Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fourierdlem25 Structured version   Visualization version   GIF version

Theorem fourierdlem25 46087
Description: If 𝐶 is not in the range of the partition, then it is in an open interval induced by the partition. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypotheses
Ref Expression
fourierdlem25.m (𝜑𝑀 ∈ ℕ)
fourierdlem25.qf (𝜑𝑄:(0...𝑀)⟶ℝ)
fourierdlem25.cel (𝜑𝐶 ∈ ((𝑄‘0)[,](𝑄𝑀)))
fourierdlem25.cnel (𝜑 → ¬ 𝐶 ∈ ran 𝑄)
fourierdlem25.i 𝐼 = sup({𝑘 ∈ (0..^𝑀) ∣ (𝑄𝑘) < 𝐶}, ℝ, < )
Assertion
Ref Expression
fourierdlem25 (𝜑 → ∃𝑗 ∈ (0..^𝑀)𝐶 ∈ ((𝑄𝑗)(,)(𝑄‘(𝑗 + 1))))
Distinct variable groups:   𝐶,𝑘   𝐶,𝑗   𝑗,𝐼   𝑘,𝐼   𝑘,𝑀   𝑗,𝑀   𝑄,𝑘   𝑄,𝑗
Allowed substitution hints:   𝜑(𝑗,𝑘)

Proof of Theorem fourierdlem25
Dummy variables 𝑚 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fourierdlem25.i . . 3 𝐼 = sup({𝑘 ∈ (0..^𝑀) ∣ (𝑄𝑘) < 𝐶}, ℝ, < )
2 ssrab2 4089 . . . 4 {𝑘 ∈ (0..^𝑀) ∣ (𝑄𝑘) < 𝐶} ⊆ (0..^𝑀)
3 ltso 11338 . . . . . 6 < Or ℝ
43a1i 11 . . . . 5 (𝜑 → < Or ℝ)
5 fzofi 14011 . . . . . . 7 (0..^𝑀) ∈ Fin
6 ssfi 9211 . . . . . . 7 (((0..^𝑀) ∈ Fin ∧ {𝑘 ∈ (0..^𝑀) ∣ (𝑄𝑘) < 𝐶} ⊆ (0..^𝑀)) → {𝑘 ∈ (0..^𝑀) ∣ (𝑄𝑘) < 𝐶} ∈ Fin)
75, 2, 6mp2an 692 . . . . . 6 {𝑘 ∈ (0..^𝑀) ∣ (𝑄𝑘) < 𝐶} ∈ Fin
87a1i 11 . . . . 5 (𝜑 → {𝑘 ∈ (0..^𝑀) ∣ (𝑄𝑘) < 𝐶} ∈ Fin)
9 0zd 12622 . . . . . . . 8 (𝜑 → 0 ∈ ℤ)
10 fourierdlem25.m . . . . . . . . 9 (𝜑𝑀 ∈ ℕ)
1110nnzd 12637 . . . . . . . 8 (𝜑𝑀 ∈ ℤ)
1210nngt0d 12312 . . . . . . . 8 (𝜑 → 0 < 𝑀)
13 fzolb 13701 . . . . . . . 8 (0 ∈ (0..^𝑀) ↔ (0 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 0 < 𝑀))
149, 11, 12, 13syl3anbrc 1342 . . . . . . 7 (𝜑 → 0 ∈ (0..^𝑀))
15 fourierdlem25.qf . . . . . . . . 9 (𝜑𝑄:(0...𝑀)⟶ℝ)
16 elfzofz 13711 . . . . . . . . . 10 (0 ∈ (0..^𝑀) → 0 ∈ (0...𝑀))
1714, 16syl 17 . . . . . . . . 9 (𝜑 → 0 ∈ (0...𝑀))
1815, 17ffvelcdmd 7104 . . . . . . . 8 (𝜑 → (𝑄‘0) ∈ ℝ)
1910nnnn0d 12584 . . . . . . . . . . . . 13 (𝜑𝑀 ∈ ℕ0)
20 nn0uz 12917 . . . . . . . . . . . . 13 0 = (ℤ‘0)
2119, 20eleqtrdi 2848 . . . . . . . . . . . 12 (𝜑𝑀 ∈ (ℤ‘0))
22 eluzfz2 13568 . . . . . . . . . . . 12 (𝑀 ∈ (ℤ‘0) → 𝑀 ∈ (0...𝑀))
2321, 22syl 17 . . . . . . . . . . 11 (𝜑𝑀 ∈ (0...𝑀))
2415, 23ffvelcdmd 7104 . . . . . . . . . 10 (𝜑 → (𝑄𝑀) ∈ ℝ)
2518, 24iccssred 13470 . . . . . . . . 9 (𝜑 → ((𝑄‘0)[,](𝑄𝑀)) ⊆ ℝ)
26 fourierdlem25.cel . . . . . . . . 9 (𝜑𝐶 ∈ ((𝑄‘0)[,](𝑄𝑀)))
2725, 26sseldd 3995 . . . . . . . 8 (𝜑𝐶 ∈ ℝ)
2818rexrd 11308 . . . . . . . . 9 (𝜑 → (𝑄‘0) ∈ ℝ*)
2924rexrd 11308 . . . . . . . . 9 (𝜑 → (𝑄𝑀) ∈ ℝ*)
30 iccgelb 13439 . . . . . . . . 9 (((𝑄‘0) ∈ ℝ* ∧ (𝑄𝑀) ∈ ℝ*𝐶 ∈ ((𝑄‘0)[,](𝑄𝑀))) → (𝑄‘0) ≤ 𝐶)
3128, 29, 26, 30syl3anc 1370 . . . . . . . 8 (𝜑 → (𝑄‘0) ≤ 𝐶)
32 fourierdlem25.cnel . . . . . . . . . 10 (𝜑 → ¬ 𝐶 ∈ ran 𝑄)
33 simpr 484 . . . . . . . . . . 11 ((𝜑𝐶 = (𝑄‘0)) → 𝐶 = (𝑄‘0))
3415ffnd 6737 . . . . . . . . . . . . 13 (𝜑𝑄 Fn (0...𝑀))
3534adantr 480 . . . . . . . . . . . 12 ((𝜑𝐶 = (𝑄‘0)) → 𝑄 Fn (0...𝑀))
3617adantr 480 . . . . . . . . . . . 12 ((𝜑𝐶 = (𝑄‘0)) → 0 ∈ (0...𝑀))
37 fnfvelrn 7099 . . . . . . . . . . . 12 ((𝑄 Fn (0...𝑀) ∧ 0 ∈ (0...𝑀)) → (𝑄‘0) ∈ ran 𝑄)
3835, 36, 37syl2anc 584 . . . . . . . . . . 11 ((𝜑𝐶 = (𝑄‘0)) → (𝑄‘0) ∈ ran 𝑄)
3933, 38eqeltrd 2838 . . . . . . . . . 10 ((𝜑𝐶 = (𝑄‘0)) → 𝐶 ∈ ran 𝑄)
4032, 39mtand 816 . . . . . . . . 9 (𝜑 → ¬ 𝐶 = (𝑄‘0))
4140neqned 2944 . . . . . . . 8 (𝜑𝐶 ≠ (𝑄‘0))
4218, 27, 31, 41leneltd 11412 . . . . . . 7 (𝜑 → (𝑄‘0) < 𝐶)
43 fveq2 6906 . . . . . . . . 9 (𝑘 = 0 → (𝑄𝑘) = (𝑄‘0))
4443breq1d 5157 . . . . . . . 8 (𝑘 = 0 → ((𝑄𝑘) < 𝐶 ↔ (𝑄‘0) < 𝐶))
4544elrab 3694 . . . . . . 7 (0 ∈ {𝑘 ∈ (0..^𝑀) ∣ (𝑄𝑘) < 𝐶} ↔ (0 ∈ (0..^𝑀) ∧ (𝑄‘0) < 𝐶))
4614, 42, 45sylanbrc 583 . . . . . 6 (𝜑 → 0 ∈ {𝑘 ∈ (0..^𝑀) ∣ (𝑄𝑘) < 𝐶})
4746ne0d 4347 . . . . 5 (𝜑 → {𝑘 ∈ (0..^𝑀) ∣ (𝑄𝑘) < 𝐶} ≠ ∅)
48 fzossfz 13714 . . . . . . . 8 (0..^𝑀) ⊆ (0...𝑀)
49 fzssz 13562 . . . . . . . . 9 (0...𝑀) ⊆ ℤ
50 zssre 12617 . . . . . . . . 9 ℤ ⊆ ℝ
5149, 50sstri 4004 . . . . . . . 8 (0...𝑀) ⊆ ℝ
5248, 51sstri 4004 . . . . . . 7 (0..^𝑀) ⊆ ℝ
532, 52sstri 4004 . . . . . 6 {𝑘 ∈ (0..^𝑀) ∣ (𝑄𝑘) < 𝐶} ⊆ ℝ
5453a1i 11 . . . . 5 (𝜑 → {𝑘 ∈ (0..^𝑀) ∣ (𝑄𝑘) < 𝐶} ⊆ ℝ)
55 fisupcl 9506 . . . . 5 (( < Or ℝ ∧ ({𝑘 ∈ (0..^𝑀) ∣ (𝑄𝑘) < 𝐶} ∈ Fin ∧ {𝑘 ∈ (0..^𝑀) ∣ (𝑄𝑘) < 𝐶} ≠ ∅ ∧ {𝑘 ∈ (0..^𝑀) ∣ (𝑄𝑘) < 𝐶} ⊆ ℝ)) → sup({𝑘 ∈ (0..^𝑀) ∣ (𝑄𝑘) < 𝐶}, ℝ, < ) ∈ {𝑘 ∈ (0..^𝑀) ∣ (𝑄𝑘) < 𝐶})
564, 8, 47, 54, 55syl13anc 1371 . . . 4 (𝜑 → sup({𝑘 ∈ (0..^𝑀) ∣ (𝑄𝑘) < 𝐶}, ℝ, < ) ∈ {𝑘 ∈ (0..^𝑀) ∣ (𝑄𝑘) < 𝐶})
572, 56sselid 3992 . . 3 (𝜑 → sup({𝑘 ∈ (0..^𝑀) ∣ (𝑄𝑘) < 𝐶}, ℝ, < ) ∈ (0..^𝑀))
581, 57eqeltrid 2842 . 2 (𝜑𝐼 ∈ (0..^𝑀))
5948, 58sselid 3992 . . . . 5 (𝜑𝐼 ∈ (0...𝑀))
6015, 59ffvelcdmd 7104 . . . 4 (𝜑 → (𝑄𝐼) ∈ ℝ)
6160rexrd 11308 . . 3 (𝜑 → (𝑄𝐼) ∈ ℝ*)
62 fzofzp1 13799 . . . . . 6 (𝐼 ∈ (0..^𝑀) → (𝐼 + 1) ∈ (0...𝑀))
6358, 62syl 17 . . . . 5 (𝜑 → (𝐼 + 1) ∈ (0...𝑀))
6415, 63ffvelcdmd 7104 . . . 4 (𝜑 → (𝑄‘(𝐼 + 1)) ∈ ℝ)
6564rexrd 11308 . . 3 (𝜑 → (𝑄‘(𝐼 + 1)) ∈ ℝ*)
661, 56eqeltrid 2842 . . . . 5 (𝜑𝐼 ∈ {𝑘 ∈ (0..^𝑀) ∣ (𝑄𝑘) < 𝐶})
67 fveq2 6906 . . . . . . 7 (𝑘 = 𝐼 → (𝑄𝑘) = (𝑄𝐼))
6867breq1d 5157 . . . . . 6 (𝑘 = 𝐼 → ((𝑄𝑘) < 𝐶 ↔ (𝑄𝐼) < 𝐶))
6968elrab 3694 . . . . 5 (𝐼 ∈ {𝑘 ∈ (0..^𝑀) ∣ (𝑄𝑘) < 𝐶} ↔ (𝐼 ∈ (0..^𝑀) ∧ (𝑄𝐼) < 𝐶))
7066, 69sylib 218 . . . 4 (𝜑 → (𝐼 ∈ (0..^𝑀) ∧ (𝑄𝐼) < 𝐶))
7170simprd 495 . . 3 (𝜑 → (𝑄𝐼) < 𝐶)
7252, 58sselid 3992 . . . . . . . . 9 (𝜑𝐼 ∈ ℝ)
73 ltp1 12104 . . . . . . . . . 10 (𝐼 ∈ ℝ → 𝐼 < (𝐼 + 1))
74 id 22 . . . . . . . . . . 11 (𝐼 ∈ ℝ → 𝐼 ∈ ℝ)
75 peano2re 11431 . . . . . . . . . . 11 (𝐼 ∈ ℝ → (𝐼 + 1) ∈ ℝ)
7674, 75ltnled 11405 . . . . . . . . . 10 (𝐼 ∈ ℝ → (𝐼 < (𝐼 + 1) ↔ ¬ (𝐼 + 1) ≤ 𝐼))
7773, 76mpbid 232 . . . . . . . . 9 (𝐼 ∈ ℝ → ¬ (𝐼 + 1) ≤ 𝐼)
7872, 77syl 17 . . . . . . . 8 (𝜑 → ¬ (𝐼 + 1) ≤ 𝐼)
7948, 49sstri 4004 . . . . . . . . . . . 12 (0..^𝑀) ⊆ ℤ
802, 79sstri 4004 . . . . . . . . . . 11 {𝑘 ∈ (0..^𝑀) ∣ (𝑄𝑘) < 𝐶} ⊆ ℤ
8180a1i 11 . . . . . . . . . 10 ((𝜑 ∧ (𝑄‘(𝐼 + 1)) < 𝐶) → {𝑘 ∈ (0..^𝑀) ∣ (𝑄𝑘) < 𝐶} ⊆ ℤ)
82 elrabi 3689 . . . . . . . . . . . . . . 15 ( ∈ {𝑘 ∈ (0..^𝑀) ∣ (𝑄𝑘) < 𝐶} → ∈ (0..^𝑀))
83 elfzo0le 13739 . . . . . . . . . . . . . . 15 ( ∈ (0..^𝑀) → 𝑀)
8482, 83syl 17 . . . . . . . . . . . . . 14 ( ∈ {𝑘 ∈ (0..^𝑀) ∣ (𝑄𝑘) < 𝐶} → 𝑀)
8584adantl 481 . . . . . . . . . . . . 13 ((𝜑 ∈ {𝑘 ∈ (0..^𝑀) ∣ (𝑄𝑘) < 𝐶}) → 𝑀)
8685ralrimiva 3143 . . . . . . . . . . . 12 (𝜑 → ∀ ∈ {𝑘 ∈ (0..^𝑀) ∣ (𝑄𝑘) < 𝐶}𝑀)
87 breq2 5151 . . . . . . . . . . . . . 14 (𝑚 = 𝑀 → (𝑚𝑀))
8887ralbidv 3175 . . . . . . . . . . . . 13 (𝑚 = 𝑀 → (∀ ∈ {𝑘 ∈ (0..^𝑀) ∣ (𝑄𝑘) < 𝐶}𝑚 ↔ ∀ ∈ {𝑘 ∈ (0..^𝑀) ∣ (𝑄𝑘) < 𝐶}𝑀))
8988rspcev 3621 . . . . . . . . . . . 12 ((𝑀 ∈ ℤ ∧ ∀ ∈ {𝑘 ∈ (0..^𝑀) ∣ (𝑄𝑘) < 𝐶}𝑀) → ∃𝑚 ∈ ℤ ∀ ∈ {𝑘 ∈ (0..^𝑀) ∣ (𝑄𝑘) < 𝐶}𝑚)
9011, 86, 89syl2anc 584 . . . . . . . . . . 11 (𝜑 → ∃𝑚 ∈ ℤ ∀ ∈ {𝑘 ∈ (0..^𝑀) ∣ (𝑄𝑘) < 𝐶}𝑚)
9190adantr 480 . . . . . . . . . 10 ((𝜑 ∧ (𝑄‘(𝐼 + 1)) < 𝐶) → ∃𝑚 ∈ ℤ ∀ ∈ {𝑘 ∈ (0..^𝑀) ∣ (𝑄𝑘) < 𝐶}𝑚)
92 elfzuz 13556 . . . . . . . . . . . . . 14 ((𝐼 + 1) ∈ (0...𝑀) → (𝐼 + 1) ∈ (ℤ‘0))
9363, 92syl 17 . . . . . . . . . . . . 13 (𝜑 → (𝐼 + 1) ∈ (ℤ‘0))
9493adantr 480 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑄‘(𝐼 + 1)) < 𝐶) → (𝐼 + 1) ∈ (ℤ‘0))
9511adantr 480 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑄‘(𝐼 + 1)) < 𝐶) → 𝑀 ∈ ℤ)
9651, 63sselid 3992 . . . . . . . . . . . . . 14 (𝜑 → (𝐼 + 1) ∈ ℝ)
9796adantr 480 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑄‘(𝐼 + 1)) < 𝐶) → (𝐼 + 1) ∈ ℝ)
9895zred 12719 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑄‘(𝐼 + 1)) < 𝐶) → 𝑀 ∈ ℝ)
99 elfzle2 13564 . . . . . . . . . . . . . . 15 ((𝐼 + 1) ∈ (0...𝑀) → (𝐼 + 1) ≤ 𝑀)
10063, 99syl 17 . . . . . . . . . . . . . 14 (𝜑 → (𝐼 + 1) ≤ 𝑀)
101100adantr 480 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑄‘(𝐼 + 1)) < 𝐶) → (𝐼 + 1) ≤ 𝑀)
102 simpr 484 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝑄‘(𝐼 + 1)) < 𝐶) → (𝑄‘(𝐼 + 1)) < 𝐶)
10364adantr 480 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ (𝑄‘(𝐼 + 1)) < 𝐶) → (𝑄‘(𝐼 + 1)) ∈ ℝ)
10427adantr 480 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ (𝑄‘(𝐼 + 1)) < 𝐶) → 𝐶 ∈ ℝ)
105103, 104ltnled 11405 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝑄‘(𝐼 + 1)) < 𝐶) → ((𝑄‘(𝐼 + 1)) < 𝐶 ↔ ¬ 𝐶 ≤ (𝑄‘(𝐼 + 1))))
106102, 105mpbid 232 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑄‘(𝐼 + 1)) < 𝐶) → ¬ 𝐶 ≤ (𝑄‘(𝐼 + 1)))
107 iccleub 13438 . . . . . . . . . . . . . . . . . . 19 (((𝑄‘0) ∈ ℝ* ∧ (𝑄𝑀) ∈ ℝ*𝐶 ∈ ((𝑄‘0)[,](𝑄𝑀))) → 𝐶 ≤ (𝑄𝑀))
10828, 29, 26, 107syl3anc 1370 . . . . . . . . . . . . . . . . . 18 (𝜑𝐶 ≤ (𝑄𝑀))
109108adantr 480 . . . . . . . . . . . . . . . . 17 ((𝜑𝑀 = (𝐼 + 1)) → 𝐶 ≤ (𝑄𝑀))
110 fveq2 6906 . . . . . . . . . . . . . . . . . 18 (𝑀 = (𝐼 + 1) → (𝑄𝑀) = (𝑄‘(𝐼 + 1)))
111110adantl 481 . . . . . . . . . . . . . . . . 17 ((𝜑𝑀 = (𝐼 + 1)) → (𝑄𝑀) = (𝑄‘(𝐼 + 1)))
112109, 111breqtrd 5173 . . . . . . . . . . . . . . . 16 ((𝜑𝑀 = (𝐼 + 1)) → 𝐶 ≤ (𝑄‘(𝐼 + 1)))
113112adantlr 715 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑄‘(𝐼 + 1)) < 𝐶) ∧ 𝑀 = (𝐼 + 1)) → 𝐶 ≤ (𝑄‘(𝐼 + 1)))
114106, 113mtand 816 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑄‘(𝐼 + 1)) < 𝐶) → ¬ 𝑀 = (𝐼 + 1))
115114neqned 2944 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑄‘(𝐼 + 1)) < 𝐶) → 𝑀 ≠ (𝐼 + 1))
11697, 98, 101, 115leneltd 11412 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑄‘(𝐼 + 1)) < 𝐶) → (𝐼 + 1) < 𝑀)
117 elfzo2 13698 . . . . . . . . . . . 12 ((𝐼 + 1) ∈ (0..^𝑀) ↔ ((𝐼 + 1) ∈ (ℤ‘0) ∧ 𝑀 ∈ ℤ ∧ (𝐼 + 1) < 𝑀))
11894, 95, 116, 117syl3anbrc 1342 . . . . . . . . . . 11 ((𝜑 ∧ (𝑄‘(𝐼 + 1)) < 𝐶) → (𝐼 + 1) ∈ (0..^𝑀))
119 fveq2 6906 . . . . . . . . . . . . 13 (𝑘 = (𝐼 + 1) → (𝑄𝑘) = (𝑄‘(𝐼 + 1)))
120119breq1d 5157 . . . . . . . . . . . 12 (𝑘 = (𝐼 + 1) → ((𝑄𝑘) < 𝐶 ↔ (𝑄‘(𝐼 + 1)) < 𝐶))
121120elrab 3694 . . . . . . . . . . 11 ((𝐼 + 1) ∈ {𝑘 ∈ (0..^𝑀) ∣ (𝑄𝑘) < 𝐶} ↔ ((𝐼 + 1) ∈ (0..^𝑀) ∧ (𝑄‘(𝐼 + 1)) < 𝐶))
122118, 102, 121sylanbrc 583 . . . . . . . . . 10 ((𝜑 ∧ (𝑄‘(𝐼 + 1)) < 𝐶) → (𝐼 + 1) ∈ {𝑘 ∈ (0..^𝑀) ∣ (𝑄𝑘) < 𝐶})
123 suprzub 12978 . . . . . . . . . 10 (({𝑘 ∈ (0..^𝑀) ∣ (𝑄𝑘) < 𝐶} ⊆ ℤ ∧ ∃𝑚 ∈ ℤ ∀ ∈ {𝑘 ∈ (0..^𝑀) ∣ (𝑄𝑘) < 𝐶}𝑚 ∧ (𝐼 + 1) ∈ {𝑘 ∈ (0..^𝑀) ∣ (𝑄𝑘) < 𝐶}) → (𝐼 + 1) ≤ sup({𝑘 ∈ (0..^𝑀) ∣ (𝑄𝑘) < 𝐶}, ℝ, < ))
12481, 91, 122, 123syl3anc 1370 . . . . . . . . 9 ((𝜑 ∧ (𝑄‘(𝐼 + 1)) < 𝐶) → (𝐼 + 1) ≤ sup({𝑘 ∈ (0..^𝑀) ∣ (𝑄𝑘) < 𝐶}, ℝ, < ))
125124, 1breqtrrdi 5189 . . . . . . . 8 ((𝜑 ∧ (𝑄‘(𝐼 + 1)) < 𝐶) → (𝐼 + 1) ≤ 𝐼)
12678, 125mtand 816 . . . . . . 7 (𝜑 → ¬ (𝑄‘(𝐼 + 1)) < 𝐶)
127 eqcom 2741 . . . . . . . . . . 11 ((𝑄‘(𝐼 + 1)) = 𝐶𝐶 = (𝑄‘(𝐼 + 1)))
128127biimpi 216 . . . . . . . . . 10 ((𝑄‘(𝐼 + 1)) = 𝐶𝐶 = (𝑄‘(𝐼 + 1)))
129128adantl 481 . . . . . . . . 9 ((𝜑 ∧ (𝑄‘(𝐼 + 1)) = 𝐶) → 𝐶 = (𝑄‘(𝐼 + 1)))
13034adantr 480 . . . . . . . . . 10 ((𝜑 ∧ (𝑄‘(𝐼 + 1)) = 𝐶) → 𝑄 Fn (0...𝑀))
13163adantr 480 . . . . . . . . . 10 ((𝜑 ∧ (𝑄‘(𝐼 + 1)) = 𝐶) → (𝐼 + 1) ∈ (0...𝑀))
132 fnfvelrn 7099 . . . . . . . . . 10 ((𝑄 Fn (0...𝑀) ∧ (𝐼 + 1) ∈ (0...𝑀)) → (𝑄‘(𝐼 + 1)) ∈ ran 𝑄)
133130, 131, 132syl2anc 584 . . . . . . . . 9 ((𝜑 ∧ (𝑄‘(𝐼 + 1)) = 𝐶) → (𝑄‘(𝐼 + 1)) ∈ ran 𝑄)
134129, 133eqeltrd 2838 . . . . . . . 8 ((𝜑 ∧ (𝑄‘(𝐼 + 1)) = 𝐶) → 𝐶 ∈ ran 𝑄)
13532, 134mtand 816 . . . . . . 7 (𝜑 → ¬ (𝑄‘(𝐼 + 1)) = 𝐶)
136126, 135jca 511 . . . . . 6 (𝜑 → (¬ (𝑄‘(𝐼 + 1)) < 𝐶 ∧ ¬ (𝑄‘(𝐼 + 1)) = 𝐶))
137 pm4.56 990 . . . . . 6 ((¬ (𝑄‘(𝐼 + 1)) < 𝐶 ∧ ¬ (𝑄‘(𝐼 + 1)) = 𝐶) ↔ ¬ ((𝑄‘(𝐼 + 1)) < 𝐶 ∨ (𝑄‘(𝐼 + 1)) = 𝐶))
138136, 137sylib 218 . . . . 5 (𝜑 → ¬ ((𝑄‘(𝐼 + 1)) < 𝐶 ∨ (𝑄‘(𝐼 + 1)) = 𝐶))
13964, 27leloed 11401 . . . . 5 (𝜑 → ((𝑄‘(𝐼 + 1)) ≤ 𝐶 ↔ ((𝑄‘(𝐼 + 1)) < 𝐶 ∨ (𝑄‘(𝐼 + 1)) = 𝐶)))
140138, 139mtbird 325 . . . 4 (𝜑 → ¬ (𝑄‘(𝐼 + 1)) ≤ 𝐶)
14127, 64ltnled 11405 . . . 4 (𝜑 → (𝐶 < (𝑄‘(𝐼 + 1)) ↔ ¬ (𝑄‘(𝐼 + 1)) ≤ 𝐶))
142140, 141mpbird 257 . . 3 (𝜑𝐶 < (𝑄‘(𝐼 + 1)))
14361, 65, 27, 71, 142eliood 45450 . 2 (𝜑𝐶 ∈ ((𝑄𝐼)(,)(𝑄‘(𝐼 + 1))))
144 fveq2 6906 . . . . 5 (𝑗 = 𝐼 → (𝑄𝑗) = (𝑄𝐼))
145 oveq1 7437 . . . . . 6 (𝑗 = 𝐼 → (𝑗 + 1) = (𝐼 + 1))
146145fveq2d 6910 . . . . 5 (𝑗 = 𝐼 → (𝑄‘(𝑗 + 1)) = (𝑄‘(𝐼 + 1)))
147144, 146oveq12d 7448 . . . 4 (𝑗 = 𝐼 → ((𝑄𝑗)(,)(𝑄‘(𝑗 + 1))) = ((𝑄𝐼)(,)(𝑄‘(𝐼 + 1))))
148147eleq2d 2824 . . 3 (𝑗 = 𝐼 → (𝐶 ∈ ((𝑄𝑗)(,)(𝑄‘(𝑗 + 1))) ↔ 𝐶 ∈ ((𝑄𝐼)(,)(𝑄‘(𝐼 + 1)))))
149148rspcev 3621 . 2 ((𝐼 ∈ (0..^𝑀) ∧ 𝐶 ∈ ((𝑄𝐼)(,)(𝑄‘(𝐼 + 1)))) → ∃𝑗 ∈ (0..^𝑀)𝐶 ∈ ((𝑄𝑗)(,)(𝑄‘(𝑗 + 1))))
15058, 143, 149syl2anc 584 1 (𝜑 → ∃𝑗 ∈ (0..^𝑀)𝐶 ∈ ((𝑄𝑗)(,)(𝑄‘(𝑗 + 1))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  wo 847   = wceq 1536  wcel 2105  wne 2937  wral 3058  wrex 3067  {crab 3432  wss 3962  c0 4338   class class class wbr 5147   Or wor 5595  ran crn 5689   Fn wfn 6557  wf 6558  cfv 6562  (class class class)co 7430  Fincfn 8983  supcsup 9477  cr 11151  0cc0 11152  1c1 11153   + caddc 11155  *cxr 11291   < clt 11292  cle 11293  cn 12263  0cn0 12523  cz 12610  cuz 12875  (,)cioo 13383  [,]cicc 13386  ...cfz 13543  ..^cfzo 13690
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1791  ax-4 1805  ax-5 1907  ax-6 1964  ax-7 2004  ax-8 2107  ax-9 2115  ax-10 2138  ax-11 2154  ax-12 2174  ax-ext 2705  ax-sep 5301  ax-nul 5311  ax-pow 5370  ax-pr 5437  ax-un 7753  ax-cnex 11208  ax-resscn 11209  ax-1cn 11210  ax-icn 11211  ax-addcl 11212  ax-addrcl 11213  ax-mulcl 11214  ax-mulrcl 11215  ax-mulcom 11216  ax-addass 11217  ax-mulass 11218  ax-distr 11219  ax-i2m1 11220  ax-1ne0 11221  ax-1rid 11222  ax-rnegex 11223  ax-rrecex 11224  ax-cnre 11225  ax-pre-lttri 11226  ax-pre-lttrn 11227  ax-pre-ltadd 11228  ax-pre-mulgt0 11229
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1539  df-fal 1549  df-ex 1776  df-nf 1780  df-sb 2062  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2726  df-clel 2813  df-nfc 2889  df-ne 2938  df-nel 3044  df-ral 3059  df-rex 3068  df-rmo 3377  df-reu 3378  df-rab 3433  df-v 3479  df-sbc 3791  df-csb 3908  df-dif 3965  df-un 3967  df-in 3969  df-ss 3979  df-pss 3982  df-nul 4339  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-op 4637  df-uni 4912  df-iun 4997  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5582  df-eprel 5588  df-po 5596  df-so 5597  df-fr 5640  df-we 5642  df-xp 5694  df-rel 5695  df-cnv 5696  df-co 5697  df-dm 5698  df-rn 5699  df-res 5700  df-ima 5701  df-pred 6322  df-ord 6388  df-on 6389  df-lim 6390  df-suc 6391  df-iota 6515  df-fun 6564  df-fn 6565  df-f 6566  df-f1 6567  df-fo 6568  df-f1o 6569  df-fv 6570  df-riota 7387  df-ov 7433  df-oprab 7434  df-mpo 7435  df-om 7887  df-1st 8012  df-2nd 8013  df-frecs 8304  df-wrecs 8335  df-recs 8409  df-rdg 8448  df-1o 8504  df-er 8743  df-en 8984  df-dom 8985  df-sdom 8986  df-fin 8987  df-sup 9479  df-inf 9480  df-pnf 11294  df-mnf 11295  df-xr 11296  df-ltxr 11297  df-le 11298  df-sub 11491  df-neg 11492  df-nn 12264  df-n0 12524  df-z 12611  df-uz 12876  df-ioo 13387  df-icc 13390  df-fz 13544  df-fzo 13691
This theorem is referenced by:  fourierdlem41  46103  fourierdlem48  46109  fourierdlem49  46110  fourierdlem70  46131  fourierdlem71  46132  fourierdlem103  46164  fourierdlem104  46165
  Copyright terms: Public domain W3C validator