Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fourierdlem25 Structured version   Visualization version   GIF version

Theorem fourierdlem25 46147
Description: If 𝐶 is not in the range of the partition, then it is in an open interval induced by the partition. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypotheses
Ref Expression
fourierdlem25.m (𝜑𝑀 ∈ ℕ)
fourierdlem25.qf (𝜑𝑄:(0...𝑀)⟶ℝ)
fourierdlem25.cel (𝜑𝐶 ∈ ((𝑄‘0)[,](𝑄𝑀)))
fourierdlem25.cnel (𝜑 → ¬ 𝐶 ∈ ran 𝑄)
fourierdlem25.i 𝐼 = sup({𝑘 ∈ (0..^𝑀) ∣ (𝑄𝑘) < 𝐶}, ℝ, < )
Assertion
Ref Expression
fourierdlem25 (𝜑 → ∃𝑗 ∈ (0..^𝑀)𝐶 ∈ ((𝑄𝑗)(,)(𝑄‘(𝑗 + 1))))
Distinct variable groups:   𝐶,𝑘   𝐶,𝑗   𝑗,𝐼   𝑘,𝐼   𝑘,𝑀   𝑗,𝑀   𝑄,𝑘   𝑄,𝑗
Allowed substitution hints:   𝜑(𝑗,𝑘)

Proof of Theorem fourierdlem25
Dummy variables 𝑚 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fourierdlem25.i . . 3 𝐼 = sup({𝑘 ∈ (0..^𝑀) ∣ (𝑄𝑘) < 𝐶}, ℝ, < )
2 ssrab2 4080 . . . 4 {𝑘 ∈ (0..^𝑀) ∣ (𝑄𝑘) < 𝐶} ⊆ (0..^𝑀)
3 ltso 11341 . . . . . 6 < Or ℝ
43a1i 11 . . . . 5 (𝜑 → < Or ℝ)
5 fzofi 14015 . . . . . . 7 (0..^𝑀) ∈ Fin
6 ssfi 9213 . . . . . . 7 (((0..^𝑀) ∈ Fin ∧ {𝑘 ∈ (0..^𝑀) ∣ (𝑄𝑘) < 𝐶} ⊆ (0..^𝑀)) → {𝑘 ∈ (0..^𝑀) ∣ (𝑄𝑘) < 𝐶} ∈ Fin)
75, 2, 6mp2an 692 . . . . . 6 {𝑘 ∈ (0..^𝑀) ∣ (𝑄𝑘) < 𝐶} ∈ Fin
87a1i 11 . . . . 5 (𝜑 → {𝑘 ∈ (0..^𝑀) ∣ (𝑄𝑘) < 𝐶} ∈ Fin)
9 0zd 12625 . . . . . . . 8 (𝜑 → 0 ∈ ℤ)
10 fourierdlem25.m . . . . . . . . 9 (𝜑𝑀 ∈ ℕ)
1110nnzd 12640 . . . . . . . 8 (𝜑𝑀 ∈ ℤ)
1210nngt0d 12315 . . . . . . . 8 (𝜑 → 0 < 𝑀)
13 fzolb 13705 . . . . . . . 8 (0 ∈ (0..^𝑀) ↔ (0 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 0 < 𝑀))
149, 11, 12, 13syl3anbrc 1344 . . . . . . 7 (𝜑 → 0 ∈ (0..^𝑀))
15 fourierdlem25.qf . . . . . . . . 9 (𝜑𝑄:(0...𝑀)⟶ℝ)
16 elfzofz 13715 . . . . . . . . . 10 (0 ∈ (0..^𝑀) → 0 ∈ (0...𝑀))
1714, 16syl 17 . . . . . . . . 9 (𝜑 → 0 ∈ (0...𝑀))
1815, 17ffvelcdmd 7105 . . . . . . . 8 (𝜑 → (𝑄‘0) ∈ ℝ)
1910nnnn0d 12587 . . . . . . . . . . . . 13 (𝜑𝑀 ∈ ℕ0)
20 nn0uz 12920 . . . . . . . . . . . . 13 0 = (ℤ‘0)
2119, 20eleqtrdi 2851 . . . . . . . . . . . 12 (𝜑𝑀 ∈ (ℤ‘0))
22 eluzfz2 13572 . . . . . . . . . . . 12 (𝑀 ∈ (ℤ‘0) → 𝑀 ∈ (0...𝑀))
2321, 22syl 17 . . . . . . . . . . 11 (𝜑𝑀 ∈ (0...𝑀))
2415, 23ffvelcdmd 7105 . . . . . . . . . 10 (𝜑 → (𝑄𝑀) ∈ ℝ)
2518, 24iccssred 13474 . . . . . . . . 9 (𝜑 → ((𝑄‘0)[,](𝑄𝑀)) ⊆ ℝ)
26 fourierdlem25.cel . . . . . . . . 9 (𝜑𝐶 ∈ ((𝑄‘0)[,](𝑄𝑀)))
2725, 26sseldd 3984 . . . . . . . 8 (𝜑𝐶 ∈ ℝ)
2818rexrd 11311 . . . . . . . . 9 (𝜑 → (𝑄‘0) ∈ ℝ*)
2924rexrd 11311 . . . . . . . . 9 (𝜑 → (𝑄𝑀) ∈ ℝ*)
30 iccgelb 13443 . . . . . . . . 9 (((𝑄‘0) ∈ ℝ* ∧ (𝑄𝑀) ∈ ℝ*𝐶 ∈ ((𝑄‘0)[,](𝑄𝑀))) → (𝑄‘0) ≤ 𝐶)
3128, 29, 26, 30syl3anc 1373 . . . . . . . 8 (𝜑 → (𝑄‘0) ≤ 𝐶)
32 fourierdlem25.cnel . . . . . . . . . 10 (𝜑 → ¬ 𝐶 ∈ ran 𝑄)
33 simpr 484 . . . . . . . . . . 11 ((𝜑𝐶 = (𝑄‘0)) → 𝐶 = (𝑄‘0))
3415ffnd 6737 . . . . . . . . . . . . 13 (𝜑𝑄 Fn (0...𝑀))
3534adantr 480 . . . . . . . . . . . 12 ((𝜑𝐶 = (𝑄‘0)) → 𝑄 Fn (0...𝑀))
3617adantr 480 . . . . . . . . . . . 12 ((𝜑𝐶 = (𝑄‘0)) → 0 ∈ (0...𝑀))
37 fnfvelrn 7100 . . . . . . . . . . . 12 ((𝑄 Fn (0...𝑀) ∧ 0 ∈ (0...𝑀)) → (𝑄‘0) ∈ ran 𝑄)
3835, 36, 37syl2anc 584 . . . . . . . . . . 11 ((𝜑𝐶 = (𝑄‘0)) → (𝑄‘0) ∈ ran 𝑄)
3933, 38eqeltrd 2841 . . . . . . . . . 10 ((𝜑𝐶 = (𝑄‘0)) → 𝐶 ∈ ran 𝑄)
4032, 39mtand 816 . . . . . . . . 9 (𝜑 → ¬ 𝐶 = (𝑄‘0))
4140neqned 2947 . . . . . . . 8 (𝜑𝐶 ≠ (𝑄‘0))
4218, 27, 31, 41leneltd 11415 . . . . . . 7 (𝜑 → (𝑄‘0) < 𝐶)
43 fveq2 6906 . . . . . . . . 9 (𝑘 = 0 → (𝑄𝑘) = (𝑄‘0))
4443breq1d 5153 . . . . . . . 8 (𝑘 = 0 → ((𝑄𝑘) < 𝐶 ↔ (𝑄‘0) < 𝐶))
4544elrab 3692 . . . . . . 7 (0 ∈ {𝑘 ∈ (0..^𝑀) ∣ (𝑄𝑘) < 𝐶} ↔ (0 ∈ (0..^𝑀) ∧ (𝑄‘0) < 𝐶))
4614, 42, 45sylanbrc 583 . . . . . 6 (𝜑 → 0 ∈ {𝑘 ∈ (0..^𝑀) ∣ (𝑄𝑘) < 𝐶})
4746ne0d 4342 . . . . 5 (𝜑 → {𝑘 ∈ (0..^𝑀) ∣ (𝑄𝑘) < 𝐶} ≠ ∅)
48 fzossfz 13718 . . . . . . . 8 (0..^𝑀) ⊆ (0...𝑀)
49 fzssz 13566 . . . . . . . . 9 (0...𝑀) ⊆ ℤ
50 zssre 12620 . . . . . . . . 9 ℤ ⊆ ℝ
5149, 50sstri 3993 . . . . . . . 8 (0...𝑀) ⊆ ℝ
5248, 51sstri 3993 . . . . . . 7 (0..^𝑀) ⊆ ℝ
532, 52sstri 3993 . . . . . 6 {𝑘 ∈ (0..^𝑀) ∣ (𝑄𝑘) < 𝐶} ⊆ ℝ
5453a1i 11 . . . . 5 (𝜑 → {𝑘 ∈ (0..^𝑀) ∣ (𝑄𝑘) < 𝐶} ⊆ ℝ)
55 fisupcl 9509 . . . . 5 (( < Or ℝ ∧ ({𝑘 ∈ (0..^𝑀) ∣ (𝑄𝑘) < 𝐶} ∈ Fin ∧ {𝑘 ∈ (0..^𝑀) ∣ (𝑄𝑘) < 𝐶} ≠ ∅ ∧ {𝑘 ∈ (0..^𝑀) ∣ (𝑄𝑘) < 𝐶} ⊆ ℝ)) → sup({𝑘 ∈ (0..^𝑀) ∣ (𝑄𝑘) < 𝐶}, ℝ, < ) ∈ {𝑘 ∈ (0..^𝑀) ∣ (𝑄𝑘) < 𝐶})
564, 8, 47, 54, 55syl13anc 1374 . . . 4 (𝜑 → sup({𝑘 ∈ (0..^𝑀) ∣ (𝑄𝑘) < 𝐶}, ℝ, < ) ∈ {𝑘 ∈ (0..^𝑀) ∣ (𝑄𝑘) < 𝐶})
572, 56sselid 3981 . . 3 (𝜑 → sup({𝑘 ∈ (0..^𝑀) ∣ (𝑄𝑘) < 𝐶}, ℝ, < ) ∈ (0..^𝑀))
581, 57eqeltrid 2845 . 2 (𝜑𝐼 ∈ (0..^𝑀))
5948, 58sselid 3981 . . . . 5 (𝜑𝐼 ∈ (0...𝑀))
6015, 59ffvelcdmd 7105 . . . 4 (𝜑 → (𝑄𝐼) ∈ ℝ)
6160rexrd 11311 . . 3 (𝜑 → (𝑄𝐼) ∈ ℝ*)
62 fzofzp1 13803 . . . . . 6 (𝐼 ∈ (0..^𝑀) → (𝐼 + 1) ∈ (0...𝑀))
6358, 62syl 17 . . . . 5 (𝜑 → (𝐼 + 1) ∈ (0...𝑀))
6415, 63ffvelcdmd 7105 . . . 4 (𝜑 → (𝑄‘(𝐼 + 1)) ∈ ℝ)
6564rexrd 11311 . . 3 (𝜑 → (𝑄‘(𝐼 + 1)) ∈ ℝ*)
661, 56eqeltrid 2845 . . . . 5 (𝜑𝐼 ∈ {𝑘 ∈ (0..^𝑀) ∣ (𝑄𝑘) < 𝐶})
67 fveq2 6906 . . . . . . 7 (𝑘 = 𝐼 → (𝑄𝑘) = (𝑄𝐼))
6867breq1d 5153 . . . . . 6 (𝑘 = 𝐼 → ((𝑄𝑘) < 𝐶 ↔ (𝑄𝐼) < 𝐶))
6968elrab 3692 . . . . 5 (𝐼 ∈ {𝑘 ∈ (0..^𝑀) ∣ (𝑄𝑘) < 𝐶} ↔ (𝐼 ∈ (0..^𝑀) ∧ (𝑄𝐼) < 𝐶))
7066, 69sylib 218 . . . 4 (𝜑 → (𝐼 ∈ (0..^𝑀) ∧ (𝑄𝐼) < 𝐶))
7170simprd 495 . . 3 (𝜑 → (𝑄𝐼) < 𝐶)
7252, 58sselid 3981 . . . . . . . . 9 (𝜑𝐼 ∈ ℝ)
73 ltp1 12107 . . . . . . . . . 10 (𝐼 ∈ ℝ → 𝐼 < (𝐼 + 1))
74 id 22 . . . . . . . . . . 11 (𝐼 ∈ ℝ → 𝐼 ∈ ℝ)
75 peano2re 11434 . . . . . . . . . . 11 (𝐼 ∈ ℝ → (𝐼 + 1) ∈ ℝ)
7674, 75ltnled 11408 . . . . . . . . . 10 (𝐼 ∈ ℝ → (𝐼 < (𝐼 + 1) ↔ ¬ (𝐼 + 1) ≤ 𝐼))
7773, 76mpbid 232 . . . . . . . . 9 (𝐼 ∈ ℝ → ¬ (𝐼 + 1) ≤ 𝐼)
7872, 77syl 17 . . . . . . . 8 (𝜑 → ¬ (𝐼 + 1) ≤ 𝐼)
7948, 49sstri 3993 . . . . . . . . . . . 12 (0..^𝑀) ⊆ ℤ
802, 79sstri 3993 . . . . . . . . . . 11 {𝑘 ∈ (0..^𝑀) ∣ (𝑄𝑘) < 𝐶} ⊆ ℤ
8180a1i 11 . . . . . . . . . 10 ((𝜑 ∧ (𝑄‘(𝐼 + 1)) < 𝐶) → {𝑘 ∈ (0..^𝑀) ∣ (𝑄𝑘) < 𝐶} ⊆ ℤ)
82 elrabi 3687 . . . . . . . . . . . . . . 15 ( ∈ {𝑘 ∈ (0..^𝑀) ∣ (𝑄𝑘) < 𝐶} → ∈ (0..^𝑀))
83 elfzo0le 13743 . . . . . . . . . . . . . . 15 ( ∈ (0..^𝑀) → 𝑀)
8482, 83syl 17 . . . . . . . . . . . . . 14 ( ∈ {𝑘 ∈ (0..^𝑀) ∣ (𝑄𝑘) < 𝐶} → 𝑀)
8584adantl 481 . . . . . . . . . . . . 13 ((𝜑 ∈ {𝑘 ∈ (0..^𝑀) ∣ (𝑄𝑘) < 𝐶}) → 𝑀)
8685ralrimiva 3146 . . . . . . . . . . . 12 (𝜑 → ∀ ∈ {𝑘 ∈ (0..^𝑀) ∣ (𝑄𝑘) < 𝐶}𝑀)
87 breq2 5147 . . . . . . . . . . . . . 14 (𝑚 = 𝑀 → (𝑚𝑀))
8887ralbidv 3178 . . . . . . . . . . . . 13 (𝑚 = 𝑀 → (∀ ∈ {𝑘 ∈ (0..^𝑀) ∣ (𝑄𝑘) < 𝐶}𝑚 ↔ ∀ ∈ {𝑘 ∈ (0..^𝑀) ∣ (𝑄𝑘) < 𝐶}𝑀))
8988rspcev 3622 . . . . . . . . . . . 12 ((𝑀 ∈ ℤ ∧ ∀ ∈ {𝑘 ∈ (0..^𝑀) ∣ (𝑄𝑘) < 𝐶}𝑀) → ∃𝑚 ∈ ℤ ∀ ∈ {𝑘 ∈ (0..^𝑀) ∣ (𝑄𝑘) < 𝐶}𝑚)
9011, 86, 89syl2anc 584 . . . . . . . . . . 11 (𝜑 → ∃𝑚 ∈ ℤ ∀ ∈ {𝑘 ∈ (0..^𝑀) ∣ (𝑄𝑘) < 𝐶}𝑚)
9190adantr 480 . . . . . . . . . 10 ((𝜑 ∧ (𝑄‘(𝐼 + 1)) < 𝐶) → ∃𝑚 ∈ ℤ ∀ ∈ {𝑘 ∈ (0..^𝑀) ∣ (𝑄𝑘) < 𝐶}𝑚)
92 elfzuz 13560 . . . . . . . . . . . . . 14 ((𝐼 + 1) ∈ (0...𝑀) → (𝐼 + 1) ∈ (ℤ‘0))
9363, 92syl 17 . . . . . . . . . . . . 13 (𝜑 → (𝐼 + 1) ∈ (ℤ‘0))
9493adantr 480 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑄‘(𝐼 + 1)) < 𝐶) → (𝐼 + 1) ∈ (ℤ‘0))
9511adantr 480 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑄‘(𝐼 + 1)) < 𝐶) → 𝑀 ∈ ℤ)
9651, 63sselid 3981 . . . . . . . . . . . . . 14 (𝜑 → (𝐼 + 1) ∈ ℝ)
9796adantr 480 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑄‘(𝐼 + 1)) < 𝐶) → (𝐼 + 1) ∈ ℝ)
9895zred 12722 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑄‘(𝐼 + 1)) < 𝐶) → 𝑀 ∈ ℝ)
99 elfzle2 13568 . . . . . . . . . . . . . . 15 ((𝐼 + 1) ∈ (0...𝑀) → (𝐼 + 1) ≤ 𝑀)
10063, 99syl 17 . . . . . . . . . . . . . 14 (𝜑 → (𝐼 + 1) ≤ 𝑀)
101100adantr 480 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑄‘(𝐼 + 1)) < 𝐶) → (𝐼 + 1) ≤ 𝑀)
102 simpr 484 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝑄‘(𝐼 + 1)) < 𝐶) → (𝑄‘(𝐼 + 1)) < 𝐶)
10364adantr 480 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ (𝑄‘(𝐼 + 1)) < 𝐶) → (𝑄‘(𝐼 + 1)) ∈ ℝ)
10427adantr 480 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ (𝑄‘(𝐼 + 1)) < 𝐶) → 𝐶 ∈ ℝ)
105103, 104ltnled 11408 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝑄‘(𝐼 + 1)) < 𝐶) → ((𝑄‘(𝐼 + 1)) < 𝐶 ↔ ¬ 𝐶 ≤ (𝑄‘(𝐼 + 1))))
106102, 105mpbid 232 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑄‘(𝐼 + 1)) < 𝐶) → ¬ 𝐶 ≤ (𝑄‘(𝐼 + 1)))
107 iccleub 13442 . . . . . . . . . . . . . . . . . . 19 (((𝑄‘0) ∈ ℝ* ∧ (𝑄𝑀) ∈ ℝ*𝐶 ∈ ((𝑄‘0)[,](𝑄𝑀))) → 𝐶 ≤ (𝑄𝑀))
10828, 29, 26, 107syl3anc 1373 . . . . . . . . . . . . . . . . . 18 (𝜑𝐶 ≤ (𝑄𝑀))
109108adantr 480 . . . . . . . . . . . . . . . . 17 ((𝜑𝑀 = (𝐼 + 1)) → 𝐶 ≤ (𝑄𝑀))
110 fveq2 6906 . . . . . . . . . . . . . . . . . 18 (𝑀 = (𝐼 + 1) → (𝑄𝑀) = (𝑄‘(𝐼 + 1)))
111110adantl 481 . . . . . . . . . . . . . . . . 17 ((𝜑𝑀 = (𝐼 + 1)) → (𝑄𝑀) = (𝑄‘(𝐼 + 1)))
112109, 111breqtrd 5169 . . . . . . . . . . . . . . . 16 ((𝜑𝑀 = (𝐼 + 1)) → 𝐶 ≤ (𝑄‘(𝐼 + 1)))
113112adantlr 715 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑄‘(𝐼 + 1)) < 𝐶) ∧ 𝑀 = (𝐼 + 1)) → 𝐶 ≤ (𝑄‘(𝐼 + 1)))
114106, 113mtand 816 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑄‘(𝐼 + 1)) < 𝐶) → ¬ 𝑀 = (𝐼 + 1))
115114neqned 2947 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑄‘(𝐼 + 1)) < 𝐶) → 𝑀 ≠ (𝐼 + 1))
11697, 98, 101, 115leneltd 11415 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑄‘(𝐼 + 1)) < 𝐶) → (𝐼 + 1) < 𝑀)
117 elfzo2 13702 . . . . . . . . . . . 12 ((𝐼 + 1) ∈ (0..^𝑀) ↔ ((𝐼 + 1) ∈ (ℤ‘0) ∧ 𝑀 ∈ ℤ ∧ (𝐼 + 1) < 𝑀))
11894, 95, 116, 117syl3anbrc 1344 . . . . . . . . . . 11 ((𝜑 ∧ (𝑄‘(𝐼 + 1)) < 𝐶) → (𝐼 + 1) ∈ (0..^𝑀))
119 fveq2 6906 . . . . . . . . . . . . 13 (𝑘 = (𝐼 + 1) → (𝑄𝑘) = (𝑄‘(𝐼 + 1)))
120119breq1d 5153 . . . . . . . . . . . 12 (𝑘 = (𝐼 + 1) → ((𝑄𝑘) < 𝐶 ↔ (𝑄‘(𝐼 + 1)) < 𝐶))
121120elrab 3692 . . . . . . . . . . 11 ((𝐼 + 1) ∈ {𝑘 ∈ (0..^𝑀) ∣ (𝑄𝑘) < 𝐶} ↔ ((𝐼 + 1) ∈ (0..^𝑀) ∧ (𝑄‘(𝐼 + 1)) < 𝐶))
122118, 102, 121sylanbrc 583 . . . . . . . . . 10 ((𝜑 ∧ (𝑄‘(𝐼 + 1)) < 𝐶) → (𝐼 + 1) ∈ {𝑘 ∈ (0..^𝑀) ∣ (𝑄𝑘) < 𝐶})
123 suprzub 12981 . . . . . . . . . 10 (({𝑘 ∈ (0..^𝑀) ∣ (𝑄𝑘) < 𝐶} ⊆ ℤ ∧ ∃𝑚 ∈ ℤ ∀ ∈ {𝑘 ∈ (0..^𝑀) ∣ (𝑄𝑘) < 𝐶}𝑚 ∧ (𝐼 + 1) ∈ {𝑘 ∈ (0..^𝑀) ∣ (𝑄𝑘) < 𝐶}) → (𝐼 + 1) ≤ sup({𝑘 ∈ (0..^𝑀) ∣ (𝑄𝑘) < 𝐶}, ℝ, < ))
12481, 91, 122, 123syl3anc 1373 . . . . . . . . 9 ((𝜑 ∧ (𝑄‘(𝐼 + 1)) < 𝐶) → (𝐼 + 1) ≤ sup({𝑘 ∈ (0..^𝑀) ∣ (𝑄𝑘) < 𝐶}, ℝ, < ))
125124, 1breqtrrdi 5185 . . . . . . . 8 ((𝜑 ∧ (𝑄‘(𝐼 + 1)) < 𝐶) → (𝐼 + 1) ≤ 𝐼)
12678, 125mtand 816 . . . . . . 7 (𝜑 → ¬ (𝑄‘(𝐼 + 1)) < 𝐶)
127 eqcom 2744 . . . . . . . . . . 11 ((𝑄‘(𝐼 + 1)) = 𝐶𝐶 = (𝑄‘(𝐼 + 1)))
128127biimpi 216 . . . . . . . . . 10 ((𝑄‘(𝐼 + 1)) = 𝐶𝐶 = (𝑄‘(𝐼 + 1)))
129128adantl 481 . . . . . . . . 9 ((𝜑 ∧ (𝑄‘(𝐼 + 1)) = 𝐶) → 𝐶 = (𝑄‘(𝐼 + 1)))
13034adantr 480 . . . . . . . . . 10 ((𝜑 ∧ (𝑄‘(𝐼 + 1)) = 𝐶) → 𝑄 Fn (0...𝑀))
13163adantr 480 . . . . . . . . . 10 ((𝜑 ∧ (𝑄‘(𝐼 + 1)) = 𝐶) → (𝐼 + 1) ∈ (0...𝑀))
132 fnfvelrn 7100 . . . . . . . . . 10 ((𝑄 Fn (0...𝑀) ∧ (𝐼 + 1) ∈ (0...𝑀)) → (𝑄‘(𝐼 + 1)) ∈ ran 𝑄)
133130, 131, 132syl2anc 584 . . . . . . . . 9 ((𝜑 ∧ (𝑄‘(𝐼 + 1)) = 𝐶) → (𝑄‘(𝐼 + 1)) ∈ ran 𝑄)
134129, 133eqeltrd 2841 . . . . . . . 8 ((𝜑 ∧ (𝑄‘(𝐼 + 1)) = 𝐶) → 𝐶 ∈ ran 𝑄)
13532, 134mtand 816 . . . . . . 7 (𝜑 → ¬ (𝑄‘(𝐼 + 1)) = 𝐶)
136126, 135jca 511 . . . . . 6 (𝜑 → (¬ (𝑄‘(𝐼 + 1)) < 𝐶 ∧ ¬ (𝑄‘(𝐼 + 1)) = 𝐶))
137 pm4.56 991 . . . . . 6 ((¬ (𝑄‘(𝐼 + 1)) < 𝐶 ∧ ¬ (𝑄‘(𝐼 + 1)) = 𝐶) ↔ ¬ ((𝑄‘(𝐼 + 1)) < 𝐶 ∨ (𝑄‘(𝐼 + 1)) = 𝐶))
138136, 137sylib 218 . . . . 5 (𝜑 → ¬ ((𝑄‘(𝐼 + 1)) < 𝐶 ∨ (𝑄‘(𝐼 + 1)) = 𝐶))
13964, 27leloed 11404 . . . . 5 (𝜑 → ((𝑄‘(𝐼 + 1)) ≤ 𝐶 ↔ ((𝑄‘(𝐼 + 1)) < 𝐶 ∨ (𝑄‘(𝐼 + 1)) = 𝐶)))
140138, 139mtbird 325 . . . 4 (𝜑 → ¬ (𝑄‘(𝐼 + 1)) ≤ 𝐶)
14127, 64ltnled 11408 . . . 4 (𝜑 → (𝐶 < (𝑄‘(𝐼 + 1)) ↔ ¬ (𝑄‘(𝐼 + 1)) ≤ 𝐶))
142140, 141mpbird 257 . . 3 (𝜑𝐶 < (𝑄‘(𝐼 + 1)))
14361, 65, 27, 71, 142eliood 45511 . 2 (𝜑𝐶 ∈ ((𝑄𝐼)(,)(𝑄‘(𝐼 + 1))))
144 fveq2 6906 . . . . 5 (𝑗 = 𝐼 → (𝑄𝑗) = (𝑄𝐼))
145 oveq1 7438 . . . . . 6 (𝑗 = 𝐼 → (𝑗 + 1) = (𝐼 + 1))
146145fveq2d 6910 . . . . 5 (𝑗 = 𝐼 → (𝑄‘(𝑗 + 1)) = (𝑄‘(𝐼 + 1)))
147144, 146oveq12d 7449 . . . 4 (𝑗 = 𝐼 → ((𝑄𝑗)(,)(𝑄‘(𝑗 + 1))) = ((𝑄𝐼)(,)(𝑄‘(𝐼 + 1))))
148147eleq2d 2827 . . 3 (𝑗 = 𝐼 → (𝐶 ∈ ((𝑄𝑗)(,)(𝑄‘(𝑗 + 1))) ↔ 𝐶 ∈ ((𝑄𝐼)(,)(𝑄‘(𝐼 + 1)))))
149148rspcev 3622 . 2 ((𝐼 ∈ (0..^𝑀) ∧ 𝐶 ∈ ((𝑄𝐼)(,)(𝑄‘(𝐼 + 1)))) → ∃𝑗 ∈ (0..^𝑀)𝐶 ∈ ((𝑄𝑗)(,)(𝑄‘(𝑗 + 1))))
15058, 143, 149syl2anc 584 1 (𝜑 → ∃𝑗 ∈ (0..^𝑀)𝐶 ∈ ((𝑄𝑗)(,)(𝑄‘(𝑗 + 1))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  wo 848   = wceq 1540  wcel 2108  wne 2940  wral 3061  wrex 3070  {crab 3436  wss 3951  c0 4333   class class class wbr 5143   Or wor 5591  ran crn 5686   Fn wfn 6556  wf 6557  cfv 6561  (class class class)co 7431  Fincfn 8985  supcsup 9480  cr 11154  0cc0 11155  1c1 11156   + caddc 11158  *cxr 11294   < clt 11295  cle 11296  cn 12266  0cn0 12526  cz 12613  cuz 12878  (,)cioo 13387  [,]cicc 13390  ...cfz 13547  ..^cfzo 13694
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-cnex 11211  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-mulcom 11219  ax-addass 11220  ax-mulass 11221  ax-distr 11222  ax-i2m1 11223  ax-1ne0 11224  ax-1rid 11225  ax-rnegex 11226  ax-rrecex 11227  ax-cnre 11228  ax-pre-lttri 11229  ax-pre-lttrn 11230  ax-pre-ltadd 11231  ax-pre-mulgt0 11232
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8014  df-2nd 8015  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-1o 8506  df-er 8745  df-en 8986  df-dom 8987  df-sdom 8988  df-fin 8989  df-sup 9482  df-inf 9483  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300  df-le 11301  df-sub 11494  df-neg 11495  df-nn 12267  df-n0 12527  df-z 12614  df-uz 12879  df-ioo 13391  df-icc 13394  df-fz 13548  df-fzo 13695
This theorem is referenced by:  fourierdlem41  46163  fourierdlem48  46169  fourierdlem49  46170  fourierdlem70  46191  fourierdlem71  46192  fourierdlem103  46224  fourierdlem104  46225
  Copyright terms: Public domain W3C validator