Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fourierdlem25 Structured version   Visualization version   GIF version

Theorem fourierdlem25 42774
Description: If 𝐶 is not in the range of the partition, then it is in an open interval induced by the partition. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypotheses
Ref Expression
fourierdlem25.m (𝜑𝑀 ∈ ℕ)
fourierdlem25.qf (𝜑𝑄:(0...𝑀)⟶ℝ)
fourierdlem25.cel (𝜑𝐶 ∈ ((𝑄‘0)[,](𝑄𝑀)))
fourierdlem25.cnel (𝜑 → ¬ 𝐶 ∈ ran 𝑄)
fourierdlem25.i 𝐼 = sup({𝑘 ∈ (0..^𝑀) ∣ (𝑄𝑘) < 𝐶}, ℝ, < )
Assertion
Ref Expression
fourierdlem25 (𝜑 → ∃𝑗 ∈ (0..^𝑀)𝐶 ∈ ((𝑄𝑗)(,)(𝑄‘(𝑗 + 1))))
Distinct variable groups:   𝐶,𝑘   𝐶,𝑗   𝑗,𝐼   𝑘,𝐼   𝑘,𝑀   𝑗,𝑀   𝑄,𝑘   𝑄,𝑗
Allowed substitution hints:   𝜑(𝑗,𝑘)

Proof of Theorem fourierdlem25
Dummy variables 𝑚 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fourierdlem25.i . . 3 𝐼 = sup({𝑘 ∈ (0..^𝑀) ∣ (𝑄𝑘) < 𝐶}, ℝ, < )
2 ssrab2 4007 . . . 4 {𝑘 ∈ (0..^𝑀) ∣ (𝑄𝑘) < 𝐶} ⊆ (0..^𝑀)
3 ltso 10710 . . . . . 6 < Or ℝ
43a1i 11 . . . . 5 (𝜑 → < Or ℝ)
5 fzofi 13337 . . . . . . 7 (0..^𝑀) ∈ Fin
6 ssfi 8722 . . . . . . 7 (((0..^𝑀) ∈ Fin ∧ {𝑘 ∈ (0..^𝑀) ∣ (𝑄𝑘) < 𝐶} ⊆ (0..^𝑀)) → {𝑘 ∈ (0..^𝑀) ∣ (𝑄𝑘) < 𝐶} ∈ Fin)
75, 2, 6mp2an 691 . . . . . 6 {𝑘 ∈ (0..^𝑀) ∣ (𝑄𝑘) < 𝐶} ∈ Fin
87a1i 11 . . . . 5 (𝜑 → {𝑘 ∈ (0..^𝑀) ∣ (𝑄𝑘) < 𝐶} ∈ Fin)
9 0zd 11981 . . . . . . . 8 (𝜑 → 0 ∈ ℤ)
10 fourierdlem25.m . . . . . . . . 9 (𝜑𝑀 ∈ ℕ)
1110nnzd 12074 . . . . . . . 8 (𝜑𝑀 ∈ ℤ)
1210nngt0d 11674 . . . . . . . 8 (𝜑 → 0 < 𝑀)
13 fzolb 13039 . . . . . . . 8 (0 ∈ (0..^𝑀) ↔ (0 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 0 < 𝑀))
149, 11, 12, 13syl3anbrc 1340 . . . . . . 7 (𝜑 → 0 ∈ (0..^𝑀))
15 fourierdlem25.qf . . . . . . . . 9 (𝜑𝑄:(0...𝑀)⟶ℝ)
16 elfzofz 13048 . . . . . . . . . 10 (0 ∈ (0..^𝑀) → 0 ∈ (0...𝑀))
1714, 16syl 17 . . . . . . . . 9 (𝜑 → 0 ∈ (0...𝑀))
1815, 17ffvelrnd 6829 . . . . . . . 8 (𝜑 → (𝑄‘0) ∈ ℝ)
1910nnnn0d 11943 . . . . . . . . . . . . 13 (𝜑𝑀 ∈ ℕ0)
20 nn0uz 12268 . . . . . . . . . . . . 13 0 = (ℤ‘0)
2119, 20eleqtrdi 2900 . . . . . . . . . . . 12 (𝜑𝑀 ∈ (ℤ‘0))
22 eluzfz2 12910 . . . . . . . . . . . 12 (𝑀 ∈ (ℤ‘0) → 𝑀 ∈ (0...𝑀))
2321, 22syl 17 . . . . . . . . . . 11 (𝜑𝑀 ∈ (0...𝑀))
2415, 23ffvelrnd 6829 . . . . . . . . . 10 (𝜑 → (𝑄𝑀) ∈ ℝ)
2518, 24iccssred 12812 . . . . . . . . 9 (𝜑 → ((𝑄‘0)[,](𝑄𝑀)) ⊆ ℝ)
26 fourierdlem25.cel . . . . . . . . 9 (𝜑𝐶 ∈ ((𝑄‘0)[,](𝑄𝑀)))
2725, 26sseldd 3916 . . . . . . . 8 (𝜑𝐶 ∈ ℝ)
2818rexrd 10680 . . . . . . . . 9 (𝜑 → (𝑄‘0) ∈ ℝ*)
2924rexrd 10680 . . . . . . . . 9 (𝜑 → (𝑄𝑀) ∈ ℝ*)
30 iccgelb 12781 . . . . . . . . 9 (((𝑄‘0) ∈ ℝ* ∧ (𝑄𝑀) ∈ ℝ*𝐶 ∈ ((𝑄‘0)[,](𝑄𝑀))) → (𝑄‘0) ≤ 𝐶)
3128, 29, 26, 30syl3anc 1368 . . . . . . . 8 (𝜑 → (𝑄‘0) ≤ 𝐶)
32 fourierdlem25.cnel . . . . . . . . . 10 (𝜑 → ¬ 𝐶 ∈ ran 𝑄)
33 simpr 488 . . . . . . . . . . 11 ((𝜑𝐶 = (𝑄‘0)) → 𝐶 = (𝑄‘0))
3415ffnd 6488 . . . . . . . . . . . . 13 (𝜑𝑄 Fn (0...𝑀))
3534adantr 484 . . . . . . . . . . . 12 ((𝜑𝐶 = (𝑄‘0)) → 𝑄 Fn (0...𝑀))
3617adantr 484 . . . . . . . . . . . 12 ((𝜑𝐶 = (𝑄‘0)) → 0 ∈ (0...𝑀))
37 fnfvelrn 6825 . . . . . . . . . . . 12 ((𝑄 Fn (0...𝑀) ∧ 0 ∈ (0...𝑀)) → (𝑄‘0) ∈ ran 𝑄)
3835, 36, 37syl2anc 587 . . . . . . . . . . 11 ((𝜑𝐶 = (𝑄‘0)) → (𝑄‘0) ∈ ran 𝑄)
3933, 38eqeltrd 2890 . . . . . . . . . 10 ((𝜑𝐶 = (𝑄‘0)) → 𝐶 ∈ ran 𝑄)
4032, 39mtand 815 . . . . . . . . 9 (𝜑 → ¬ 𝐶 = (𝑄‘0))
4140neqned 2994 . . . . . . . 8 (𝜑𝐶 ≠ (𝑄‘0))
4218, 27, 31, 41leneltd 10783 . . . . . . 7 (𝜑 → (𝑄‘0) < 𝐶)
43 fveq2 6645 . . . . . . . . 9 (𝑘 = 0 → (𝑄𝑘) = (𝑄‘0))
4443breq1d 5040 . . . . . . . 8 (𝑘 = 0 → ((𝑄𝑘) < 𝐶 ↔ (𝑄‘0) < 𝐶))
4544elrab 3628 . . . . . . 7 (0 ∈ {𝑘 ∈ (0..^𝑀) ∣ (𝑄𝑘) < 𝐶} ↔ (0 ∈ (0..^𝑀) ∧ (𝑄‘0) < 𝐶))
4614, 42, 45sylanbrc 586 . . . . . 6 (𝜑 → 0 ∈ {𝑘 ∈ (0..^𝑀) ∣ (𝑄𝑘) < 𝐶})
4746ne0d 4251 . . . . 5 (𝜑 → {𝑘 ∈ (0..^𝑀) ∣ (𝑄𝑘) < 𝐶} ≠ ∅)
48 fzossfz 13051 . . . . . . . 8 (0..^𝑀) ⊆ (0...𝑀)
49 fzssz 12904 . . . . . . . . 9 (0...𝑀) ⊆ ℤ
50 zssre 11976 . . . . . . . . 9 ℤ ⊆ ℝ
5149, 50sstri 3924 . . . . . . . 8 (0...𝑀) ⊆ ℝ
5248, 51sstri 3924 . . . . . . 7 (0..^𝑀) ⊆ ℝ
532, 52sstri 3924 . . . . . 6 {𝑘 ∈ (0..^𝑀) ∣ (𝑄𝑘) < 𝐶} ⊆ ℝ
5453a1i 11 . . . . 5 (𝜑 → {𝑘 ∈ (0..^𝑀) ∣ (𝑄𝑘) < 𝐶} ⊆ ℝ)
55 fisupcl 8917 . . . . 5 (( < Or ℝ ∧ ({𝑘 ∈ (0..^𝑀) ∣ (𝑄𝑘) < 𝐶} ∈ Fin ∧ {𝑘 ∈ (0..^𝑀) ∣ (𝑄𝑘) < 𝐶} ≠ ∅ ∧ {𝑘 ∈ (0..^𝑀) ∣ (𝑄𝑘) < 𝐶} ⊆ ℝ)) → sup({𝑘 ∈ (0..^𝑀) ∣ (𝑄𝑘) < 𝐶}, ℝ, < ) ∈ {𝑘 ∈ (0..^𝑀) ∣ (𝑄𝑘) < 𝐶})
564, 8, 47, 54, 55syl13anc 1369 . . . 4 (𝜑 → sup({𝑘 ∈ (0..^𝑀) ∣ (𝑄𝑘) < 𝐶}, ℝ, < ) ∈ {𝑘 ∈ (0..^𝑀) ∣ (𝑄𝑘) < 𝐶})
572, 56sseldi 3913 . . 3 (𝜑 → sup({𝑘 ∈ (0..^𝑀) ∣ (𝑄𝑘) < 𝐶}, ℝ, < ) ∈ (0..^𝑀))
581, 57eqeltrid 2894 . 2 (𝜑𝐼 ∈ (0..^𝑀))
5948, 58sseldi 3913 . . . . 5 (𝜑𝐼 ∈ (0...𝑀))
6015, 59ffvelrnd 6829 . . . 4 (𝜑 → (𝑄𝐼) ∈ ℝ)
6160rexrd 10680 . . 3 (𝜑 → (𝑄𝐼) ∈ ℝ*)
62 fzofzp1 13129 . . . . . 6 (𝐼 ∈ (0..^𝑀) → (𝐼 + 1) ∈ (0...𝑀))
6358, 62syl 17 . . . . 5 (𝜑 → (𝐼 + 1) ∈ (0...𝑀))
6415, 63ffvelrnd 6829 . . . 4 (𝜑 → (𝑄‘(𝐼 + 1)) ∈ ℝ)
6564rexrd 10680 . . 3 (𝜑 → (𝑄‘(𝐼 + 1)) ∈ ℝ*)
661, 56eqeltrid 2894 . . . . 5 (𝜑𝐼 ∈ {𝑘 ∈ (0..^𝑀) ∣ (𝑄𝑘) < 𝐶})
67 fveq2 6645 . . . . . . 7 (𝑘 = 𝐼 → (𝑄𝑘) = (𝑄𝐼))
6867breq1d 5040 . . . . . 6 (𝑘 = 𝐼 → ((𝑄𝑘) < 𝐶 ↔ (𝑄𝐼) < 𝐶))
6968elrab 3628 . . . . 5 (𝐼 ∈ {𝑘 ∈ (0..^𝑀) ∣ (𝑄𝑘) < 𝐶} ↔ (𝐼 ∈ (0..^𝑀) ∧ (𝑄𝐼) < 𝐶))
7066, 69sylib 221 . . . 4 (𝜑 → (𝐼 ∈ (0..^𝑀) ∧ (𝑄𝐼) < 𝐶))
7170simprd 499 . . 3 (𝜑 → (𝑄𝐼) < 𝐶)
7252, 58sseldi 3913 . . . . . . . . 9 (𝜑𝐼 ∈ ℝ)
73 ltp1 11469 . . . . . . . . . 10 (𝐼 ∈ ℝ → 𝐼 < (𝐼 + 1))
74 id 22 . . . . . . . . . . 11 (𝐼 ∈ ℝ → 𝐼 ∈ ℝ)
75 peano2re 10802 . . . . . . . . . . 11 (𝐼 ∈ ℝ → (𝐼 + 1) ∈ ℝ)
7674, 75ltnled 10776 . . . . . . . . . 10 (𝐼 ∈ ℝ → (𝐼 < (𝐼 + 1) ↔ ¬ (𝐼 + 1) ≤ 𝐼))
7773, 76mpbid 235 . . . . . . . . 9 (𝐼 ∈ ℝ → ¬ (𝐼 + 1) ≤ 𝐼)
7872, 77syl 17 . . . . . . . 8 (𝜑 → ¬ (𝐼 + 1) ≤ 𝐼)
7948, 49sstri 3924 . . . . . . . . . . . 12 (0..^𝑀) ⊆ ℤ
802, 79sstri 3924 . . . . . . . . . . 11 {𝑘 ∈ (0..^𝑀) ∣ (𝑄𝑘) < 𝐶} ⊆ ℤ
8180a1i 11 . . . . . . . . . 10 ((𝜑 ∧ (𝑄‘(𝐼 + 1)) < 𝐶) → {𝑘 ∈ (0..^𝑀) ∣ (𝑄𝑘) < 𝐶} ⊆ ℤ)
82 elrabi 3623 . . . . . . . . . . . . . . 15 ( ∈ {𝑘 ∈ (0..^𝑀) ∣ (𝑄𝑘) < 𝐶} → ∈ (0..^𝑀))
83 elfzo0le 13076 . . . . . . . . . . . . . . 15 ( ∈ (0..^𝑀) → 𝑀)
8482, 83syl 17 . . . . . . . . . . . . . 14 ( ∈ {𝑘 ∈ (0..^𝑀) ∣ (𝑄𝑘) < 𝐶} → 𝑀)
8584adantl 485 . . . . . . . . . . . . 13 ((𝜑 ∈ {𝑘 ∈ (0..^𝑀) ∣ (𝑄𝑘) < 𝐶}) → 𝑀)
8685ralrimiva 3149 . . . . . . . . . . . 12 (𝜑 → ∀ ∈ {𝑘 ∈ (0..^𝑀) ∣ (𝑄𝑘) < 𝐶}𝑀)
87 breq2 5034 . . . . . . . . . . . . . 14 (𝑚 = 𝑀 → (𝑚𝑀))
8887ralbidv 3162 . . . . . . . . . . . . 13 (𝑚 = 𝑀 → (∀ ∈ {𝑘 ∈ (0..^𝑀) ∣ (𝑄𝑘) < 𝐶}𝑚 ↔ ∀ ∈ {𝑘 ∈ (0..^𝑀) ∣ (𝑄𝑘) < 𝐶}𝑀))
8988rspcev 3571 . . . . . . . . . . . 12 ((𝑀 ∈ ℤ ∧ ∀ ∈ {𝑘 ∈ (0..^𝑀) ∣ (𝑄𝑘) < 𝐶}𝑀) → ∃𝑚 ∈ ℤ ∀ ∈ {𝑘 ∈ (0..^𝑀) ∣ (𝑄𝑘) < 𝐶}𝑚)
9011, 86, 89syl2anc 587 . . . . . . . . . . 11 (𝜑 → ∃𝑚 ∈ ℤ ∀ ∈ {𝑘 ∈ (0..^𝑀) ∣ (𝑄𝑘) < 𝐶}𝑚)
9190adantr 484 . . . . . . . . . 10 ((𝜑 ∧ (𝑄‘(𝐼 + 1)) < 𝐶) → ∃𝑚 ∈ ℤ ∀ ∈ {𝑘 ∈ (0..^𝑀) ∣ (𝑄𝑘) < 𝐶}𝑚)
92 elfzuz 12898 . . . . . . . . . . . . . 14 ((𝐼 + 1) ∈ (0...𝑀) → (𝐼 + 1) ∈ (ℤ‘0))
9363, 92syl 17 . . . . . . . . . . . . 13 (𝜑 → (𝐼 + 1) ∈ (ℤ‘0))
9493adantr 484 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑄‘(𝐼 + 1)) < 𝐶) → (𝐼 + 1) ∈ (ℤ‘0))
9511adantr 484 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑄‘(𝐼 + 1)) < 𝐶) → 𝑀 ∈ ℤ)
9651, 63sseldi 3913 . . . . . . . . . . . . . 14 (𝜑 → (𝐼 + 1) ∈ ℝ)
9796adantr 484 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑄‘(𝐼 + 1)) < 𝐶) → (𝐼 + 1) ∈ ℝ)
9895zred 12075 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑄‘(𝐼 + 1)) < 𝐶) → 𝑀 ∈ ℝ)
99 elfzle2 12906 . . . . . . . . . . . . . . 15 ((𝐼 + 1) ∈ (0...𝑀) → (𝐼 + 1) ≤ 𝑀)
10063, 99syl 17 . . . . . . . . . . . . . 14 (𝜑 → (𝐼 + 1) ≤ 𝑀)
101100adantr 484 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑄‘(𝐼 + 1)) < 𝐶) → (𝐼 + 1) ≤ 𝑀)
102 simpr 488 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝑄‘(𝐼 + 1)) < 𝐶) → (𝑄‘(𝐼 + 1)) < 𝐶)
10364adantr 484 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ (𝑄‘(𝐼 + 1)) < 𝐶) → (𝑄‘(𝐼 + 1)) ∈ ℝ)
10427adantr 484 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ (𝑄‘(𝐼 + 1)) < 𝐶) → 𝐶 ∈ ℝ)
105103, 104ltnled 10776 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝑄‘(𝐼 + 1)) < 𝐶) → ((𝑄‘(𝐼 + 1)) < 𝐶 ↔ ¬ 𝐶 ≤ (𝑄‘(𝐼 + 1))))
106102, 105mpbid 235 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑄‘(𝐼 + 1)) < 𝐶) → ¬ 𝐶 ≤ (𝑄‘(𝐼 + 1)))
107 iccleub 12780 . . . . . . . . . . . . . . . . . . 19 (((𝑄‘0) ∈ ℝ* ∧ (𝑄𝑀) ∈ ℝ*𝐶 ∈ ((𝑄‘0)[,](𝑄𝑀))) → 𝐶 ≤ (𝑄𝑀))
10828, 29, 26, 107syl3anc 1368 . . . . . . . . . . . . . . . . . 18 (𝜑𝐶 ≤ (𝑄𝑀))
109108adantr 484 . . . . . . . . . . . . . . . . 17 ((𝜑𝑀 = (𝐼 + 1)) → 𝐶 ≤ (𝑄𝑀))
110 fveq2 6645 . . . . . . . . . . . . . . . . . 18 (𝑀 = (𝐼 + 1) → (𝑄𝑀) = (𝑄‘(𝐼 + 1)))
111110adantl 485 . . . . . . . . . . . . . . . . 17 ((𝜑𝑀 = (𝐼 + 1)) → (𝑄𝑀) = (𝑄‘(𝐼 + 1)))
112109, 111breqtrd 5056 . . . . . . . . . . . . . . . 16 ((𝜑𝑀 = (𝐼 + 1)) → 𝐶 ≤ (𝑄‘(𝐼 + 1)))
113112adantlr 714 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑄‘(𝐼 + 1)) < 𝐶) ∧ 𝑀 = (𝐼 + 1)) → 𝐶 ≤ (𝑄‘(𝐼 + 1)))
114106, 113mtand 815 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑄‘(𝐼 + 1)) < 𝐶) → ¬ 𝑀 = (𝐼 + 1))
115114neqned 2994 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑄‘(𝐼 + 1)) < 𝐶) → 𝑀 ≠ (𝐼 + 1))
11697, 98, 101, 115leneltd 10783 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑄‘(𝐼 + 1)) < 𝐶) → (𝐼 + 1) < 𝑀)
117 elfzo2 13036 . . . . . . . . . . . 12 ((𝐼 + 1) ∈ (0..^𝑀) ↔ ((𝐼 + 1) ∈ (ℤ‘0) ∧ 𝑀 ∈ ℤ ∧ (𝐼 + 1) < 𝑀))
11894, 95, 116, 117syl3anbrc 1340 . . . . . . . . . . 11 ((𝜑 ∧ (𝑄‘(𝐼 + 1)) < 𝐶) → (𝐼 + 1) ∈ (0..^𝑀))
119 fveq2 6645 . . . . . . . . . . . . 13 (𝑘 = (𝐼 + 1) → (𝑄𝑘) = (𝑄‘(𝐼 + 1)))
120119breq1d 5040 . . . . . . . . . . . 12 (𝑘 = (𝐼 + 1) → ((𝑄𝑘) < 𝐶 ↔ (𝑄‘(𝐼 + 1)) < 𝐶))
121120elrab 3628 . . . . . . . . . . 11 ((𝐼 + 1) ∈ {𝑘 ∈ (0..^𝑀) ∣ (𝑄𝑘) < 𝐶} ↔ ((𝐼 + 1) ∈ (0..^𝑀) ∧ (𝑄‘(𝐼 + 1)) < 𝐶))
122118, 102, 121sylanbrc 586 . . . . . . . . . 10 ((𝜑 ∧ (𝑄‘(𝐼 + 1)) < 𝐶) → (𝐼 + 1) ∈ {𝑘 ∈ (0..^𝑀) ∣ (𝑄𝑘) < 𝐶})
123 suprzub 12327 . . . . . . . . . 10 (({𝑘 ∈ (0..^𝑀) ∣ (𝑄𝑘) < 𝐶} ⊆ ℤ ∧ ∃𝑚 ∈ ℤ ∀ ∈ {𝑘 ∈ (0..^𝑀) ∣ (𝑄𝑘) < 𝐶}𝑚 ∧ (𝐼 + 1) ∈ {𝑘 ∈ (0..^𝑀) ∣ (𝑄𝑘) < 𝐶}) → (𝐼 + 1) ≤ sup({𝑘 ∈ (0..^𝑀) ∣ (𝑄𝑘) < 𝐶}, ℝ, < ))
12481, 91, 122, 123syl3anc 1368 . . . . . . . . 9 ((𝜑 ∧ (𝑄‘(𝐼 + 1)) < 𝐶) → (𝐼 + 1) ≤ sup({𝑘 ∈ (0..^𝑀) ∣ (𝑄𝑘) < 𝐶}, ℝ, < ))
125124, 1breqtrrdi 5072 . . . . . . . 8 ((𝜑 ∧ (𝑄‘(𝐼 + 1)) < 𝐶) → (𝐼 + 1) ≤ 𝐼)
12678, 125mtand 815 . . . . . . 7 (𝜑 → ¬ (𝑄‘(𝐼 + 1)) < 𝐶)
127 eqcom 2805 . . . . . . . . . . 11 ((𝑄‘(𝐼 + 1)) = 𝐶𝐶 = (𝑄‘(𝐼 + 1)))
128127biimpi 219 . . . . . . . . . 10 ((𝑄‘(𝐼 + 1)) = 𝐶𝐶 = (𝑄‘(𝐼 + 1)))
129128adantl 485 . . . . . . . . 9 ((𝜑 ∧ (𝑄‘(𝐼 + 1)) = 𝐶) → 𝐶 = (𝑄‘(𝐼 + 1)))
13034adantr 484 . . . . . . . . . 10 ((𝜑 ∧ (𝑄‘(𝐼 + 1)) = 𝐶) → 𝑄 Fn (0...𝑀))
13163adantr 484 . . . . . . . . . 10 ((𝜑 ∧ (𝑄‘(𝐼 + 1)) = 𝐶) → (𝐼 + 1) ∈ (0...𝑀))
132 fnfvelrn 6825 . . . . . . . . . 10 ((𝑄 Fn (0...𝑀) ∧ (𝐼 + 1) ∈ (0...𝑀)) → (𝑄‘(𝐼 + 1)) ∈ ran 𝑄)
133130, 131, 132syl2anc 587 . . . . . . . . 9 ((𝜑 ∧ (𝑄‘(𝐼 + 1)) = 𝐶) → (𝑄‘(𝐼 + 1)) ∈ ran 𝑄)
134129, 133eqeltrd 2890 . . . . . . . 8 ((𝜑 ∧ (𝑄‘(𝐼 + 1)) = 𝐶) → 𝐶 ∈ ran 𝑄)
13532, 134mtand 815 . . . . . . 7 (𝜑 → ¬ (𝑄‘(𝐼 + 1)) = 𝐶)
136126, 135jca 515 . . . . . 6 (𝜑 → (¬ (𝑄‘(𝐼 + 1)) < 𝐶 ∧ ¬ (𝑄‘(𝐼 + 1)) = 𝐶))
137 pm4.56 986 . . . . . 6 ((¬ (𝑄‘(𝐼 + 1)) < 𝐶 ∧ ¬ (𝑄‘(𝐼 + 1)) = 𝐶) ↔ ¬ ((𝑄‘(𝐼 + 1)) < 𝐶 ∨ (𝑄‘(𝐼 + 1)) = 𝐶))
138136, 137sylib 221 . . . . 5 (𝜑 → ¬ ((𝑄‘(𝐼 + 1)) < 𝐶 ∨ (𝑄‘(𝐼 + 1)) = 𝐶))
13964, 27leloed 10772 . . . . 5 (𝜑 → ((𝑄‘(𝐼 + 1)) ≤ 𝐶 ↔ ((𝑄‘(𝐼 + 1)) < 𝐶 ∨ (𝑄‘(𝐼 + 1)) = 𝐶)))
140138, 139mtbird 328 . . . 4 (𝜑 → ¬ (𝑄‘(𝐼 + 1)) ≤ 𝐶)
14127, 64ltnled 10776 . . . 4 (𝜑 → (𝐶 < (𝑄‘(𝐼 + 1)) ↔ ¬ (𝑄‘(𝐼 + 1)) ≤ 𝐶))
142140, 141mpbird 260 . . 3 (𝜑𝐶 < (𝑄‘(𝐼 + 1)))
14361, 65, 27, 71, 142eliood 42135 . 2 (𝜑𝐶 ∈ ((𝑄𝐼)(,)(𝑄‘(𝐼 + 1))))
144 fveq2 6645 . . . . 5 (𝑗 = 𝐼 → (𝑄𝑗) = (𝑄𝐼))
145 oveq1 7142 . . . . . 6 (𝑗 = 𝐼 → (𝑗 + 1) = (𝐼 + 1))
146145fveq2d 6649 . . . . 5 (𝑗 = 𝐼 → (𝑄‘(𝑗 + 1)) = (𝑄‘(𝐼 + 1)))
147144, 146oveq12d 7153 . . . 4 (𝑗 = 𝐼 → ((𝑄𝑗)(,)(𝑄‘(𝑗 + 1))) = ((𝑄𝐼)(,)(𝑄‘(𝐼 + 1))))
148147eleq2d 2875 . . 3 (𝑗 = 𝐼 → (𝐶 ∈ ((𝑄𝑗)(,)(𝑄‘(𝑗 + 1))) ↔ 𝐶 ∈ ((𝑄𝐼)(,)(𝑄‘(𝐼 + 1)))))
149148rspcev 3571 . 2 ((𝐼 ∈ (0..^𝑀) ∧ 𝐶 ∈ ((𝑄𝐼)(,)(𝑄‘(𝐼 + 1)))) → ∃𝑗 ∈ (0..^𝑀)𝐶 ∈ ((𝑄𝑗)(,)(𝑄‘(𝑗 + 1))))
15058, 143, 149syl2anc 587 1 (𝜑 → ∃𝑗 ∈ (0..^𝑀)𝐶 ∈ ((𝑄𝑗)(,)(𝑄‘(𝑗 + 1))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 399  wo 844   = wceq 1538  wcel 2111  wne 2987  wral 3106  wrex 3107  {crab 3110  wss 3881  c0 4243   class class class wbr 5030   Or wor 5437  ran crn 5520   Fn wfn 6319  wf 6320  cfv 6324  (class class class)co 7135  Fincfn 8492  supcsup 8888  cr 10525  0cc0 10526  1c1 10527   + caddc 10529  *cxr 10663   < clt 10664  cle 10665  cn 11625  0cn0 11885  cz 11969  cuz 12231  (,)cioo 12726  [,]cicc 12729  ...cfz 12885  ..^cfzo 13028
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rmo 3114  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-riota 7093  df-ov 7138  df-oprab 7139  df-mpo 7140  df-om 7561  df-1st 7671  df-2nd 7672  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-1o 8085  df-er 8272  df-en 8493  df-dom 8494  df-sdom 8495  df-fin 8496  df-sup 8890  df-inf 8891  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-nn 11626  df-n0 11886  df-z 11970  df-uz 12232  df-ioo 12730  df-icc 12733  df-fz 12886  df-fzo 13029
This theorem is referenced by:  fourierdlem41  42790  fourierdlem48  42796  fourierdlem49  42797  fourierdlem70  42818  fourierdlem71  42819  fourierdlem103  42851  fourierdlem104  42852
  Copyright terms: Public domain W3C validator