Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cncfiooicc Structured version   Visualization version   GIF version

Theorem cncfiooicc 45909
Description: A continuous function 𝐹 on an open interval (𝐴(,)𝐵) can be extended to a continuous function 𝐺 on the corresponding closed interval, if it has a finite right limit 𝑅 in 𝐴 and a finite left limit 𝐿 in 𝐵. 𝐹 can be complex-valued. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypotheses
Ref Expression
cncfiooicc.x 𝑥𝜑
cncfiooicc.g 𝐺 = (𝑥 ∈ (𝐴[,]𝐵) ↦ if(𝑥 = 𝐴, 𝑅, if(𝑥 = 𝐵, 𝐿, (𝐹𝑥))))
cncfiooicc.a (𝜑𝐴 ∈ ℝ)
cncfiooicc.b (𝜑𝐵 ∈ ℝ)
cncfiooicc.f (𝜑𝐹 ∈ ((𝐴(,)𝐵)–cn→ℂ))
cncfiooicc.l (𝜑𝐿 ∈ (𝐹 lim 𝐵))
cncfiooicc.r (𝜑𝑅 ∈ (𝐹 lim 𝐴))
Assertion
Ref Expression
cncfiooicc (𝜑𝐺 ∈ ((𝐴[,]𝐵)–cn→ℂ))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑥,𝐹   𝑥,𝐿   𝑥,𝑅   𝜑,𝑥
Allowed substitution hint:   𝐺(𝑥)

Proof of Theorem cncfiooicc
StepHypRef Expression
1 nfv 1914 . . 3 𝑥(𝜑𝐴 < 𝐵)
2 cncfiooicc.g . . 3 𝐺 = (𝑥 ∈ (𝐴[,]𝐵) ↦ if(𝑥 = 𝐴, 𝑅, if(𝑥 = 𝐵, 𝐿, (𝐹𝑥))))
3 cncfiooicc.a . . . 4 (𝜑𝐴 ∈ ℝ)
43adantr 480 . . 3 ((𝜑𝐴 < 𝐵) → 𝐴 ∈ ℝ)
5 cncfiooicc.b . . . 4 (𝜑𝐵 ∈ ℝ)
65adantr 480 . . 3 ((𝜑𝐴 < 𝐵) → 𝐵 ∈ ℝ)
7 simpr 484 . . 3 ((𝜑𝐴 < 𝐵) → 𝐴 < 𝐵)
8 cncfiooicc.f . . . 4 (𝜑𝐹 ∈ ((𝐴(,)𝐵)–cn→ℂ))
98adantr 480 . . 3 ((𝜑𝐴 < 𝐵) → 𝐹 ∈ ((𝐴(,)𝐵)–cn→ℂ))
10 cncfiooicc.l . . . 4 (𝜑𝐿 ∈ (𝐹 lim 𝐵))
1110adantr 480 . . 3 ((𝜑𝐴 < 𝐵) → 𝐿 ∈ (𝐹 lim 𝐵))
12 cncfiooicc.r . . . 4 (𝜑𝑅 ∈ (𝐹 lim 𝐴))
1312adantr 480 . . 3 ((𝜑𝐴 < 𝐵) → 𝑅 ∈ (𝐹 lim 𝐴))
141, 2, 4, 6, 7, 9, 11, 13cncfiooicclem1 45908 . 2 ((𝜑𝐴 < 𝐵) → 𝐺 ∈ ((𝐴[,]𝐵)–cn→ℂ))
15 limccl 25910 . . . . . . . . . 10 (𝐹 lim 𝐴) ⊆ ℂ
1615, 12sselid 3981 . . . . . . . . 9 (𝜑𝑅 ∈ ℂ)
1716snssd 4809 . . . . . . . 8 (𝜑 → {𝑅} ⊆ ℂ)
18 ssid 4006 . . . . . . . . 9 ℂ ⊆ ℂ
1918a1i 11 . . . . . . . 8 (𝜑 → ℂ ⊆ ℂ)
20 cncfss 24925 . . . . . . . 8 (({𝑅} ⊆ ℂ ∧ ℂ ⊆ ℂ) → ({𝐴}–cn→{𝑅}) ⊆ ({𝐴}–cn→ℂ))
2117, 19, 20syl2anc 584 . . . . . . 7 (𝜑 → ({𝐴}–cn→{𝑅}) ⊆ ({𝐴}–cn→ℂ))
2221adantr 480 . . . . . 6 ((𝜑𝐴 = 𝐵) → ({𝐴}–cn→{𝑅}) ⊆ ({𝐴}–cn→ℂ))
233rexrd 11311 . . . . . . . . . . . 12 (𝜑𝐴 ∈ ℝ*)
24 iccid 13432 . . . . . . . . . . . 12 (𝐴 ∈ ℝ* → (𝐴[,]𝐴) = {𝐴})
2523, 24syl 17 . . . . . . . . . . 11 (𝜑 → (𝐴[,]𝐴) = {𝐴})
26 oveq2 7439 . . . . . . . . . . 11 (𝐴 = 𝐵 → (𝐴[,]𝐴) = (𝐴[,]𝐵))
2725, 26sylan9req 2798 . . . . . . . . . 10 ((𝜑𝐴 = 𝐵) → {𝐴} = (𝐴[,]𝐵))
2827eqcomd 2743 . . . . . . . . 9 ((𝜑𝐴 = 𝐵) → (𝐴[,]𝐵) = {𝐴})
29 simpr 484 . . . . . . . . . . . 12 (((𝜑𝐴 = 𝐵) ∧ 𝑥 ∈ (𝐴[,]𝐵)) → 𝑥 ∈ (𝐴[,]𝐵))
3028adantr 480 . . . . . . . . . . . 12 (((𝜑𝐴 = 𝐵) ∧ 𝑥 ∈ (𝐴[,]𝐵)) → (𝐴[,]𝐵) = {𝐴})
3129, 30eleqtrd 2843 . . . . . . . . . . 11 (((𝜑𝐴 = 𝐵) ∧ 𝑥 ∈ (𝐴[,]𝐵)) → 𝑥 ∈ {𝐴})
32 elsni 4643 . . . . . . . . . . 11 (𝑥 ∈ {𝐴} → 𝑥 = 𝐴)
3331, 32syl 17 . . . . . . . . . 10 (((𝜑𝐴 = 𝐵) ∧ 𝑥 ∈ (𝐴[,]𝐵)) → 𝑥 = 𝐴)
3433iftrued 4533 . . . . . . . . 9 (((𝜑𝐴 = 𝐵) ∧ 𝑥 ∈ (𝐴[,]𝐵)) → if(𝑥 = 𝐴, 𝑅, if(𝑥 = 𝐵, 𝐿, (𝐹𝑥))) = 𝑅)
3528, 34mpteq12dva 5231 . . . . . . . 8 ((𝜑𝐴 = 𝐵) → (𝑥 ∈ (𝐴[,]𝐵) ↦ if(𝑥 = 𝐴, 𝑅, if(𝑥 = 𝐵, 𝐿, (𝐹𝑥)))) = (𝑥 ∈ {𝐴} ↦ 𝑅))
362, 35eqtrid 2789 . . . . . . 7 ((𝜑𝐴 = 𝐵) → 𝐺 = (𝑥 ∈ {𝐴} ↦ 𝑅))
373recnd 11289 . . . . . . . . 9 (𝜑𝐴 ∈ ℂ)
3837adantr 480 . . . . . . . 8 ((𝜑𝐴 = 𝐵) → 𝐴 ∈ ℂ)
3916adantr 480 . . . . . . . 8 ((𝜑𝐴 = 𝐵) → 𝑅 ∈ ℂ)
40 cncfdmsn 45905 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝑅 ∈ ℂ) → (𝑥 ∈ {𝐴} ↦ 𝑅) ∈ ({𝐴}–cn→{𝑅}))
4138, 39, 40syl2anc 584 . . . . . . 7 ((𝜑𝐴 = 𝐵) → (𝑥 ∈ {𝐴} ↦ 𝑅) ∈ ({𝐴}–cn→{𝑅}))
4236, 41eqeltrd 2841 . . . . . 6 ((𝜑𝐴 = 𝐵) → 𝐺 ∈ ({𝐴}–cn→{𝑅}))
4322, 42sseldd 3984 . . . . 5 ((𝜑𝐴 = 𝐵) → 𝐺 ∈ ({𝐴}–cn→ℂ))
4427oveq1d 7446 . . . . 5 ((𝜑𝐴 = 𝐵) → ({𝐴}–cn→ℂ) = ((𝐴[,]𝐵)–cn→ℂ))
4543, 44eleqtrd 2843 . . . 4 ((𝜑𝐴 = 𝐵) → 𝐺 ∈ ((𝐴[,]𝐵)–cn→ℂ))
4645adantlr 715 . . 3 (((𝜑 ∧ ¬ 𝐴 < 𝐵) ∧ 𝐴 = 𝐵) → 𝐺 ∈ ((𝐴[,]𝐵)–cn→ℂ))
47 simpll 767 . . . 4 (((𝜑 ∧ ¬ 𝐴 < 𝐵) ∧ ¬ 𝐴 = 𝐵) → 𝜑)
48 eqcom 2744 . . . . . . . . 9 (𝐵 = 𝐴𝐴 = 𝐵)
4948biimpi 216 . . . . . . . 8 (𝐵 = 𝐴𝐴 = 𝐵)
5049con3i 154 . . . . . . 7 𝐴 = 𝐵 → ¬ 𝐵 = 𝐴)
5150adantl 481 . . . . . 6 (((𝜑 ∧ ¬ 𝐴 < 𝐵) ∧ ¬ 𝐴 = 𝐵) → ¬ 𝐵 = 𝐴)
52 simplr 769 . . . . . 6 (((𝜑 ∧ ¬ 𝐴 < 𝐵) ∧ ¬ 𝐴 = 𝐵) → ¬ 𝐴 < 𝐵)
53 pm4.56 991 . . . . . . 7 ((¬ 𝐵 = 𝐴 ∧ ¬ 𝐴 < 𝐵) ↔ ¬ (𝐵 = 𝐴𝐴 < 𝐵))
5453biimpi 216 . . . . . 6 ((¬ 𝐵 = 𝐴 ∧ ¬ 𝐴 < 𝐵) → ¬ (𝐵 = 𝐴𝐴 < 𝐵))
5551, 52, 54syl2anc 584 . . . . 5 (((𝜑 ∧ ¬ 𝐴 < 𝐵) ∧ ¬ 𝐴 = 𝐵) → ¬ (𝐵 = 𝐴𝐴 < 𝐵))
5647, 5syl 17 . . . . . 6 (((𝜑 ∧ ¬ 𝐴 < 𝐵) ∧ ¬ 𝐴 = 𝐵) → 𝐵 ∈ ℝ)
5747, 3syl 17 . . . . . 6 (((𝜑 ∧ ¬ 𝐴 < 𝐵) ∧ ¬ 𝐴 = 𝐵) → 𝐴 ∈ ℝ)
5856, 57lttrid 11399 . . . . 5 (((𝜑 ∧ ¬ 𝐴 < 𝐵) ∧ ¬ 𝐴 = 𝐵) → (𝐵 < 𝐴 ↔ ¬ (𝐵 = 𝐴𝐴 < 𝐵)))
5955, 58mpbird 257 . . . 4 (((𝜑 ∧ ¬ 𝐴 < 𝐵) ∧ ¬ 𝐴 = 𝐵) → 𝐵 < 𝐴)
60 0ss 4400 . . . . . . . 8 ∅ ⊆ ℂ
61 eqid 2737 . . . . . . . . 9 (TopOpen‘ℂfld) = (TopOpen‘ℂfld)
6261cnfldtop 24804 . . . . . . . . . . 11 (TopOpen‘ℂfld) ∈ Top
63 rest0 23177 . . . . . . . . . . 11 ((TopOpen‘ℂfld) ∈ Top → ((TopOpen‘ℂfld) ↾t ∅) = {∅})
6462, 63ax-mp 5 . . . . . . . . . 10 ((TopOpen‘ℂfld) ↾t ∅) = {∅}
6564eqcomi 2746 . . . . . . . . 9 {∅} = ((TopOpen‘ℂfld) ↾t ∅)
6661, 65, 65cncfcn 24936 . . . . . . . 8 ((∅ ⊆ ℂ ∧ ∅ ⊆ ℂ) → (∅–cn→∅) = ({∅} Cn {∅}))
6760, 60, 66mp2an 692 . . . . . . 7 (∅–cn→∅) = ({∅} Cn {∅})
68 cncfss 24925 . . . . . . . 8 ((∅ ⊆ ℂ ∧ ℂ ⊆ ℂ) → (∅–cn→∅) ⊆ (∅–cn→ℂ))
6960, 18, 68mp2an 692 . . . . . . 7 (∅–cn→∅) ⊆ (∅–cn→ℂ)
7067, 69eqsstrri 4031 . . . . . 6 ({∅} Cn {∅}) ⊆ (∅–cn→ℂ)
712a1i 11 . . . . . . . 8 ((𝜑𝐵 < 𝐴) → 𝐺 = (𝑥 ∈ (𝐴[,]𝐵) ↦ if(𝑥 = 𝐴, 𝑅, if(𝑥 = 𝐵, 𝐿, (𝐹𝑥)))))
72 simpr 484 . . . . . . . . . 10 ((𝜑𝐵 < 𝐴) → 𝐵 < 𝐴)
7323adantr 480 . . . . . . . . . . 11 ((𝜑𝐵 < 𝐴) → 𝐴 ∈ ℝ*)
745rexrd 11311 . . . . . . . . . . . 12 (𝜑𝐵 ∈ ℝ*)
7574adantr 480 . . . . . . . . . . 11 ((𝜑𝐵 < 𝐴) → 𝐵 ∈ ℝ*)
76 icc0 13435 . . . . . . . . . . 11 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → ((𝐴[,]𝐵) = ∅ ↔ 𝐵 < 𝐴))
7773, 75, 76syl2anc 584 . . . . . . . . . 10 ((𝜑𝐵 < 𝐴) → ((𝐴[,]𝐵) = ∅ ↔ 𝐵 < 𝐴))
7872, 77mpbird 257 . . . . . . . . 9 ((𝜑𝐵 < 𝐴) → (𝐴[,]𝐵) = ∅)
7978mpteq1d 5237 . . . . . . . 8 ((𝜑𝐵 < 𝐴) → (𝑥 ∈ (𝐴[,]𝐵) ↦ if(𝑥 = 𝐴, 𝑅, if(𝑥 = 𝐵, 𝐿, (𝐹𝑥)))) = (𝑥 ∈ ∅ ↦ if(𝑥 = 𝐴, 𝑅, if(𝑥 = 𝐵, 𝐿, (𝐹𝑥)))))
80 mpt0 6710 . . . . . . . . 9 (𝑥 ∈ ∅ ↦ if(𝑥 = 𝐴, 𝑅, if(𝑥 = 𝐵, 𝐿, (𝐹𝑥)))) = ∅
8180a1i 11 . . . . . . . 8 ((𝜑𝐵 < 𝐴) → (𝑥 ∈ ∅ ↦ if(𝑥 = 𝐴, 𝑅, if(𝑥 = 𝐵, 𝐿, (𝐹𝑥)))) = ∅)
8271, 79, 813eqtrd 2781 . . . . . . 7 ((𝜑𝐵 < 𝐴) → 𝐺 = ∅)
83 0cnf 45892 . . . . . . 7 ∅ ∈ ({∅} Cn {∅})
8482, 83eqeltrdi 2849 . . . . . 6 ((𝜑𝐵 < 𝐴) → 𝐺 ∈ ({∅} Cn {∅}))
8570, 84sselid 3981 . . . . 5 ((𝜑𝐵 < 𝐴) → 𝐺 ∈ (∅–cn→ℂ))
8678eqcomd 2743 . . . . . 6 ((𝜑𝐵 < 𝐴) → ∅ = (𝐴[,]𝐵))
8786oveq1d 7446 . . . . 5 ((𝜑𝐵 < 𝐴) → (∅–cn→ℂ) = ((𝐴[,]𝐵)–cn→ℂ))
8885, 87eleqtrd 2843 . . . 4 ((𝜑𝐵 < 𝐴) → 𝐺 ∈ ((𝐴[,]𝐵)–cn→ℂ))
8947, 59, 88syl2anc 584 . . 3 (((𝜑 ∧ ¬ 𝐴 < 𝐵) ∧ ¬ 𝐴 = 𝐵) → 𝐺 ∈ ((𝐴[,]𝐵)–cn→ℂ))
9046, 89pm2.61dan 813 . 2 ((𝜑 ∧ ¬ 𝐴 < 𝐵) → 𝐺 ∈ ((𝐴[,]𝐵)–cn→ℂ))
9114, 90pm2.61dan 813 1 (𝜑𝐺 ∈ ((𝐴[,]𝐵)–cn→ℂ))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 848   = wceq 1540  wnf 1783  wcel 2108  wss 3951  c0 4333  ifcif 4525  {csn 4626   class class class wbr 5143  cmpt 5225  cfv 6561  (class class class)co 7431  cc 11153  cr 11154  *cxr 11294   < clt 11295  (,)cioo 13387  [,]cicc 13390  t crest 17465  TopOpenctopn 17466  fldccnfld 21364  Topctop 22899   Cn ccn 23232  cnccncf 24902   lim climc 25897
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5279  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-cnex 11211  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-mulcom 11219  ax-addass 11220  ax-mulass 11221  ax-distr 11222  ax-i2m1 11223  ax-1ne0 11224  ax-1rid 11225  ax-rnegex 11226  ax-rrecex 11227  ax-cnre 11228  ax-pre-lttri 11229  ax-pre-lttrn 11230  ax-pre-ltadd 11231  ax-pre-mulgt0 11232  ax-pre-sup 11233
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-tp 4631  df-op 4633  df-uni 4908  df-int 4947  df-iun 4993  df-iin 4994  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8014  df-2nd 8015  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-1o 8506  df-er 8745  df-map 8868  df-pm 8869  df-en 8986  df-dom 8987  df-sdom 8988  df-fin 8989  df-fi 9451  df-sup 9482  df-inf 9483  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300  df-le 11301  df-sub 11494  df-neg 11495  df-div 11921  df-nn 12267  df-2 12329  df-3 12330  df-4 12331  df-5 12332  df-6 12333  df-7 12334  df-8 12335  df-9 12336  df-n0 12527  df-z 12614  df-dec 12734  df-uz 12879  df-q 12991  df-rp 13035  df-xneg 13154  df-xadd 13155  df-xmul 13156  df-ioo 13391  df-ioc 13392  df-ico 13393  df-icc 13394  df-fz 13548  df-seq 14043  df-exp 14103  df-cj 15138  df-re 15139  df-im 15140  df-sqrt 15274  df-abs 15275  df-struct 17184  df-slot 17219  df-ndx 17231  df-base 17248  df-plusg 17310  df-mulr 17311  df-starv 17312  df-tset 17316  df-ple 17317  df-ds 17319  df-unif 17320  df-rest 17467  df-topn 17468  df-topgen 17488  df-psmet 21356  df-xmet 21357  df-met 21358  df-bl 21359  df-mopn 21360  df-cnfld 21365  df-top 22900  df-topon 22917  df-topsp 22939  df-bases 22953  df-cld 23027  df-ntr 23028  df-cls 23029  df-cn 23235  df-cnp 23236  df-xms 24330  df-ms 24331  df-cncf 24904  df-limc 25901
This theorem is referenced by:  cncfiooiccre  45910  cncfioobd  45912  itgioocnicc  45992  iblcncfioo  45993  fourierdlem73  46194  fourierdlem81  46202  fourierdlem82  46203
  Copyright terms: Public domain W3C validator