . . . 5 ((𝜑𝐵 < 𝐴) → 𝐺 ∈ (∅–cn→ℂ))
8678eqcomd 2744 . . . . . 6 ((𝜑𝐵 < 𝐴) → ∅ = (𝐴[,]𝐵))
8786oveq1d 7290 . . . . 5 ((𝜑𝐵 < 𝐴) → (∅–cn→ℂ) = ((𝐴[,]𝐵)–cn→ℂ))
8885, 87eleqtrd 2841 . . . 4 ((𝜑𝐵 < 𝐴) → 𝐺 ∈ ((𝐴[,]𝐵)–cn→ℂ))
8947, 59, 88syl2anc 584 . . 3 (((𝜑 ∧ ¬ 𝐴 < 𝐵) ∧ ¬ 𝐴 = 𝐵) → 𝐺 ∈ ((𝐴[,]𝐵)–cn→ℂ))
9046, 89pm2.61dan 810 . 2 ((𝜑 ∧ ¬ 𝐴 < 𝐵) → 𝐺 ∈ ((𝐴[,]𝐵)–cn→ℂ))
9114, 90pm2.61dan 810 1 (𝜑𝐺 ∈ ((𝐴[,]𝐵)–cn→ℂ))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396  wo 844   = wceq 1539  wnf 1786  wcel 2106  wss 3887  c0 4256  ifcif 4459  {csn 4561   class class class wbr 5074  cmpt 5157  cfv 6433  (class class class)co 7275  cc 10869  cr 10870  *cxr 11008   < clt 11009  (,)cioo 13079  [,]cicc 13082  t crest 17131  TopOpenctopn 17132  fldccnfld 20597  Topctop 22042   Cn ccn 22375  cnccncf 24039   lim climc 25026
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948  ax-pre-sup 10949
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-tp 4566  df-op 4568  df-uni 4840  df-int 4880  df-iun 4926  df-iin 4927  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-om 7713  df-1st 7831  df-2nd 7832  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-1o 8297  df-er 8498  df-map 8617  df-pm 8618  df-en 8734  df-dom 8735  df-sdom 8736  df-fin 8737  df-fi 9170  df-sup 9201  df-inf 9202  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-div 11633  df-nn 11974  df-2 12036  df-3 12037  df-4 12038  df-5 12039  df-6 12040  df-7 12041  df-8 12042  df-9 12043  df-n0 12234  df-z 12320  df-dec 12438  df-uz 12583  df-q 12689  df-rp 12731  df-xneg 12848  df-xadd 12849  df-xmul 12850  df-ioo 13083  df-ioc 13084  df-ico 13085  df-icc 13086  df-fz 13240  df-seq 13722  df-exp 13783  df-cj 14810  df-re 14811  df-im 14812  df-sqrt 14946  df-abs 14947  df-struct 16848  df-slot 16883  df-ndx 16895  df-base 16913  df-plusg 16975  df-mulr 16976  df-starv 16977  df-tset 16981  df-ple 16982  df-ds 16984  df-unif 16985  df-rest 17133  df-topn 17134  df-topgen 17154  df-psmet 20589  df-xmet 20590  df-met 20591  df-bl 20592  df-mopn 20593  df-cnfld 20598  df-top 22043  df-topon 22060  df-topsp 22082  df-bases 22096  df-cld 22170  df-ntr 22171  df-cls 22172  df-cn 22378  df-cnp 22379  df-xms 23473  df-ms 23474  df-cncf 24041  df-limc 25030
This theorem is referenced by:  cncfiooiccre  43436  cncfioobd  43438  itgioocnicc  43518  iblcncfioo  43519  fourierdlem73  43720  fourierdlem81  43728  fourierdlem82  43729
  Copyright terms: Public domain W3C validator