Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cncfiooicc Structured version   Visualization version   GIF version

Theorem cncfiooicc 44125
Description: A continuous function 𝐹 on an open interval (𝐴(,)𝐵) can be extended to a continuous function 𝐺 on the corresponding closed interval, if it has a finite right limit 𝑅 in 𝐴 and a finite left limit 𝐿 in 𝐵. 𝐹 can be complex-valued. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypotheses
Ref Expression
cncfiooicc.x 𝑥𝜑
cncfiooicc.g 𝐺 = (𝑥 ∈ (𝐴[,]𝐵) ↦ if(𝑥 = 𝐴, 𝑅, if(𝑥 = 𝐵, 𝐿, (𝐹𝑥))))
cncfiooicc.a (𝜑𝐴 ∈ ℝ)
cncfiooicc.b (𝜑𝐵 ∈ ℝ)
cncfiooicc.f (𝜑𝐹 ∈ ((𝐴(,)𝐵)–cn→ℂ))
cncfiooicc.l (𝜑𝐿 ∈ (𝐹 lim 𝐵))
cncfiooicc.r (𝜑𝑅 ∈ (𝐹 lim 𝐴))
Assertion
Ref Expression
cncfiooicc (𝜑𝐺 ∈ ((𝐴[,]𝐵)–cn→ℂ))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑥,𝐹   𝑥,𝐿   𝑥,𝑅   𝜑,𝑥
Allowed substitution hint:   𝐺(𝑥)

Proof of Theorem cncfiooicc
StepHypRef Expression
1 nfv 1917 . . 3 𝑥(𝜑𝐴 < 𝐵)
2 cncfiooicc.g . . 3 𝐺 = (𝑥 ∈ (𝐴[,]𝐵) ↦ if(𝑥 = 𝐴, 𝑅, if(𝑥 = 𝐵, 𝐿, (𝐹𝑥))))
3 cncfiooicc.a . . . 4 (𝜑𝐴 ∈ ℝ)
43adantr 481 . . 3 ((𝜑𝐴 < 𝐵) → 𝐴 ∈ ℝ)
5 cncfiooicc.b . . . 4 (𝜑𝐵 ∈ ℝ)
65adantr 481 . . 3 ((𝜑𝐴 < 𝐵) → 𝐵 ∈ ℝ)
7 simpr 485 . . 3 ((𝜑𝐴 < 𝐵) → 𝐴 < 𝐵)
8 cncfiooicc.f . . . 4 (𝜑𝐹 ∈ ((𝐴(,)𝐵)–cn→ℂ))
98adantr 481 . . 3 ((𝜑𝐴 < 𝐵) → 𝐹 ∈ ((𝐴(,)𝐵)–cn→ℂ))
10 cncfiooicc.l . . . 4 (𝜑𝐿 ∈ (𝐹 lim 𝐵))
1110adantr 481 . . 3 ((𝜑𝐴 < 𝐵) → 𝐿 ∈ (𝐹 lim 𝐵))
12 cncfiooicc.r . . . 4 (𝜑𝑅 ∈ (𝐹 lim 𝐴))
1312adantr 481 . . 3 ((𝜑𝐴 < 𝐵) → 𝑅 ∈ (𝐹 lim 𝐴))
141, 2, 4, 6, 7, 9, 11, 13cncfiooicclem1 44124 . 2 ((𝜑𝐴 < 𝐵) → 𝐺 ∈ ((𝐴[,]𝐵)–cn→ℂ))
15 limccl 25239 . . . . . . . . . 10 (𝐹 lim 𝐴) ⊆ ℂ
1615, 12sselid 3942 . . . . . . . . 9 (𝜑𝑅 ∈ ℂ)
1716snssd 4769 . . . . . . . 8 (𝜑 → {𝑅} ⊆ ℂ)
18 ssid 3966 . . . . . . . . 9 ℂ ⊆ ℂ
1918a1i 11 . . . . . . . 8 (𝜑 → ℂ ⊆ ℂ)
20 cncfss 24262 . . . . . . . 8 (({𝑅} ⊆ ℂ ∧ ℂ ⊆ ℂ) → ({𝐴}–cn→{𝑅}) ⊆ ({𝐴}–cn→ℂ))
2117, 19, 20syl2anc 584 . . . . . . 7 (𝜑 → ({𝐴}–cn→{𝑅}) ⊆ ({𝐴}–cn→ℂ))
2221adantr 481 . . . . . 6 ((𝜑𝐴 = 𝐵) → ({𝐴}–cn→{𝑅}) ⊆ ({𝐴}–cn→ℂ))
233rexrd 11205 . . . . . . . . . . . 12 (𝜑𝐴 ∈ ℝ*)
24 iccid 13309 . . . . . . . . . . . 12 (𝐴 ∈ ℝ* → (𝐴[,]𝐴) = {𝐴})
2523, 24syl 17 . . . . . . . . . . 11 (𝜑 → (𝐴[,]𝐴) = {𝐴})
26 oveq2 7365 . . . . . . . . . . 11 (𝐴 = 𝐵 → (𝐴[,]𝐴) = (𝐴[,]𝐵))
2725, 26sylan9req 2797 . . . . . . . . . 10 ((𝜑𝐴 = 𝐵) → {𝐴} = (𝐴[,]𝐵))
2827eqcomd 2742 . . . . . . . . 9 ((𝜑𝐴 = 𝐵) → (𝐴[,]𝐵) = {𝐴})
29 simpr 485 . . . . . . . . . . . 12 (((𝜑𝐴 = 𝐵) ∧ 𝑥 ∈ (𝐴[,]𝐵)) → 𝑥 ∈ (𝐴[,]𝐵))
3028adantr 481 . . . . . . . . . . . 12 (((𝜑𝐴 = 𝐵) ∧ 𝑥 ∈ (𝐴[,]𝐵)) → (𝐴[,]𝐵) = {𝐴})
3129, 30eleqtrd 2840 . . . . . . . . . . 11 (((𝜑𝐴 = 𝐵) ∧ 𝑥 ∈ (𝐴[,]𝐵)) → 𝑥 ∈ {𝐴})
32 elsni 4603 . . . . . . . . . . 11 (𝑥 ∈ {𝐴} → 𝑥 = 𝐴)
3331, 32syl 17 . . . . . . . . . 10 (((𝜑𝐴 = 𝐵) ∧ 𝑥 ∈ (𝐴[,]𝐵)) → 𝑥 = 𝐴)
3433iftrued 4494 . . . . . . . . 9 (((𝜑𝐴 = 𝐵) ∧ 𝑥 ∈ (𝐴[,]𝐵)) → if(𝑥 = 𝐴, 𝑅, if(𝑥 = 𝐵, 𝐿, (𝐹𝑥))) = 𝑅)
3528, 34mpteq12dva 5194 . . . . . . . 8 ((𝜑𝐴 = 𝐵) → (𝑥 ∈ (𝐴[,]𝐵) ↦ if(𝑥 = 𝐴, 𝑅, if(𝑥 = 𝐵, 𝐿, (𝐹𝑥)))) = (𝑥 ∈ {𝐴} ↦ 𝑅))
362, 35eqtrid 2788 . . . . . . 7 ((𝜑𝐴 = 𝐵) → 𝐺 = (𝑥 ∈ {𝐴} ↦ 𝑅))
373recnd 11183 . . . . . . . . 9 (𝜑𝐴 ∈ ℂ)
3837adantr 481 . . . . . . . 8 ((𝜑𝐴 = 𝐵) → 𝐴 ∈ ℂ)
3916adantr 481 . . . . . . . 8 ((𝜑𝐴 = 𝐵) → 𝑅 ∈ ℂ)
40 cncfdmsn 44121 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝑅 ∈ ℂ) → (𝑥 ∈ {𝐴} ↦ 𝑅) ∈ ({𝐴}–cn→{𝑅}))
4138, 39, 40syl2anc 584 . . . . . . 7 ((𝜑𝐴 = 𝐵) → (𝑥 ∈ {𝐴} ↦ 𝑅) ∈ ({𝐴}–cn→{𝑅}))
4236, 41eqeltrd 2838 . . . . . 6 ((𝜑𝐴 = 𝐵) → 𝐺 ∈ ({𝐴}–cn→{𝑅}))
4322, 42sseldd 3945 . . . . 5 ((𝜑𝐴 = 𝐵) → 𝐺 ∈ ({𝐴}–cn→ℂ))
4427oveq1d 7372 . . . . 5 ((𝜑𝐴 = 𝐵) → ({𝐴}–cn→ℂ) = ((𝐴[,]𝐵)–cn→ℂ))
4543, 44eleqtrd 2840 . . . 4 ((𝜑𝐴 = 𝐵) → 𝐺 ∈ ((𝐴[,]𝐵)–cn→ℂ))
4645adantlr 713 . . 3 (((𝜑 ∧ ¬ 𝐴 < 𝐵) ∧ 𝐴 = 𝐵) → 𝐺 ∈ ((𝐴[,]𝐵)–cn→ℂ))
47 simpll 765 . . . 4 (((𝜑 ∧ ¬ 𝐴 < 𝐵) ∧ ¬ 𝐴 = 𝐵) → 𝜑)
48 eqcom 2743 . . . . . . . . 9 (𝐵 = 𝐴𝐴 = 𝐵)
4948biimpi 215 . . . . . . . 8 (𝐵 = 𝐴𝐴 = 𝐵)
5049con3i 154 . . . . . . 7 𝐴 = 𝐵 → ¬ 𝐵 = 𝐴)
5150adantl 482 . . . . . 6 (((𝜑 ∧ ¬ 𝐴 < 𝐵) ∧ ¬ 𝐴 = 𝐵) → ¬ 𝐵 = 𝐴)
52 simplr 767 . . . . . 6 (((𝜑 ∧ ¬ 𝐴 < 𝐵) ∧ ¬ 𝐴 = 𝐵) → ¬ 𝐴 < 𝐵)
53 pm4.56 987 . . . . . . 7 ((¬ 𝐵 = 𝐴 ∧ ¬ 𝐴 < 𝐵) ↔ ¬ (𝐵 = 𝐴𝐴 < 𝐵))
5453biimpi 215 . . . . . 6 ((¬ 𝐵 = 𝐴 ∧ ¬ 𝐴 < 𝐵) → ¬ (𝐵 = 𝐴𝐴 < 𝐵))
5551, 52, 54syl2anc 584 . . . . 5 (((𝜑 ∧ ¬ 𝐴 < 𝐵) ∧ ¬ 𝐴 = 𝐵) → ¬ (𝐵 = 𝐴𝐴 < 𝐵))
5647, 5syl 17 . . . . . 6 (((𝜑 ∧ ¬ 𝐴 < 𝐵) ∧ ¬ 𝐴 = 𝐵) → 𝐵 ∈ ℝ)
5747, 3syl 17 . . . . . 6 (((𝜑 ∧ ¬ 𝐴 < 𝐵) ∧ ¬ 𝐴 = 𝐵) → 𝐴 ∈ ℝ)
5856, 57lttrid 11293 . . . . 5 (((𝜑 ∧ ¬ 𝐴 < 𝐵) ∧ ¬ 𝐴 = 𝐵) → (𝐵 < 𝐴 ↔ ¬ (𝐵 = 𝐴𝐴 < 𝐵)))
5955, 58mpbird 256 . . . 4 (((𝜑 ∧ ¬ 𝐴 < 𝐵) ∧ ¬ 𝐴 = 𝐵) → 𝐵 < 𝐴)
60 0ss 4356 . . . . . . . 8 ∅ ⊆ ℂ
61 eqid 2736 . . . . . . . . 9 (TopOpen‘ℂfld) = (TopOpen‘ℂfld)
6261cnfldtop 24147 . . . . . . . . . . 11 (TopOpen‘ℂfld) ∈ Top
63 rest0 22520 . . . . . . . . . . 11 ((TopOpen‘ℂfld) ∈ Top → ((TopOpen‘ℂfld) ↾t ∅) = {∅})
6462, 63ax-mp 5 . . . . . . . . . 10 ((TopOpen‘ℂfld) ↾t ∅) = {∅}
6564eqcomi 2745 . . . . . . . . 9 {∅} = ((TopOpen‘ℂfld) ↾t ∅)
6661, 65, 65cncfcn 24273 . . . . . . . 8 ((∅ ⊆ ℂ ∧ ∅ ⊆ ℂ) → (∅–cn→∅) = ({∅} Cn {∅}))
6760, 60, 66mp2an 690 . . . . . . 7 (∅–cn→∅) = ({∅} Cn {∅})
68 cncfss 24262 . . . . . . . 8 ((∅ ⊆ ℂ ∧ ℂ ⊆ ℂ) → (∅–cn→∅) ⊆ (∅–cn→ℂ))
6960, 18, 68mp2an 690 . . . . . . 7 (∅–cn→∅) ⊆ (∅–cn→ℂ)
7067, 69eqsstrri 3979 . . . . . 6 ({∅} Cn {∅}) ⊆ (∅–cn→ℂ)
712a1i 11 . . . . . . . 8 ((𝜑𝐵 < 𝐴) → 𝐺 = (𝑥 ∈ (𝐴[,]𝐵) ↦ if(𝑥 = 𝐴, 𝑅, if(𝑥 = 𝐵, 𝐿, (𝐹𝑥)))))
72 simpr 485 . . . . . . . . . 10 ((𝜑𝐵 < 𝐴) → 𝐵 < 𝐴)
7323adantr 481 . . . . . . . . . . 11 ((𝜑𝐵 < 𝐴) → 𝐴 ∈ ℝ*)
745rexrd 11205 . . . . . . . . . . . 12 (𝜑𝐵 ∈ ℝ*)
7574adantr 481 . . . . . . . . . . 11 ((𝜑𝐵 < 𝐴) → 𝐵 ∈ ℝ*)
76 icc0 13312 . . . . . . . . . . 11 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → ((𝐴[,]𝐵) = ∅ ↔ 𝐵 < 𝐴))
7773, 75, 76syl2anc 584 . . . . . . . . . 10 ((𝜑𝐵 < 𝐴) → ((𝐴[,]𝐵) = ∅ ↔ 𝐵 < 𝐴))
7872, 77mpbird 256 . . . . . . . . 9 ((𝜑𝐵 < 𝐴) → (𝐴[,]𝐵) = ∅)
7978mpteq1d 5200 . . . . . . . 8 ((𝜑𝐵 < 𝐴) → (𝑥 ∈ (𝐴[,]𝐵) ↦ if(𝑥 = 𝐴, 𝑅, if(𝑥 = 𝐵, 𝐿, (𝐹𝑥)))) = (𝑥 ∈ ∅ ↦ if(𝑥 = 𝐴, 𝑅, if(𝑥 = 𝐵, 𝐿, (𝐹𝑥)))))
80 mpt0 6643 . . . . . . . . 9 (𝑥 ∈ ∅ ↦ if(𝑥 = 𝐴, 𝑅, if(𝑥 = 𝐵, 𝐿, (𝐹𝑥)))) = ∅
8180a1i 11 . . . . . . . 8 ((𝜑𝐵 < 𝐴) → (𝑥 ∈ ∅ ↦ if(𝑥 = 𝐴, 𝑅, if(𝑥 = 𝐵, 𝐿, (𝐹𝑥)))) = ∅)
8271, 79, 813eqtrd 2780 . . . . . . 7 ((𝜑𝐵 < 𝐴) → 𝐺 = ∅)
83 0cnf 44108 . . . . . . 7 ∅ ∈ ({∅} Cn {∅})
8482, 83eqeltrdi 2846 . . . . . 6 ((𝜑𝐵 < 𝐴) → 𝐺 ∈ ({∅} Cn {∅}))
8570, 84sselid 3942 . . . . 5 ((𝜑𝐵 < 𝐴) → 𝐺 ∈ (∅–cn→ℂ))
8678eqcomd 2742 . . . . . 6 ((𝜑𝐵 < 𝐴) → ∅ = (𝐴[,]𝐵))
8786oveq1d 7372 . . . . 5 ((𝜑𝐵 < 𝐴) → (∅–cn→ℂ) = ((𝐴[,]𝐵)–cn→ℂ))
8885, 87eleqtrd 2840 . . . 4 ((𝜑𝐵 < 𝐴) → 𝐺 ∈ ((𝐴[,]𝐵)–cn→ℂ))
8947, 59, 88syl2anc 584 . . 3 (((𝜑 ∧ ¬ 𝐴 < 𝐵) ∧ ¬ 𝐴 = 𝐵) → 𝐺 ∈ ((𝐴[,]𝐵)–cn→ℂ))
9046, 89pm2.61dan 811 . 2 ((𝜑 ∧ ¬ 𝐴 < 𝐵) → 𝐺 ∈ ((𝐴[,]𝐵)–cn→ℂ))
9114, 90pm2.61dan 811 1 (𝜑𝐺 ∈ ((𝐴[,]𝐵)–cn→ℂ))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396  wo 845   = wceq 1541  wnf 1785  wcel 2106  wss 3910  c0 4282  ifcif 4486  {csn 4586   class class class wbr 5105  cmpt 5188  cfv 6496  (class class class)co 7357  cc 11049  cr 11050  *cxr 11188   < clt 11189  (,)cioo 13264  [,]cicc 13267  t crest 17302  TopOpenctopn 17303  fldccnfld 20796  Topctop 22242   Cn ccn 22575  cnccncf 24239   lim climc 25226
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-rep 5242  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7672  ax-cnex 11107  ax-resscn 11108  ax-1cn 11109  ax-icn 11110  ax-addcl 11111  ax-addrcl 11112  ax-mulcl 11113  ax-mulrcl 11114  ax-mulcom 11115  ax-addass 11116  ax-mulass 11117  ax-distr 11118  ax-i2m1 11119  ax-1ne0 11120  ax-1rid 11121  ax-rnegex 11122  ax-rrecex 11123  ax-cnre 11124  ax-pre-lttri 11125  ax-pre-lttrn 11126  ax-pre-ltadd 11127  ax-pre-mulgt0 11128  ax-pre-sup 11129
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3065  df-rex 3074  df-rmo 3353  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-tp 4591  df-op 4593  df-uni 4866  df-int 4908  df-iun 4956  df-iin 4957  df-br 5106  df-opab 5168  df-mpt 5189  df-tr 5223  df-id 5531  df-eprel 5537  df-po 5545  df-so 5546  df-fr 5588  df-we 5590  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-pred 6253  df-ord 6320  df-on 6321  df-lim 6322  df-suc 6323  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-riota 7313  df-ov 7360  df-oprab 7361  df-mpo 7362  df-om 7803  df-1st 7921  df-2nd 7922  df-frecs 8212  df-wrecs 8243  df-recs 8317  df-rdg 8356  df-1o 8412  df-er 8648  df-map 8767  df-pm 8768  df-en 8884  df-dom 8885  df-sdom 8886  df-fin 8887  df-fi 9347  df-sup 9378  df-inf 9379  df-pnf 11191  df-mnf 11192  df-xr 11193  df-ltxr 11194  df-le 11195  df-sub 11387  df-neg 11388  df-div 11813  df-nn 12154  df-2 12216  df-3 12217  df-4 12218  df-5 12219  df-6 12220  df-7 12221  df-8 12222  df-9 12223  df-n0 12414  df-z 12500  df-dec 12619  df-uz 12764  df-q 12874  df-rp 12916  df-xneg 13033  df-xadd 13034  df-xmul 13035  df-ioo 13268  df-ioc 13269  df-ico 13270  df-icc 13271  df-fz 13425  df-seq 13907  df-exp 13968  df-cj 14984  df-re 14985  df-im 14986  df-sqrt 15120  df-abs 15121  df-struct 17019  df-slot 17054  df-ndx 17066  df-base 17084  df-plusg 17146  df-mulr 17147  df-starv 17148  df-tset 17152  df-ple 17153  df-ds 17155  df-unif 17156  df-rest 17304  df-topn 17305  df-topgen 17325  df-psmet 20788  df-xmet 20789  df-met 20790  df-bl 20791  df-mopn 20792  df-cnfld 20797  df-top 22243  df-topon 22260  df-topsp 22282  df-bases 22296  df-cld 22370  df-ntr 22371  df-cls 22372  df-cn 22578  df-cnp 22579  df-xms 23673  df-ms 23674  df-cncf 24241  df-limc 25230
This theorem is referenced by:  cncfiooiccre  44126  cncfioobd  44128  itgioocnicc  44208  iblcncfioo  44209  fourierdlem73  44410  fourierdlem81  44418  fourierdlem82  44419
  Copyright terms: Public domain W3C validator