Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fourierdlem25 Structured version   Visualization version   GIF version

Theorem fourierdlem25 40918
Description: If 𝐶 is not in the range of the partition, then it is in an open interval induced by the partition. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypotheses
Ref Expression
fourierdlem25.m (𝜑𝑀 ∈ ℕ)
fourierdlem25.qf (𝜑𝑄:(0...𝑀)⟶ℝ)
fourierdlem25.cel (𝜑𝐶 ∈ ((𝑄‘0)[,](𝑄𝑀)))
fourierdlem25.cnel (𝜑 → ¬ 𝐶 ∈ ran 𝑄)
fourierdlem25.i 𝐼 = sup({𝑘 ∈ (0..^𝑀) ∣ (𝑄𝑘) < 𝐶}, ℝ, < )
Assertion
Ref Expression
fourierdlem25 (𝜑 → ∃𝑗 ∈ (0..^𝑀)𝐶 ∈ ((𝑄𝑗)(,)(𝑄‘(𝑗 + 1))))
Distinct variable groups:   𝐶,𝑘   𝐶,𝑗   𝑗,𝐼   𝑘,𝐼   𝑘,𝑀   𝑗,𝑀   𝑄,𝑘   𝑄,𝑗
Allowed substitution hints:   𝜑(𝑗,𝑘)

Proof of Theorem fourierdlem25
Dummy variables 𝑚 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fourierdlem25.i . . 3 𝐼 = sup({𝑘 ∈ (0..^𝑀) ∣ (𝑄𝑘) < 𝐶}, ℝ, < )
2 ssrab2 3847 . . . 4 {𝑘 ∈ (0..^𝑀) ∣ (𝑄𝑘) < 𝐶} ⊆ (0..^𝑀)
3 ltso 10372 . . . . . 6 < Or ℝ
43a1i 11 . . . . 5 (𝜑 → < Or ℝ)
5 fzofi 12981 . . . . . . 7 (0..^𝑀) ∈ Fin
6 ssfi 8387 . . . . . . 7 (((0..^𝑀) ∈ Fin ∧ {𝑘 ∈ (0..^𝑀) ∣ (𝑄𝑘) < 𝐶} ⊆ (0..^𝑀)) → {𝑘 ∈ (0..^𝑀) ∣ (𝑄𝑘) < 𝐶} ∈ Fin)
75, 2, 6mp2an 683 . . . . . 6 {𝑘 ∈ (0..^𝑀) ∣ (𝑄𝑘) < 𝐶} ∈ Fin
87a1i 11 . . . . 5 (𝜑 → {𝑘 ∈ (0..^𝑀) ∣ (𝑄𝑘) < 𝐶} ∈ Fin)
9 0zd 11636 . . . . . . . 8 (𝜑 → 0 ∈ ℤ)
10 fourierdlem25.m . . . . . . . . 9 (𝜑𝑀 ∈ ℕ)
1110nnzd 11728 . . . . . . . 8 (𝜑𝑀 ∈ ℤ)
1210nngt0d 11321 . . . . . . . 8 (𝜑 → 0 < 𝑀)
13 fzolb 12684 . . . . . . . 8 (0 ∈ (0..^𝑀) ↔ (0 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 0 < 𝑀))
149, 11, 12, 13syl3anbrc 1443 . . . . . . 7 (𝜑 → 0 ∈ (0..^𝑀))
15 fourierdlem25.qf . . . . . . . . 9 (𝜑𝑄:(0...𝑀)⟶ℝ)
16 elfzofz 12693 . . . . . . . . . 10 (0 ∈ (0..^𝑀) → 0 ∈ (0...𝑀))
1714, 16syl 17 . . . . . . . . 9 (𝜑 → 0 ∈ (0...𝑀))
1815, 17ffvelrnd 6550 . . . . . . . 8 (𝜑 → (𝑄‘0) ∈ ℝ)
1910nnnn0d 11598 . . . . . . . . . . . . 13 (𝜑𝑀 ∈ ℕ0)
20 nn0uz 11922 . . . . . . . . . . . . 13 0 = (ℤ‘0)
2119, 20syl6eleq 2854 . . . . . . . . . . . 12 (𝜑𝑀 ∈ (ℤ‘0))
22 eluzfz2 12556 . . . . . . . . . . . 12 (𝑀 ∈ (ℤ‘0) → 𝑀 ∈ (0...𝑀))
2321, 22syl 17 . . . . . . . . . . 11 (𝜑𝑀 ∈ (0...𝑀))
2415, 23ffvelrnd 6550 . . . . . . . . . 10 (𝜑 → (𝑄𝑀) ∈ ℝ)
2518, 24iccssred 40301 . . . . . . . . 9 (𝜑 → ((𝑄‘0)[,](𝑄𝑀)) ⊆ ℝ)
26 fourierdlem25.cel . . . . . . . . 9 (𝜑𝐶 ∈ ((𝑄‘0)[,](𝑄𝑀)))
2725, 26sseldd 3762 . . . . . . . 8 (𝜑𝐶 ∈ ℝ)
2818rexrd 10343 . . . . . . . . 9 (𝜑 → (𝑄‘0) ∈ ℝ*)
2924rexrd 10343 . . . . . . . . 9 (𝜑 → (𝑄𝑀) ∈ ℝ*)
30 iccgelb 12432 . . . . . . . . 9 (((𝑄‘0) ∈ ℝ* ∧ (𝑄𝑀) ∈ ℝ*𝐶 ∈ ((𝑄‘0)[,](𝑄𝑀))) → (𝑄‘0) ≤ 𝐶)
3128, 29, 26, 30syl3anc 1490 . . . . . . . 8 (𝜑 → (𝑄‘0) ≤ 𝐶)
32 fourierdlem25.cnel . . . . . . . . . 10 (𝜑 → ¬ 𝐶 ∈ ran 𝑄)
33 simpr 477 . . . . . . . . . . 11 ((𝜑𝐶 = (𝑄‘0)) → 𝐶 = (𝑄‘0))
3415ffnd 6224 . . . . . . . . . . . . 13 (𝜑𝑄 Fn (0...𝑀))
3534adantr 472 . . . . . . . . . . . 12 ((𝜑𝐶 = (𝑄‘0)) → 𝑄 Fn (0...𝑀))
3617adantr 472 . . . . . . . . . . . 12 ((𝜑𝐶 = (𝑄‘0)) → 0 ∈ (0...𝑀))
37 fnfvelrn 6546 . . . . . . . . . . . 12 ((𝑄 Fn (0...𝑀) ∧ 0 ∈ (0...𝑀)) → (𝑄‘0) ∈ ran 𝑄)
3835, 36, 37syl2anc 579 . . . . . . . . . . 11 ((𝜑𝐶 = (𝑄‘0)) → (𝑄‘0) ∈ ran 𝑄)
3933, 38eqeltrd 2844 . . . . . . . . . 10 ((𝜑𝐶 = (𝑄‘0)) → 𝐶 ∈ ran 𝑄)
4032, 39mtand 850 . . . . . . . . 9 (𝜑 → ¬ 𝐶 = (𝑄‘0))
4140neqned 2944 . . . . . . . 8 (𝜑𝐶 ≠ (𝑄‘0))
4218, 27, 31, 41leneltd 10445 . . . . . . 7 (𝜑 → (𝑄‘0) < 𝐶)
43 fveq2 6375 . . . . . . . . 9 (𝑘 = 0 → (𝑄𝑘) = (𝑄‘0))
4443breq1d 4819 . . . . . . . 8 (𝑘 = 0 → ((𝑄𝑘) < 𝐶 ↔ (𝑄‘0) < 𝐶))
4544elrab 3519 . . . . . . 7 (0 ∈ {𝑘 ∈ (0..^𝑀) ∣ (𝑄𝑘) < 𝐶} ↔ (0 ∈ (0..^𝑀) ∧ (𝑄‘0) < 𝐶))
4614, 42, 45sylanbrc 578 . . . . . 6 (𝜑 → 0 ∈ {𝑘 ∈ (0..^𝑀) ∣ (𝑄𝑘) < 𝐶})
4746ne0d 4086 . . . . 5 (𝜑 → {𝑘 ∈ (0..^𝑀) ∣ (𝑄𝑘) < 𝐶} ≠ ∅)
48 fzossfz 12696 . . . . . . . 8 (0..^𝑀) ⊆ (0...𝑀)
49 fzssz 12550 . . . . . . . . 9 (0...𝑀) ⊆ ℤ
50 zssre 11631 . . . . . . . . 9 ℤ ⊆ ℝ
5149, 50sstri 3770 . . . . . . . 8 (0...𝑀) ⊆ ℝ
5248, 51sstri 3770 . . . . . . 7 (0..^𝑀) ⊆ ℝ
532, 52sstri 3770 . . . . . 6 {𝑘 ∈ (0..^𝑀) ∣ (𝑄𝑘) < 𝐶} ⊆ ℝ
5453a1i 11 . . . . 5 (𝜑 → {𝑘 ∈ (0..^𝑀) ∣ (𝑄𝑘) < 𝐶} ⊆ ℝ)
55 fisupcl 8582 . . . . 5 (( < Or ℝ ∧ ({𝑘 ∈ (0..^𝑀) ∣ (𝑄𝑘) < 𝐶} ∈ Fin ∧ {𝑘 ∈ (0..^𝑀) ∣ (𝑄𝑘) < 𝐶} ≠ ∅ ∧ {𝑘 ∈ (0..^𝑀) ∣ (𝑄𝑘) < 𝐶} ⊆ ℝ)) → sup({𝑘 ∈ (0..^𝑀) ∣ (𝑄𝑘) < 𝐶}, ℝ, < ) ∈ {𝑘 ∈ (0..^𝑀) ∣ (𝑄𝑘) < 𝐶})
564, 8, 47, 54, 55syl13anc 1491 . . . 4 (𝜑 → sup({𝑘 ∈ (0..^𝑀) ∣ (𝑄𝑘) < 𝐶}, ℝ, < ) ∈ {𝑘 ∈ (0..^𝑀) ∣ (𝑄𝑘) < 𝐶})
572, 56sseldi 3759 . . 3 (𝜑 → sup({𝑘 ∈ (0..^𝑀) ∣ (𝑄𝑘) < 𝐶}, ℝ, < ) ∈ (0..^𝑀))
581, 57syl5eqel 2848 . 2 (𝜑𝐼 ∈ (0..^𝑀))
5948, 58sseldi 3759 . . . . 5 (𝜑𝐼 ∈ (0...𝑀))
6015, 59ffvelrnd 6550 . . . 4 (𝜑 → (𝑄𝐼) ∈ ℝ)
6160rexrd 10343 . . 3 (𝜑 → (𝑄𝐼) ∈ ℝ*)
62 fzofzp1 12773 . . . . . 6 (𝐼 ∈ (0..^𝑀) → (𝐼 + 1) ∈ (0...𝑀))
6358, 62syl 17 . . . . 5 (𝜑 → (𝐼 + 1) ∈ (0...𝑀))
6415, 63ffvelrnd 6550 . . . 4 (𝜑 → (𝑄‘(𝐼 + 1)) ∈ ℝ)
6564rexrd 10343 . . 3 (𝜑 → (𝑄‘(𝐼 + 1)) ∈ ℝ*)
661, 56syl5eqel 2848 . . . . 5 (𝜑𝐼 ∈ {𝑘 ∈ (0..^𝑀) ∣ (𝑄𝑘) < 𝐶})
67 fveq2 6375 . . . . . . 7 (𝑘 = 𝐼 → (𝑄𝑘) = (𝑄𝐼))
6867breq1d 4819 . . . . . 6 (𝑘 = 𝐼 → ((𝑄𝑘) < 𝐶 ↔ (𝑄𝐼) < 𝐶))
6968elrab 3519 . . . . 5 (𝐼 ∈ {𝑘 ∈ (0..^𝑀) ∣ (𝑄𝑘) < 𝐶} ↔ (𝐼 ∈ (0..^𝑀) ∧ (𝑄𝐼) < 𝐶))
7066, 69sylib 209 . . . 4 (𝜑 → (𝐼 ∈ (0..^𝑀) ∧ (𝑄𝐼) < 𝐶))
7170simprd 489 . . 3 (𝜑 → (𝑄𝐼) < 𝐶)
7252, 58sseldi 3759 . . . . . . . . 9 (𝜑𝐼 ∈ ℝ)
73 ltp1 11115 . . . . . . . . . 10 (𝐼 ∈ ℝ → 𝐼 < (𝐼 + 1))
74 id 22 . . . . . . . . . . 11 (𝐼 ∈ ℝ → 𝐼 ∈ ℝ)
75 peano2re 10463 . . . . . . . . . . 11 (𝐼 ∈ ℝ → (𝐼 + 1) ∈ ℝ)
7674, 75ltnled 10438 . . . . . . . . . 10 (𝐼 ∈ ℝ → (𝐼 < (𝐼 + 1) ↔ ¬ (𝐼 + 1) ≤ 𝐼))
7773, 76mpbid 223 . . . . . . . . 9 (𝐼 ∈ ℝ → ¬ (𝐼 + 1) ≤ 𝐼)
7872, 77syl 17 . . . . . . . 8 (𝜑 → ¬ (𝐼 + 1) ≤ 𝐼)
7948, 49sstri 3770 . . . . . . . . . . . 12 (0..^𝑀) ⊆ ℤ
802, 79sstri 3770 . . . . . . . . . . 11 {𝑘 ∈ (0..^𝑀) ∣ (𝑄𝑘) < 𝐶} ⊆ ℤ
8180a1i 11 . . . . . . . . . 10 ((𝜑 ∧ (𝑄‘(𝐼 + 1)) < 𝐶) → {𝑘 ∈ (0..^𝑀) ∣ (𝑄𝑘) < 𝐶} ⊆ ℤ)
82 elrabi 3514 . . . . . . . . . . . . . . 15 ( ∈ {𝑘 ∈ (0..^𝑀) ∣ (𝑄𝑘) < 𝐶} → ∈ (0..^𝑀))
83 elfzo0le 12720 . . . . . . . . . . . . . . 15 ( ∈ (0..^𝑀) → 𝑀)
8482, 83syl 17 . . . . . . . . . . . . . 14 ( ∈ {𝑘 ∈ (0..^𝑀) ∣ (𝑄𝑘) < 𝐶} → 𝑀)
8584adantl 473 . . . . . . . . . . . . 13 ((𝜑 ∈ {𝑘 ∈ (0..^𝑀) ∣ (𝑄𝑘) < 𝐶}) → 𝑀)
8685ralrimiva 3113 . . . . . . . . . . . 12 (𝜑 → ∀ ∈ {𝑘 ∈ (0..^𝑀) ∣ (𝑄𝑘) < 𝐶}𝑀)
87 breq2 4813 . . . . . . . . . . . . . 14 (𝑚 = 𝑀 → (𝑚𝑀))
8887ralbidv 3133 . . . . . . . . . . . . 13 (𝑚 = 𝑀 → (∀ ∈ {𝑘 ∈ (0..^𝑀) ∣ (𝑄𝑘) < 𝐶}𝑚 ↔ ∀ ∈ {𝑘 ∈ (0..^𝑀) ∣ (𝑄𝑘) < 𝐶}𝑀))
8988rspcev 3461 . . . . . . . . . . . 12 ((𝑀 ∈ ℤ ∧ ∀ ∈ {𝑘 ∈ (0..^𝑀) ∣ (𝑄𝑘) < 𝐶}𝑀) → ∃𝑚 ∈ ℤ ∀ ∈ {𝑘 ∈ (0..^𝑀) ∣ (𝑄𝑘) < 𝐶}𝑚)
9011, 86, 89syl2anc 579 . . . . . . . . . . 11 (𝜑 → ∃𝑚 ∈ ℤ ∀ ∈ {𝑘 ∈ (0..^𝑀) ∣ (𝑄𝑘) < 𝐶}𝑚)
9190adantr 472 . . . . . . . . . 10 ((𝜑 ∧ (𝑄‘(𝐼 + 1)) < 𝐶) → ∃𝑚 ∈ ℤ ∀ ∈ {𝑘 ∈ (0..^𝑀) ∣ (𝑄𝑘) < 𝐶}𝑚)
92 elfzuz 12545 . . . . . . . . . . . . . 14 ((𝐼 + 1) ∈ (0...𝑀) → (𝐼 + 1) ∈ (ℤ‘0))
9363, 92syl 17 . . . . . . . . . . . . 13 (𝜑 → (𝐼 + 1) ∈ (ℤ‘0))
9493adantr 472 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑄‘(𝐼 + 1)) < 𝐶) → (𝐼 + 1) ∈ (ℤ‘0))
9511adantr 472 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑄‘(𝐼 + 1)) < 𝐶) → 𝑀 ∈ ℤ)
9651, 63sseldi 3759 . . . . . . . . . . . . . 14 (𝜑 → (𝐼 + 1) ∈ ℝ)
9796adantr 472 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑄‘(𝐼 + 1)) < 𝐶) → (𝐼 + 1) ∈ ℝ)
9895zred 11729 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑄‘(𝐼 + 1)) < 𝐶) → 𝑀 ∈ ℝ)
99 elfzle2 12552 . . . . . . . . . . . . . . 15 ((𝐼 + 1) ∈ (0...𝑀) → (𝐼 + 1) ≤ 𝑀)
10063, 99syl 17 . . . . . . . . . . . . . 14 (𝜑 → (𝐼 + 1) ≤ 𝑀)
101100adantr 472 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑄‘(𝐼 + 1)) < 𝐶) → (𝐼 + 1) ≤ 𝑀)
102 simpr 477 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝑄‘(𝐼 + 1)) < 𝐶) → (𝑄‘(𝐼 + 1)) < 𝐶)
10364adantr 472 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ (𝑄‘(𝐼 + 1)) < 𝐶) → (𝑄‘(𝐼 + 1)) ∈ ℝ)
10427adantr 472 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ (𝑄‘(𝐼 + 1)) < 𝐶) → 𝐶 ∈ ℝ)
105103, 104ltnled 10438 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝑄‘(𝐼 + 1)) < 𝐶) → ((𝑄‘(𝐼 + 1)) < 𝐶 ↔ ¬ 𝐶 ≤ (𝑄‘(𝐼 + 1))))
106102, 105mpbid 223 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑄‘(𝐼 + 1)) < 𝐶) → ¬ 𝐶 ≤ (𝑄‘(𝐼 + 1)))
107 iccleub 12431 . . . . . . . . . . . . . . . . . . 19 (((𝑄‘0) ∈ ℝ* ∧ (𝑄𝑀) ∈ ℝ*𝐶 ∈ ((𝑄‘0)[,](𝑄𝑀))) → 𝐶 ≤ (𝑄𝑀))
10828, 29, 26, 107syl3anc 1490 . . . . . . . . . . . . . . . . . 18 (𝜑𝐶 ≤ (𝑄𝑀))
109108adantr 472 . . . . . . . . . . . . . . . . 17 ((𝜑𝑀 = (𝐼 + 1)) → 𝐶 ≤ (𝑄𝑀))
110 fveq2 6375 . . . . . . . . . . . . . . . . . 18 (𝑀 = (𝐼 + 1) → (𝑄𝑀) = (𝑄‘(𝐼 + 1)))
111110adantl 473 . . . . . . . . . . . . . . . . 17 ((𝜑𝑀 = (𝐼 + 1)) → (𝑄𝑀) = (𝑄‘(𝐼 + 1)))
112109, 111breqtrd 4835 . . . . . . . . . . . . . . . 16 ((𝜑𝑀 = (𝐼 + 1)) → 𝐶 ≤ (𝑄‘(𝐼 + 1)))
113112adantlr 706 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑄‘(𝐼 + 1)) < 𝐶) ∧ 𝑀 = (𝐼 + 1)) → 𝐶 ≤ (𝑄‘(𝐼 + 1)))
114106, 113mtand 850 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑄‘(𝐼 + 1)) < 𝐶) → ¬ 𝑀 = (𝐼 + 1))
115114neqned 2944 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑄‘(𝐼 + 1)) < 𝐶) → 𝑀 ≠ (𝐼 + 1))
11697, 98, 101, 115leneltd 10445 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑄‘(𝐼 + 1)) < 𝐶) → (𝐼 + 1) < 𝑀)
117 elfzo2 12681 . . . . . . . . . . . 12 ((𝐼 + 1) ∈ (0..^𝑀) ↔ ((𝐼 + 1) ∈ (ℤ‘0) ∧ 𝑀 ∈ ℤ ∧ (𝐼 + 1) < 𝑀))
11894, 95, 116, 117syl3anbrc 1443 . . . . . . . . . . 11 ((𝜑 ∧ (𝑄‘(𝐼 + 1)) < 𝐶) → (𝐼 + 1) ∈ (0..^𝑀))
119 fveq2 6375 . . . . . . . . . . . . 13 (𝑘 = (𝐼 + 1) → (𝑄𝑘) = (𝑄‘(𝐼 + 1)))
120119breq1d 4819 . . . . . . . . . . . 12 (𝑘 = (𝐼 + 1) → ((𝑄𝑘) < 𝐶 ↔ (𝑄‘(𝐼 + 1)) < 𝐶))
121120elrab 3519 . . . . . . . . . . 11 ((𝐼 + 1) ∈ {𝑘 ∈ (0..^𝑀) ∣ (𝑄𝑘) < 𝐶} ↔ ((𝐼 + 1) ∈ (0..^𝑀) ∧ (𝑄‘(𝐼 + 1)) < 𝐶))
122118, 102, 121sylanbrc 578 . . . . . . . . . 10 ((𝜑 ∧ (𝑄‘(𝐼 + 1)) < 𝐶) → (𝐼 + 1) ∈ {𝑘 ∈ (0..^𝑀) ∣ (𝑄𝑘) < 𝐶})
123 suprzub 11980 . . . . . . . . . 10 (({𝑘 ∈ (0..^𝑀) ∣ (𝑄𝑘) < 𝐶} ⊆ ℤ ∧ ∃𝑚 ∈ ℤ ∀ ∈ {𝑘 ∈ (0..^𝑀) ∣ (𝑄𝑘) < 𝐶}𝑚 ∧ (𝐼 + 1) ∈ {𝑘 ∈ (0..^𝑀) ∣ (𝑄𝑘) < 𝐶}) → (𝐼 + 1) ≤ sup({𝑘 ∈ (0..^𝑀) ∣ (𝑄𝑘) < 𝐶}, ℝ, < ))
12481, 91, 122, 123syl3anc 1490 . . . . . . . . 9 ((𝜑 ∧ (𝑄‘(𝐼 + 1)) < 𝐶) → (𝐼 + 1) ≤ sup({𝑘 ∈ (0..^𝑀) ∣ (𝑄𝑘) < 𝐶}, ℝ, < ))
125124, 1syl6breqr 4851 . . . . . . . 8 ((𝜑 ∧ (𝑄‘(𝐼 + 1)) < 𝐶) → (𝐼 + 1) ≤ 𝐼)
12678, 125mtand 850 . . . . . . 7 (𝜑 → ¬ (𝑄‘(𝐼 + 1)) < 𝐶)
127 eqcom 2772 . . . . . . . . . . 11 ((𝑄‘(𝐼 + 1)) = 𝐶𝐶 = (𝑄‘(𝐼 + 1)))
128127biimpi 207 . . . . . . . . . 10 ((𝑄‘(𝐼 + 1)) = 𝐶𝐶 = (𝑄‘(𝐼 + 1)))
129128adantl 473 . . . . . . . . 9 ((𝜑 ∧ (𝑄‘(𝐼 + 1)) = 𝐶) → 𝐶 = (𝑄‘(𝐼 + 1)))
13034adantr 472 . . . . . . . . . 10 ((𝜑 ∧ (𝑄‘(𝐼 + 1)) = 𝐶) → 𝑄 Fn (0...𝑀))
13163adantr 472 . . . . . . . . . 10 ((𝜑 ∧ (𝑄‘(𝐼 + 1)) = 𝐶) → (𝐼 + 1) ∈ (0...𝑀))
132 fnfvelrn 6546 . . . . . . . . . 10 ((𝑄 Fn (0...𝑀) ∧ (𝐼 + 1) ∈ (0...𝑀)) → (𝑄‘(𝐼 + 1)) ∈ ran 𝑄)
133130, 131, 132syl2anc 579 . . . . . . . . 9 ((𝜑 ∧ (𝑄‘(𝐼 + 1)) = 𝐶) → (𝑄‘(𝐼 + 1)) ∈ ran 𝑄)
134129, 133eqeltrd 2844 . . . . . . . 8 ((𝜑 ∧ (𝑄‘(𝐼 + 1)) = 𝐶) → 𝐶 ∈ ran 𝑄)
13532, 134mtand 850 . . . . . . 7 (𝜑 → ¬ (𝑄‘(𝐼 + 1)) = 𝐶)
136126, 135jca 507 . . . . . 6 (𝜑 → (¬ (𝑄‘(𝐼 + 1)) < 𝐶 ∧ ¬ (𝑄‘(𝐼 + 1)) = 𝐶))
137 pm4.56 1011 . . . . . 6 ((¬ (𝑄‘(𝐼 + 1)) < 𝐶 ∧ ¬ (𝑄‘(𝐼 + 1)) = 𝐶) ↔ ¬ ((𝑄‘(𝐼 + 1)) < 𝐶 ∨ (𝑄‘(𝐼 + 1)) = 𝐶))
138136, 137sylib 209 . . . . 5 (𝜑 → ¬ ((𝑄‘(𝐼 + 1)) < 𝐶 ∨ (𝑄‘(𝐼 + 1)) = 𝐶))
13964, 27leloed 10434 . . . . 5 (𝜑 → ((𝑄‘(𝐼 + 1)) ≤ 𝐶 ↔ ((𝑄‘(𝐼 + 1)) < 𝐶 ∨ (𝑄‘(𝐼 + 1)) = 𝐶)))
140138, 139mtbird 316 . . . 4 (𝜑 → ¬ (𝑄‘(𝐼 + 1)) ≤ 𝐶)
14127, 64ltnled 10438 . . . 4 (𝜑 → (𝐶 < (𝑄‘(𝐼 + 1)) ↔ ¬ (𝑄‘(𝐼 + 1)) ≤ 𝐶))
142140, 141mpbird 248 . . 3 (𝜑𝐶 < (𝑄‘(𝐼 + 1)))
14361, 65, 27, 71, 142eliood 40294 . 2 (𝜑𝐶 ∈ ((𝑄𝐼)(,)(𝑄‘(𝐼 + 1))))
144 fveq2 6375 . . . . 5 (𝑗 = 𝐼 → (𝑄𝑗) = (𝑄𝐼))
145 oveq1 6849 . . . . . 6 (𝑗 = 𝐼 → (𝑗 + 1) = (𝐼 + 1))
146145fveq2d 6379 . . . . 5 (𝑗 = 𝐼 → (𝑄‘(𝑗 + 1)) = (𝑄‘(𝐼 + 1)))
147144, 146oveq12d 6860 . . . 4 (𝑗 = 𝐼 → ((𝑄𝑗)(,)(𝑄‘(𝑗 + 1))) = ((𝑄𝐼)(,)(𝑄‘(𝐼 + 1))))
148147eleq2d 2830 . . 3 (𝑗 = 𝐼 → (𝐶 ∈ ((𝑄𝑗)(,)(𝑄‘(𝑗 + 1))) ↔ 𝐶 ∈ ((𝑄𝐼)(,)(𝑄‘(𝐼 + 1)))))
149148rspcev 3461 . 2 ((𝐼 ∈ (0..^𝑀) ∧ 𝐶 ∈ ((𝑄𝐼)(,)(𝑄‘(𝐼 + 1)))) → ∃𝑗 ∈ (0..^𝑀)𝐶 ∈ ((𝑄𝑗)(,)(𝑄‘(𝑗 + 1))))
15058, 143, 149syl2anc 579 1 (𝜑 → ∃𝑗 ∈ (0..^𝑀)𝐶 ∈ ((𝑄𝑗)(,)(𝑄‘(𝑗 + 1))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 384  wo 873   = wceq 1652  wcel 2155  wne 2937  wral 3055  wrex 3056  {crab 3059  wss 3732  c0 4079   class class class wbr 4809   Or wor 5197  ran crn 5278   Fn wfn 6063  wf 6064  cfv 6068  (class class class)co 6842  Fincfn 8160  supcsup 8553  cr 10188  0cc0 10189  1c1 10190   + caddc 10192  *cxr 10327   < clt 10328  cle 10329  cn 11274  0cn0 11538  cz 11624  cuz 11886  (,)cioo 12377  [,]cicc 12380  ...cfz 12533  ..^cfzo 12673
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1890  ax-4 1904  ax-5 2005  ax-6 2070  ax-7 2105  ax-8 2157  ax-9 2164  ax-10 2183  ax-11 2198  ax-12 2211  ax-13 2352  ax-ext 2743  ax-sep 4941  ax-nul 4949  ax-pow 5001  ax-pr 5062  ax-un 7147  ax-cnex 10245  ax-resscn 10246  ax-1cn 10247  ax-icn 10248  ax-addcl 10249  ax-addrcl 10250  ax-mulcl 10251  ax-mulrcl 10252  ax-mulcom 10253  ax-addass 10254  ax-mulass 10255  ax-distr 10256  ax-i2m1 10257  ax-1ne0 10258  ax-1rid 10259  ax-rnegex 10260  ax-rrecex 10261  ax-cnre 10262  ax-pre-lttri 10263  ax-pre-lttrn 10264  ax-pre-ltadd 10265  ax-pre-mulgt0 10266
This theorem depends on definitions:  df-bi 198  df-an 385  df-or 874  df-3or 1108  df-3an 1109  df-tru 1656  df-ex 1875  df-nf 1879  df-sb 2063  df-mo 2565  df-eu 2582  df-clab 2752  df-cleq 2758  df-clel 2761  df-nfc 2896  df-ne 2938  df-nel 3041  df-ral 3060  df-rex 3061  df-reu 3062  df-rmo 3063  df-rab 3064  df-v 3352  df-sbc 3597  df-csb 3692  df-dif 3735  df-un 3737  df-in 3739  df-ss 3746  df-pss 3748  df-nul 4080  df-if 4244  df-pw 4317  df-sn 4335  df-pr 4337  df-tp 4339  df-op 4341  df-uni 4595  df-iun 4678  df-br 4810  df-opab 4872  df-mpt 4889  df-tr 4912  df-id 5185  df-eprel 5190  df-po 5198  df-so 5199  df-fr 5236  df-we 5238  df-xp 5283  df-rel 5284  df-cnv 5285  df-co 5286  df-dm 5287  df-rn 5288  df-res 5289  df-ima 5290  df-pred 5865  df-ord 5911  df-on 5912  df-lim 5913  df-suc 5914  df-iota 6031  df-fun 6070  df-fn 6071  df-f 6072  df-f1 6073  df-fo 6074  df-f1o 6075  df-fv 6076  df-riota 6803  df-ov 6845  df-oprab 6846  df-mpt2 6847  df-om 7264  df-1st 7366  df-2nd 7367  df-wrecs 7610  df-recs 7672  df-rdg 7710  df-1o 7764  df-er 7947  df-en 8161  df-dom 8162  df-sdom 8163  df-fin 8164  df-sup 8555  df-inf 8556  df-pnf 10330  df-mnf 10331  df-xr 10332  df-ltxr 10333  df-le 10334  df-sub 10522  df-neg 10523  df-nn 11275  df-n0 11539  df-z 11625  df-uz 11887  df-ioo 12381  df-icc 12384  df-fz 12534  df-fzo 12674
This theorem is referenced by:  fourierdlem41  40934  fourierdlem48  40940  fourierdlem49  40941  fourierdlem70  40962  fourierdlem71  40963  fourierdlem103  40995  fourierdlem104  40996
  Copyright terms: Public domain W3C validator