Users' Mathboxes Mathbox for metakunt < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  metakunt1 Structured version   Visualization version   GIF version

Theorem metakunt1 39350
Description: A is an endomapping. (Contributed by metakunt, 23-May-2024.)
Hypotheses
Ref Expression
metakunt1.1 (𝜑𝑀 ∈ ℕ)
metakunt1.2 (𝜑𝐼 ∈ ℕ)
metakunt1.3 (𝜑𝐼𝑀)
metakunt1.4 𝐴 = (𝑥 ∈ (1...𝑀) ↦ if(𝑥 = 𝐼, 𝑀, if(𝑥 < 𝐼, 𝑥, (𝑥 − 1))))
Assertion
Ref Expression
metakunt1 (𝜑𝐴:(1...𝑀)⟶(1...𝑀))
Distinct variable groups:   𝑥,𝑀   𝜑,𝑥
Allowed substitution hints:   𝐴(𝑥)   𝐼(𝑥)

Proof of Theorem metakunt1
StepHypRef Expression
1 eleq1 2877 . . 3 (𝑀 = if(𝑥 = 𝐼, 𝑀, if(𝑥 < 𝐼, 𝑥, (𝑥 − 1))) → (𝑀 ∈ (1...𝑀) ↔ if(𝑥 = 𝐼, 𝑀, if(𝑥 < 𝐼, 𝑥, (𝑥 − 1))) ∈ (1...𝑀)))
2 eleq1 2877 . . 3 (if(𝑥 < 𝐼, 𝑥, (𝑥 − 1)) = if(𝑥 = 𝐼, 𝑀, if(𝑥 < 𝐼, 𝑥, (𝑥 − 1))) → (if(𝑥 < 𝐼, 𝑥, (𝑥 − 1)) ∈ (1...𝑀) ↔ if(𝑥 = 𝐼, 𝑀, if(𝑥 < 𝐼, 𝑥, (𝑥 − 1))) ∈ (1...𝑀)))
3 1zzd 12001 . . . 4 (((𝜑𝑥 ∈ (1...𝑀)) ∧ 𝑥 = 𝐼) → 1 ∈ ℤ)
4 metakunt1.1 . . . . . 6 (𝜑𝑀 ∈ ℕ)
54nnzd 12074 . . . . 5 (𝜑𝑀 ∈ ℤ)
65ad2antrr 725 . . . 4 (((𝜑𝑥 ∈ (1...𝑀)) ∧ 𝑥 = 𝐼) → 𝑀 ∈ ℤ)
74ad2antrr 725 . . . . 5 (((𝜑𝑥 ∈ (1...𝑀)) ∧ 𝑥 = 𝐼) → 𝑀 ∈ ℕ)
87nnge1d 11673 . . . 4 (((𝜑𝑥 ∈ (1...𝑀)) ∧ 𝑥 = 𝐼) → 1 ≤ 𝑀)
94nnred 11640 . . . . . 6 (𝜑𝑀 ∈ ℝ)
109ad2antrr 725 . . . . 5 (((𝜑𝑥 ∈ (1...𝑀)) ∧ 𝑥 = 𝐼) → 𝑀 ∈ ℝ)
1110leidd 11195 . . . 4 (((𝜑𝑥 ∈ (1...𝑀)) ∧ 𝑥 = 𝐼) → 𝑀𝑀)
123, 6, 6, 8, 11elfzd 12893 . . 3 (((𝜑𝑥 ∈ (1...𝑀)) ∧ 𝑥 = 𝐼) → 𝑀 ∈ (1...𝑀))
13 eleq1 2877 . . . 4 (𝑥 = if(𝑥 < 𝐼, 𝑥, (𝑥 − 1)) → (𝑥 ∈ (1...𝑀) ↔ if(𝑥 < 𝐼, 𝑥, (𝑥 − 1)) ∈ (1...𝑀)))
14 eleq1 2877 . . . 4 ((𝑥 − 1) = if(𝑥 < 𝐼, 𝑥, (𝑥 − 1)) → ((𝑥 − 1) ∈ (1...𝑀) ↔ if(𝑥 < 𝐼, 𝑥, (𝑥 − 1)) ∈ (1...𝑀)))
15 simpllr 775 . . . 4 ((((𝜑𝑥 ∈ (1...𝑀)) ∧ ¬ 𝑥 = 𝐼) ∧ 𝑥 < 𝐼) → 𝑥 ∈ (1...𝑀))
16 pm4.56 986 . . . . . . 7 ((¬ 𝑥 = 𝐼 ∧ ¬ 𝑥 < 𝐼) ↔ ¬ (𝑥 = 𝐼𝑥 < 𝐼))
1716anbi2i 625 . . . . . 6 (((𝜑𝑥 ∈ (1...𝑀)) ∧ (¬ 𝑥 = 𝐼 ∧ ¬ 𝑥 < 𝐼)) ↔ ((𝜑𝑥 ∈ (1...𝑀)) ∧ ¬ (𝑥 = 𝐼𝑥 < 𝐼)))
18 metakunt1.2 . . . . . . . . . . . . 13 (𝜑𝐼 ∈ ℕ)
1918nnred 11640 . . . . . . . . . . . 12 (𝜑𝐼 ∈ ℝ)
2019adantr 484 . . . . . . . . . . 11 ((𝜑𝑥 ∈ (1...𝑀)) → 𝐼 ∈ ℝ)
21 elfznn 12931 . . . . . . . . . . . . 13 (𝑥 ∈ (1...𝑀) → 𝑥 ∈ ℕ)
2221nnred 11640 . . . . . . . . . . . 12 (𝑥 ∈ (1...𝑀) → 𝑥 ∈ ℝ)
2322adantl 485 . . . . . . . . . . 11 ((𝜑𝑥 ∈ (1...𝑀)) → 𝑥 ∈ ℝ)
2420, 23jca 515 . . . . . . . . . 10 ((𝜑𝑥 ∈ (1...𝑀)) → (𝐼 ∈ ℝ ∧ 𝑥 ∈ ℝ))
25 axlttri 10701 . . . . . . . . . 10 ((𝐼 ∈ ℝ ∧ 𝑥 ∈ ℝ) → (𝐼 < 𝑥 ↔ ¬ (𝐼 = 𝑥𝑥 < 𝐼)))
2624, 25syl 17 . . . . . . . . 9 ((𝜑𝑥 ∈ (1...𝑀)) → (𝐼 < 𝑥 ↔ ¬ (𝐼 = 𝑥𝑥 < 𝐼)))
27 eqcom 2805 . . . . . . . . . . 11 (𝐼 = 𝑥𝑥 = 𝐼)
2827orbi1i 911 . . . . . . . . . 10 ((𝐼 = 𝑥𝑥 < 𝐼) ↔ (𝑥 = 𝐼𝑥 < 𝐼))
2928notbii 323 . . . . . . . . 9 (¬ (𝐼 = 𝑥𝑥 < 𝐼) ↔ ¬ (𝑥 = 𝐼𝑥 < 𝐼))
3026, 29syl6bb 290 . . . . . . . 8 ((𝜑𝑥 ∈ (1...𝑀)) → (𝐼 < 𝑥 ↔ ¬ (𝑥 = 𝐼𝑥 < 𝐼)))
31 1zzd 12001 . . . . . . . . . 10 ((𝜑𝑥 ∈ (1...𝑀) ∧ 𝐼 < 𝑥) → 1 ∈ ℤ)
3253ad2ant1 1130 . . . . . . . . . 10 ((𝜑𝑥 ∈ (1...𝑀) ∧ 𝐼 < 𝑥) → 𝑀 ∈ ℤ)
33 simp2 1134 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ (1...𝑀) ∧ 𝐼 < 𝑥) → 𝑥 ∈ (1...𝑀))
3433elfzelzd 12903 . . . . . . . . . . 11 ((𝜑𝑥 ∈ (1...𝑀) ∧ 𝐼 < 𝑥) → 𝑥 ∈ ℤ)
3534, 31zsubcld 12080 . . . . . . . . . 10 ((𝜑𝑥 ∈ (1...𝑀) ∧ 𝐼 < 𝑥) → (𝑥 − 1) ∈ ℤ)
36 1red 10631 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ (1...𝑀) ∧ 𝐼 < 𝑥) → 1 ∈ ℝ)
37203adant3 1129 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ (1...𝑀) ∧ 𝐼 < 𝑥) → 𝐼 ∈ ℝ)
3833, 22syl 17 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ (1...𝑀) ∧ 𝐼 < 𝑥) → 𝑥 ∈ ℝ)
3918nnge1d 11673 . . . . . . . . . . . . 13 (𝜑 → 1 ≤ 𝐼)
40393ad2ant1 1130 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ (1...𝑀) ∧ 𝐼 < 𝑥) → 1 ≤ 𝐼)
41 simp3 1135 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ (1...𝑀) ∧ 𝐼 < 𝑥) → 𝐼 < 𝑥)
4236, 37, 38, 40, 41lelttrd 10787 . . . . . . . . . . 11 ((𝜑𝑥 ∈ (1...𝑀) ∧ 𝐼 < 𝑥) → 1 < 𝑥)
4331, 34zltlem1d 39266 . . . . . . . . . . 11 ((𝜑𝑥 ∈ (1...𝑀) ∧ 𝐼 < 𝑥) → (1 < 𝑥 ↔ 1 ≤ (𝑥 − 1)))
4442, 43mpbid 235 . . . . . . . . . 10 ((𝜑𝑥 ∈ (1...𝑀) ∧ 𝐼 < 𝑥) → 1 ≤ (𝑥 − 1))
45 1red 10631 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ (1...𝑀)) → 1 ∈ ℝ)
4623, 45resubcld 11057 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ (1...𝑀)) → (𝑥 − 1) ∈ ℝ)
479adantr 484 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ (1...𝑀)) → 𝑀 ∈ ℝ)
48 0le1 11152 . . . . . . . . . . . . . . 15 0 ≤ 1
4948a1i 11 . . . . . . . . . . . . . 14 (𝑥 ∈ (1...𝑀) → 0 ≤ 1)
50 1red 10631 . . . . . . . . . . . . . . 15 (𝑥 ∈ (1...𝑀) → 1 ∈ ℝ)
5122, 50subge02d 11221 . . . . . . . . . . . . . 14 (𝑥 ∈ (1...𝑀) → (0 ≤ 1 ↔ (𝑥 − 1) ≤ 𝑥))
5249, 51mpbid 235 . . . . . . . . . . . . 13 (𝑥 ∈ (1...𝑀) → (𝑥 − 1) ≤ 𝑥)
5352adantl 485 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ (1...𝑀)) → (𝑥 − 1) ≤ 𝑥)
54 elfzle2 12906 . . . . . . . . . . . . 13 (𝑥 ∈ (1...𝑀) → 𝑥𝑀)
5554adantl 485 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ (1...𝑀)) → 𝑥𝑀)
5646, 23, 47, 53, 55letrd 10786 . . . . . . . . . . 11 ((𝜑𝑥 ∈ (1...𝑀)) → (𝑥 − 1) ≤ 𝑀)
57563adant3 1129 . . . . . . . . . 10 ((𝜑𝑥 ∈ (1...𝑀) ∧ 𝐼 < 𝑥) → (𝑥 − 1) ≤ 𝑀)
5831, 32, 35, 44, 57elfzd 12893 . . . . . . . . 9 ((𝜑𝑥 ∈ (1...𝑀) ∧ 𝐼 < 𝑥) → (𝑥 − 1) ∈ (1...𝑀))
59583expia 1118 . . . . . . . 8 ((𝜑𝑥 ∈ (1...𝑀)) → (𝐼 < 𝑥 → (𝑥 − 1) ∈ (1...𝑀)))
6030, 59sylbird 263 . . . . . . 7 ((𝜑𝑥 ∈ (1...𝑀)) → (¬ (𝑥 = 𝐼𝑥 < 𝐼) → (𝑥 − 1) ∈ (1...𝑀)))
6160imp 410 . . . . . 6 (((𝜑𝑥 ∈ (1...𝑀)) ∧ ¬ (𝑥 = 𝐼𝑥 < 𝐼)) → (𝑥 − 1) ∈ (1...𝑀))
6217, 61sylbi 220 . . . . 5 (((𝜑𝑥 ∈ (1...𝑀)) ∧ (¬ 𝑥 = 𝐼 ∧ ¬ 𝑥 < 𝐼)) → (𝑥 − 1) ∈ (1...𝑀))
6362anassrs 471 . . . 4 ((((𝜑𝑥 ∈ (1...𝑀)) ∧ ¬ 𝑥 = 𝐼) ∧ ¬ 𝑥 < 𝐼) → (𝑥 − 1) ∈ (1...𝑀))
6413, 14, 15, 63ifbothda 4462 . . 3 (((𝜑𝑥 ∈ (1...𝑀)) ∧ ¬ 𝑥 = 𝐼) → if(𝑥 < 𝐼, 𝑥, (𝑥 − 1)) ∈ (1...𝑀))
651, 2, 12, 64ifbothda 4462 . 2 ((𝜑𝑥 ∈ (1...𝑀)) → if(𝑥 = 𝐼, 𝑀, if(𝑥 < 𝐼, 𝑥, (𝑥 − 1))) ∈ (1...𝑀))
66 metakunt1.4 . 2 𝐴 = (𝑥 ∈ (1...𝑀) ↦ if(𝑥 = 𝐼, 𝑀, if(𝑥 < 𝐼, 𝑥, (𝑥 − 1))))
6765, 66fmptd 6855 1 (𝜑𝐴:(1...𝑀)⟶(1...𝑀))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 209  wa 399  wo 844  w3a 1084   = wceq 1538  wcel 2111  ifcif 4425   class class class wbr 5030  cmpt 5110  wf 6320  (class class class)co 7135  cr 10525  0cc0 10526  1c1 10527   < clt 10664  cle 10665  cmin 10859  cn 11625  cz 11969  ...cfz 12885
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-riota 7093  df-ov 7138  df-oprab 7139  df-mpo 7140  df-om 7561  df-1st 7671  df-2nd 7672  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-er 8272  df-en 8493  df-dom 8494  df-sdom 8495  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-nn 11626  df-n0 11886  df-z 11970  df-uz 12232  df-fz 12886
This theorem is referenced by:  metakunt5  39354  metakunt6  39355  metakunt8  39357  metakunt14  39363  metakunt33  39382
  Copyright terms: Public domain W3C validator