Mathbox for metakunt < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  metakunt1 Structured version   Visualization version   GIF version

Theorem metakunt1 39296
 Description: A is an endomapping. (Contributed by metakunt, 23-May-2024.)
Hypotheses
Ref Expression
metakunt1.1 (𝜑𝑀 ∈ ℕ)
metakunt1.2 (𝜑𝐼 ∈ ℕ)
metakunt1.3 (𝜑𝐼𝑀)
metakunt1.4 𝐴 = (𝑥 ∈ (1...𝑀) ↦ if(𝑥 = 𝐼, 𝑀, if(𝑥 < 𝐼, 𝑥, (𝑥 − 1))))
Assertion
Ref Expression
metakunt1 (𝜑𝐴:(1...𝑀)⟶(1...𝑀))
Distinct variable groups:   𝑥,𝑀   𝜑,𝑥
Allowed substitution hints:   𝐴(𝑥)   𝐼(𝑥)

Proof of Theorem metakunt1
StepHypRef Expression
1 eleq1 2903 . . 3 (𝑀 = if(𝑥 = 𝐼, 𝑀, if(𝑥 < 𝐼, 𝑥, (𝑥 − 1))) → (𝑀 ∈ (1...𝑀) ↔ if(𝑥 = 𝐼, 𝑀, if(𝑥 < 𝐼, 𝑥, (𝑥 − 1))) ∈ (1...𝑀)))
2 eleq1 2903 . . 3 (if(𝑥 < 𝐼, 𝑥, (𝑥 − 1)) = if(𝑥 = 𝐼, 𝑀, if(𝑥 < 𝐼, 𝑥, (𝑥 − 1))) → (if(𝑥 < 𝐼, 𝑥, (𝑥 − 1)) ∈ (1...𝑀) ↔ if(𝑥 = 𝐼, 𝑀, if(𝑥 < 𝐼, 𝑥, (𝑥 − 1))) ∈ (1...𝑀)))
3 1zzd 12010 . . . 4 (((𝜑𝑥 ∈ (1...𝑀)) ∧ 𝑥 = 𝐼) → 1 ∈ ℤ)
4 metakunt1.1 . . . . . 6 (𝜑𝑀 ∈ ℕ)
54nnzd 12083 . . . . 5 (𝜑𝑀 ∈ ℤ)
65ad2antrr 725 . . . 4 (((𝜑𝑥 ∈ (1...𝑀)) ∧ 𝑥 = 𝐼) → 𝑀 ∈ ℤ)
74ad2antrr 725 . . . . 5 (((𝜑𝑥 ∈ (1...𝑀)) ∧ 𝑥 = 𝐼) → 𝑀 ∈ ℕ)
87nnge1d 11682 . . . 4 (((𝜑𝑥 ∈ (1...𝑀)) ∧ 𝑥 = 𝐼) → 1 ≤ 𝑀)
94nnred 11649 . . . . . 6 (𝜑𝑀 ∈ ℝ)
109ad2antrr 725 . . . . 5 (((𝜑𝑥 ∈ (1...𝑀)) ∧ 𝑥 = 𝐼) → 𝑀 ∈ ℝ)
1110leidd 11204 . . . 4 (((𝜑𝑥 ∈ (1...𝑀)) ∧ 𝑥 = 𝐼) → 𝑀𝑀)
123, 6, 6, 8, 11elfzd 12902 . . 3 (((𝜑𝑥 ∈ (1...𝑀)) ∧ 𝑥 = 𝐼) → 𝑀 ∈ (1...𝑀))
13 eleq1 2903 . . . 4 (𝑥 = if(𝑥 < 𝐼, 𝑥, (𝑥 − 1)) → (𝑥 ∈ (1...𝑀) ↔ if(𝑥 < 𝐼, 𝑥, (𝑥 − 1)) ∈ (1...𝑀)))
14 eleq1 2903 . . . 4 ((𝑥 − 1) = if(𝑥 < 𝐼, 𝑥, (𝑥 − 1)) → ((𝑥 − 1) ∈ (1...𝑀) ↔ if(𝑥 < 𝐼, 𝑥, (𝑥 − 1)) ∈ (1...𝑀)))
15 simpllr 775 . . . 4 ((((𝜑𝑥 ∈ (1...𝑀)) ∧ ¬ 𝑥 = 𝐼) ∧ 𝑥 < 𝐼) → 𝑥 ∈ (1...𝑀))
16 pm4.56 986 . . . . . . 7 ((¬ 𝑥 = 𝐼 ∧ ¬ 𝑥 < 𝐼) ↔ ¬ (𝑥 = 𝐼𝑥 < 𝐼))
1716anbi2i 625 . . . . . 6 (((𝜑𝑥 ∈ (1...𝑀)) ∧ (¬ 𝑥 = 𝐼 ∧ ¬ 𝑥 < 𝐼)) ↔ ((𝜑𝑥 ∈ (1...𝑀)) ∧ ¬ (𝑥 = 𝐼𝑥 < 𝐼)))
18 metakunt1.2 . . . . . . . . . . . . 13 (𝜑𝐼 ∈ ℕ)
1918nnred 11649 . . . . . . . . . . . 12 (𝜑𝐼 ∈ ℝ)
2019adantr 484 . . . . . . . . . . 11 ((𝜑𝑥 ∈ (1...𝑀)) → 𝐼 ∈ ℝ)
21 elfznn 12940 . . . . . . . . . . . . 13 (𝑥 ∈ (1...𝑀) → 𝑥 ∈ ℕ)
2221nnred 11649 . . . . . . . . . . . 12 (𝑥 ∈ (1...𝑀) → 𝑥 ∈ ℝ)
2322adantl 485 . . . . . . . . . . 11 ((𝜑𝑥 ∈ (1...𝑀)) → 𝑥 ∈ ℝ)
2420, 23jca 515 . . . . . . . . . 10 ((𝜑𝑥 ∈ (1...𝑀)) → (𝐼 ∈ ℝ ∧ 𝑥 ∈ ℝ))
25 axlttri 10710 . . . . . . . . . 10 ((𝐼 ∈ ℝ ∧ 𝑥 ∈ ℝ) → (𝐼 < 𝑥 ↔ ¬ (𝐼 = 𝑥𝑥 < 𝐼)))
2624, 25syl 17 . . . . . . . . 9 ((𝜑𝑥 ∈ (1...𝑀)) → (𝐼 < 𝑥 ↔ ¬ (𝐼 = 𝑥𝑥 < 𝐼)))
27 eqcom 2831 . . . . . . . . . . 11 (𝐼 = 𝑥𝑥 = 𝐼)
2827orbi1i 911 . . . . . . . . . 10 ((𝐼 = 𝑥𝑥 < 𝐼) ↔ (𝑥 = 𝐼𝑥 < 𝐼))
2928notbii 323 . . . . . . . . 9 (¬ (𝐼 = 𝑥𝑥 < 𝐼) ↔ ¬ (𝑥 = 𝐼𝑥 < 𝐼))
3026, 29syl6bb 290 . . . . . . . 8 ((𝜑𝑥 ∈ (1...𝑀)) → (𝐼 < 𝑥 ↔ ¬ (𝑥 = 𝐼𝑥 < 𝐼)))
31 1zzd 12010 . . . . . . . . . 10 ((𝜑𝑥 ∈ (1...𝑀) ∧ 𝐼 < 𝑥) → 1 ∈ ℤ)
3253ad2ant1 1130 . . . . . . . . . 10 ((𝜑𝑥 ∈ (1...𝑀) ∧ 𝐼 < 𝑥) → 𝑀 ∈ ℤ)
33 simp2 1134 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ (1...𝑀) ∧ 𝐼 < 𝑥) → 𝑥 ∈ (1...𝑀))
3433elfzelzd 12912 . . . . . . . . . . 11 ((𝜑𝑥 ∈ (1...𝑀) ∧ 𝐼 < 𝑥) → 𝑥 ∈ ℤ)
3534, 31zsubcld 12089 . . . . . . . . . 10 ((𝜑𝑥 ∈ (1...𝑀) ∧ 𝐼 < 𝑥) → (𝑥 − 1) ∈ ℤ)
36 1red 10640 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ (1...𝑀) ∧ 𝐼 < 𝑥) → 1 ∈ ℝ)
37203adant3 1129 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ (1...𝑀) ∧ 𝐼 < 𝑥) → 𝐼 ∈ ℝ)
3833, 22syl 17 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ (1...𝑀) ∧ 𝐼 < 𝑥) → 𝑥 ∈ ℝ)
3918nnge1d 11682 . . . . . . . . . . . . 13 (𝜑 → 1 ≤ 𝐼)
40393ad2ant1 1130 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ (1...𝑀) ∧ 𝐼 < 𝑥) → 1 ≤ 𝐼)
41 simp3 1135 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ (1...𝑀) ∧ 𝐼 < 𝑥) → 𝐼 < 𝑥)
4236, 37, 38, 40, 41lelttrd 10796 . . . . . . . . . . 11 ((𝜑𝑥 ∈ (1...𝑀) ∧ 𝐼 < 𝑥) → 1 < 𝑥)
4331, 34zltlem1d 39211 . . . . . . . . . . 11 ((𝜑𝑥 ∈ (1...𝑀) ∧ 𝐼 < 𝑥) → (1 < 𝑥 ↔ 1 ≤ (𝑥 − 1)))
4442, 43mpbid 235 . . . . . . . . . 10 ((𝜑𝑥 ∈ (1...𝑀) ∧ 𝐼 < 𝑥) → 1 ≤ (𝑥 − 1))
45 1red 10640 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ (1...𝑀)) → 1 ∈ ℝ)
4623, 45resubcld 11066 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ (1...𝑀)) → (𝑥 − 1) ∈ ℝ)
479adantr 484 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ (1...𝑀)) → 𝑀 ∈ ℝ)
48 0le1 11161 . . . . . . . . . . . . . . 15 0 ≤ 1
4948a1i 11 . . . . . . . . . . . . . 14 (𝑥 ∈ (1...𝑀) → 0 ≤ 1)
50 1red 10640 . . . . . . . . . . . . . . 15 (𝑥 ∈ (1...𝑀) → 1 ∈ ℝ)
5122, 50subge02d 11230 . . . . . . . . . . . . . 14 (𝑥 ∈ (1...𝑀) → (0 ≤ 1 ↔ (𝑥 − 1) ≤ 𝑥))
5249, 51mpbid 235 . . . . . . . . . . . . 13 (𝑥 ∈ (1...𝑀) → (𝑥 − 1) ≤ 𝑥)
5352adantl 485 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ (1...𝑀)) → (𝑥 − 1) ≤ 𝑥)
54 elfzle2 12915 . . . . . . . . . . . . 13 (𝑥 ∈ (1...𝑀) → 𝑥𝑀)
5554adantl 485 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ (1...𝑀)) → 𝑥𝑀)
5646, 23, 47, 53, 55letrd 10795 . . . . . . . . . . 11 ((𝜑𝑥 ∈ (1...𝑀)) → (𝑥 − 1) ≤ 𝑀)
57563adant3 1129 . . . . . . . . . 10 ((𝜑𝑥 ∈ (1...𝑀) ∧ 𝐼 < 𝑥) → (𝑥 − 1) ≤ 𝑀)
5831, 32, 35, 44, 57elfzd 12902 . . . . . . . . 9 ((𝜑𝑥 ∈ (1...𝑀) ∧ 𝐼 < 𝑥) → (𝑥 − 1) ∈ (1...𝑀))
59583expia 1118 . . . . . . . 8 ((𝜑𝑥 ∈ (1...𝑀)) → (𝐼 < 𝑥 → (𝑥 − 1) ∈ (1...𝑀)))
6030, 59sylbird 263 . . . . . . 7 ((𝜑𝑥 ∈ (1...𝑀)) → (¬ (𝑥 = 𝐼𝑥 < 𝐼) → (𝑥 − 1) ∈ (1...𝑀)))
6160imp 410 . . . . . 6 (((𝜑𝑥 ∈ (1...𝑀)) ∧ ¬ (𝑥 = 𝐼𝑥 < 𝐼)) → (𝑥 − 1) ∈ (1...𝑀))
6217, 61sylbi 220 . . . . 5 (((𝜑𝑥 ∈ (1...𝑀)) ∧ (¬ 𝑥 = 𝐼 ∧ ¬ 𝑥 < 𝐼)) → (𝑥 − 1) ∈ (1...𝑀))
6362anassrs 471 . . . 4 ((((𝜑𝑥 ∈ (1...𝑀)) ∧ ¬ 𝑥 = 𝐼) ∧ ¬ 𝑥 < 𝐼) → (𝑥 − 1) ∈ (1...𝑀))
6413, 14, 15, 63ifbothda 4487 . . 3 (((𝜑𝑥 ∈ (1...𝑀)) ∧ ¬ 𝑥 = 𝐼) → if(𝑥 < 𝐼, 𝑥, (𝑥 − 1)) ∈ (1...𝑀))
651, 2, 12, 64ifbothda 4487 . 2 ((𝜑𝑥 ∈ (1...𝑀)) → if(𝑥 = 𝐼, 𝑀, if(𝑥 < 𝐼, 𝑥, (𝑥 − 1))) ∈ (1...𝑀))
66 metakunt1.4 . 2 𝐴 = (𝑥 ∈ (1...𝑀) ↦ if(𝑥 = 𝐼, 𝑀, if(𝑥 < 𝐼, 𝑥, (𝑥 − 1))))
6765, 66fmptd 6869 1 (𝜑𝐴:(1...𝑀)⟶(1...𝑀))
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   → wi 4   ↔ wb 209   ∧ wa 399   ∨ wo 844   ∧ w3a 1084   = wceq 1538   ∈ wcel 2115  ifcif 4450   class class class wbr 5052   ↦ cmpt 5132  ⟶wf 6339  (class class class)co 7149  ℝcr 10534  0cc0 10535  1c1 10536   < clt 10673   ≤ cle 10674   − cmin 10868  ℕcn 11634  ℤcz 11978  ...cfz 12894 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2117  ax-9 2125  ax-10 2146  ax-11 2162  ax-12 2179  ax-ext 2796  ax-sep 5189  ax-nul 5196  ax-pow 5253  ax-pr 5317  ax-un 7455  ax-cnex 10591  ax-resscn 10592  ax-1cn 10593  ax-icn 10594  ax-addcl 10595  ax-addrcl 10596  ax-mulcl 10597  ax-mulrcl 10598  ax-mulcom 10599  ax-addass 10600  ax-mulass 10601  ax-distr 10602  ax-i2m1 10603  ax-1ne0 10604  ax-1rid 10605  ax-rnegex 10606  ax-rrecex 10607  ax-cnre 10608  ax-pre-lttri 10609  ax-pre-lttrn 10610  ax-pre-ltadd 10611  ax-pre-mulgt0 10612 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2071  df-mo 2624  df-eu 2655  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2964  df-ne 3015  df-nel 3119  df-ral 3138  df-rex 3139  df-reu 3140  df-rab 3142  df-v 3482  df-sbc 3759  df-csb 3867  df-dif 3922  df-un 3924  df-in 3926  df-ss 3936  df-pss 3938  df-nul 4277  df-if 4451  df-pw 4524  df-sn 4551  df-pr 4553  df-tp 4555  df-op 4557  df-uni 4825  df-iun 4907  df-br 5053  df-opab 5115  df-mpt 5133  df-tr 5159  df-id 5447  df-eprel 5452  df-po 5461  df-so 5462  df-fr 5501  df-we 5503  df-xp 5548  df-rel 5549  df-cnv 5550  df-co 5551  df-dm 5552  df-rn 5553  df-res 5554  df-ima 5555  df-pred 6135  df-ord 6181  df-on 6182  df-lim 6183  df-suc 6184  df-iota 6302  df-fun 6345  df-fn 6346  df-f 6347  df-f1 6348  df-fo 6349  df-f1o 6350  df-fv 6351  df-riota 7107  df-ov 7152  df-oprab 7153  df-mpo 7154  df-om 7575  df-1st 7684  df-2nd 7685  df-wrecs 7943  df-recs 8004  df-rdg 8042  df-er 8285  df-en 8506  df-dom 8507  df-sdom 8508  df-pnf 10675  df-mnf 10676  df-xr 10677  df-ltxr 10678  df-le 10679  df-sub 10870  df-neg 10871  df-nn 11635  df-n0 11895  df-z 11979  df-uz 12241  df-fz 12895 This theorem is referenced by:  metakunt5  39300  metakunt6  39301  metakunt8  39303  metakunt14  39309
 Copyright terms: Public domain W3C validator