Users' Mathboxes Mathbox for metakunt < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  metakunt1 Structured version   Visualization version   GIF version

Theorem metakunt1 39632
Description: A is an endomapping. (Contributed by metakunt, 23-May-2024.)
Hypotheses
Ref Expression
metakunt1.1 (𝜑𝑀 ∈ ℕ)
metakunt1.2 (𝜑𝐼 ∈ ℕ)
metakunt1.3 (𝜑𝐼𝑀)
metakunt1.4 𝐴 = (𝑥 ∈ (1...𝑀) ↦ if(𝑥 = 𝐼, 𝑀, if(𝑥 < 𝐼, 𝑥, (𝑥 − 1))))
Assertion
Ref Expression
metakunt1 (𝜑𝐴:(1...𝑀)⟶(1...𝑀))
Distinct variable groups:   𝑥,𝑀   𝜑,𝑥
Allowed substitution hints:   𝐴(𝑥)   𝐼(𝑥)

Proof of Theorem metakunt1
StepHypRef Expression
1 eleq1 2838 . . 3 (𝑀 = if(𝑥 = 𝐼, 𝑀, if(𝑥 < 𝐼, 𝑥, (𝑥 − 1))) → (𝑀 ∈ (1...𝑀) ↔ if(𝑥 = 𝐼, 𝑀, if(𝑥 < 𝐼, 𝑥, (𝑥 − 1))) ∈ (1...𝑀)))
2 eleq1 2838 . . 3 (if(𝑥 < 𝐼, 𝑥, (𝑥 − 1)) = if(𝑥 = 𝐼, 𝑀, if(𝑥 < 𝐼, 𝑥, (𝑥 − 1))) → (if(𝑥 < 𝐼, 𝑥, (𝑥 − 1)) ∈ (1...𝑀) ↔ if(𝑥 = 𝐼, 𝑀, if(𝑥 < 𝐼, 𝑥, (𝑥 − 1))) ∈ (1...𝑀)))
3 1zzd 12037 . . . 4 (((𝜑𝑥 ∈ (1...𝑀)) ∧ 𝑥 = 𝐼) → 1 ∈ ℤ)
4 metakunt1.1 . . . . . 6 (𝜑𝑀 ∈ ℕ)
54nnzd 12110 . . . . 5 (𝜑𝑀 ∈ ℤ)
65ad2antrr 726 . . . 4 (((𝜑𝑥 ∈ (1...𝑀)) ∧ 𝑥 = 𝐼) → 𝑀 ∈ ℤ)
74ad2antrr 726 . . . . 5 (((𝜑𝑥 ∈ (1...𝑀)) ∧ 𝑥 = 𝐼) → 𝑀 ∈ ℕ)
87nnge1d 11707 . . . 4 (((𝜑𝑥 ∈ (1...𝑀)) ∧ 𝑥 = 𝐼) → 1 ≤ 𝑀)
94nnred 11674 . . . . . 6 (𝜑𝑀 ∈ ℝ)
109ad2antrr 726 . . . . 5 (((𝜑𝑥 ∈ (1...𝑀)) ∧ 𝑥 = 𝐼) → 𝑀 ∈ ℝ)
1110leidd 11229 . . . 4 (((𝜑𝑥 ∈ (1...𝑀)) ∧ 𝑥 = 𝐼) → 𝑀𝑀)
123, 6, 6, 8, 11elfzd 12932 . . 3 (((𝜑𝑥 ∈ (1...𝑀)) ∧ 𝑥 = 𝐼) → 𝑀 ∈ (1...𝑀))
13 eleq1 2838 . . . 4 (𝑥 = if(𝑥 < 𝐼, 𝑥, (𝑥 − 1)) → (𝑥 ∈ (1...𝑀) ↔ if(𝑥 < 𝐼, 𝑥, (𝑥 − 1)) ∈ (1...𝑀)))
14 eleq1 2838 . . . 4 ((𝑥 − 1) = if(𝑥 < 𝐼, 𝑥, (𝑥 − 1)) → ((𝑥 − 1) ∈ (1...𝑀) ↔ if(𝑥 < 𝐼, 𝑥, (𝑥 − 1)) ∈ (1...𝑀)))
15 simpllr 776 . . . 4 ((((𝜑𝑥 ∈ (1...𝑀)) ∧ ¬ 𝑥 = 𝐼) ∧ 𝑥 < 𝐼) → 𝑥 ∈ (1...𝑀))
16 pm4.56 987 . . . . . . 7 ((¬ 𝑥 = 𝐼 ∧ ¬ 𝑥 < 𝐼) ↔ ¬ (𝑥 = 𝐼𝑥 < 𝐼))
1716anbi2i 626 . . . . . 6 (((𝜑𝑥 ∈ (1...𝑀)) ∧ (¬ 𝑥 = 𝐼 ∧ ¬ 𝑥 < 𝐼)) ↔ ((𝜑𝑥 ∈ (1...𝑀)) ∧ ¬ (𝑥 = 𝐼𝑥 < 𝐼)))
18 metakunt1.2 . . . . . . . . . . . . 13 (𝜑𝐼 ∈ ℕ)
1918nnred 11674 . . . . . . . . . . . 12 (𝜑𝐼 ∈ ℝ)
2019adantr 485 . . . . . . . . . . 11 ((𝜑𝑥 ∈ (1...𝑀)) → 𝐼 ∈ ℝ)
21 elfznn 12970 . . . . . . . . . . . . 13 (𝑥 ∈ (1...𝑀) → 𝑥 ∈ ℕ)
2221nnred 11674 . . . . . . . . . . . 12 (𝑥 ∈ (1...𝑀) → 𝑥 ∈ ℝ)
2322adantl 486 . . . . . . . . . . 11 ((𝜑𝑥 ∈ (1...𝑀)) → 𝑥 ∈ ℝ)
2420, 23jca 516 . . . . . . . . . 10 ((𝜑𝑥 ∈ (1...𝑀)) → (𝐼 ∈ ℝ ∧ 𝑥 ∈ ℝ))
25 axlttri 10735 . . . . . . . . . 10 ((𝐼 ∈ ℝ ∧ 𝑥 ∈ ℝ) → (𝐼 < 𝑥 ↔ ¬ (𝐼 = 𝑥𝑥 < 𝐼)))
2624, 25syl 17 . . . . . . . . 9 ((𝜑𝑥 ∈ (1...𝑀)) → (𝐼 < 𝑥 ↔ ¬ (𝐼 = 𝑥𝑥 < 𝐼)))
27 eqcom 2766 . . . . . . . . . . 11 (𝐼 = 𝑥𝑥 = 𝐼)
2827orbi1i 912 . . . . . . . . . 10 ((𝐼 = 𝑥𝑥 < 𝐼) ↔ (𝑥 = 𝐼𝑥 < 𝐼))
2928notbii 324 . . . . . . . . 9 (¬ (𝐼 = 𝑥𝑥 < 𝐼) ↔ ¬ (𝑥 = 𝐼𝑥 < 𝐼))
3026, 29syl6bb 291 . . . . . . . 8 ((𝜑𝑥 ∈ (1...𝑀)) → (𝐼 < 𝑥 ↔ ¬ (𝑥 = 𝐼𝑥 < 𝐼)))
31 1zzd 12037 . . . . . . . . . 10 ((𝜑𝑥 ∈ (1...𝑀) ∧ 𝐼 < 𝑥) → 1 ∈ ℤ)
3253ad2ant1 1131 . . . . . . . . . 10 ((𝜑𝑥 ∈ (1...𝑀) ∧ 𝐼 < 𝑥) → 𝑀 ∈ ℤ)
33 simp2 1135 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ (1...𝑀) ∧ 𝐼 < 𝑥) → 𝑥 ∈ (1...𝑀))
3433elfzelzd 12942 . . . . . . . . . . 11 ((𝜑𝑥 ∈ (1...𝑀) ∧ 𝐼 < 𝑥) → 𝑥 ∈ ℤ)
3534, 31zsubcld 12116 . . . . . . . . . 10 ((𝜑𝑥 ∈ (1...𝑀) ∧ 𝐼 < 𝑥) → (𝑥 − 1) ∈ ℤ)
36 1red 10665 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ (1...𝑀) ∧ 𝐼 < 𝑥) → 1 ∈ ℝ)
37203adant3 1130 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ (1...𝑀) ∧ 𝐼 < 𝑥) → 𝐼 ∈ ℝ)
3833, 22syl 17 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ (1...𝑀) ∧ 𝐼 < 𝑥) → 𝑥 ∈ ℝ)
3918nnge1d 11707 . . . . . . . . . . . . 13 (𝜑 → 1 ≤ 𝐼)
40393ad2ant1 1131 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ (1...𝑀) ∧ 𝐼 < 𝑥) → 1 ≤ 𝐼)
41 simp3 1136 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ (1...𝑀) ∧ 𝐼 < 𝑥) → 𝐼 < 𝑥)
4236, 37, 38, 40, 41lelttrd 10821 . . . . . . . . . . 11 ((𝜑𝑥 ∈ (1...𝑀) ∧ 𝐼 < 𝑥) → 1 < 𝑥)
4331, 34zltlem1d 39531 . . . . . . . . . . 11 ((𝜑𝑥 ∈ (1...𝑀) ∧ 𝐼 < 𝑥) → (1 < 𝑥 ↔ 1 ≤ (𝑥 − 1)))
4442, 43mpbid 235 . . . . . . . . . 10 ((𝜑𝑥 ∈ (1...𝑀) ∧ 𝐼 < 𝑥) → 1 ≤ (𝑥 − 1))
45 1red 10665 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ (1...𝑀)) → 1 ∈ ℝ)
4623, 45resubcld 11091 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ (1...𝑀)) → (𝑥 − 1) ∈ ℝ)
479adantr 485 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ (1...𝑀)) → 𝑀 ∈ ℝ)
48 0le1 11186 . . . . . . . . . . . . . . 15 0 ≤ 1
4948a1i 11 . . . . . . . . . . . . . 14 (𝑥 ∈ (1...𝑀) → 0 ≤ 1)
50 1red 10665 . . . . . . . . . . . . . . 15 (𝑥 ∈ (1...𝑀) → 1 ∈ ℝ)
5122, 50subge02d 11255 . . . . . . . . . . . . . 14 (𝑥 ∈ (1...𝑀) → (0 ≤ 1 ↔ (𝑥 − 1) ≤ 𝑥))
5249, 51mpbid 235 . . . . . . . . . . . . 13 (𝑥 ∈ (1...𝑀) → (𝑥 − 1) ≤ 𝑥)
5352adantl 486 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ (1...𝑀)) → (𝑥 − 1) ≤ 𝑥)
54 elfzle2 12945 . . . . . . . . . . . . 13 (𝑥 ∈ (1...𝑀) → 𝑥𝑀)
5554adantl 486 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ (1...𝑀)) → 𝑥𝑀)
5646, 23, 47, 53, 55letrd 10820 . . . . . . . . . . 11 ((𝜑𝑥 ∈ (1...𝑀)) → (𝑥 − 1) ≤ 𝑀)
57563adant3 1130 . . . . . . . . . 10 ((𝜑𝑥 ∈ (1...𝑀) ∧ 𝐼 < 𝑥) → (𝑥 − 1) ≤ 𝑀)
5831, 32, 35, 44, 57elfzd 12932 . . . . . . . . 9 ((𝜑𝑥 ∈ (1...𝑀) ∧ 𝐼 < 𝑥) → (𝑥 − 1) ∈ (1...𝑀))
59583expia 1119 . . . . . . . 8 ((𝜑𝑥 ∈ (1...𝑀)) → (𝐼 < 𝑥 → (𝑥 − 1) ∈ (1...𝑀)))
6030, 59sylbird 263 . . . . . . 7 ((𝜑𝑥 ∈ (1...𝑀)) → (¬ (𝑥 = 𝐼𝑥 < 𝐼) → (𝑥 − 1) ∈ (1...𝑀)))
6160imp 411 . . . . . 6 (((𝜑𝑥 ∈ (1...𝑀)) ∧ ¬ (𝑥 = 𝐼𝑥 < 𝐼)) → (𝑥 − 1) ∈ (1...𝑀))
6217, 61sylbi 220 . . . . 5 (((𝜑𝑥 ∈ (1...𝑀)) ∧ (¬ 𝑥 = 𝐼 ∧ ¬ 𝑥 < 𝐼)) → (𝑥 − 1) ∈ (1...𝑀))
6362anassrs 472 . . . 4 ((((𝜑𝑥 ∈ (1...𝑀)) ∧ ¬ 𝑥 = 𝐼) ∧ ¬ 𝑥 < 𝐼) → (𝑥 − 1) ∈ (1...𝑀))
6413, 14, 15, 63ifbothda 4451 . . 3 (((𝜑𝑥 ∈ (1...𝑀)) ∧ ¬ 𝑥 = 𝐼) → if(𝑥 < 𝐼, 𝑥, (𝑥 − 1)) ∈ (1...𝑀))
651, 2, 12, 64ifbothda 4451 . 2 ((𝜑𝑥 ∈ (1...𝑀)) → if(𝑥 = 𝐼, 𝑀, if(𝑥 < 𝐼, 𝑥, (𝑥 − 1))) ∈ (1...𝑀))
66 metakunt1.4 . 2 𝐴 = (𝑥 ∈ (1...𝑀) ↦ if(𝑥 = 𝐼, 𝑀, if(𝑥 < 𝐼, 𝑥, (𝑥 − 1))))
6765, 66fmptd 6862 1 (𝜑𝐴:(1...𝑀)⟶(1...𝑀))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 209  wa 400  wo 845  w3a 1085   = wceq 1539  wcel 2112  ifcif 4413   class class class wbr 5025  cmpt 5105  wf 6324  (class class class)co 7143  cr 10559  0cc0 10560  1c1 10561   < clt 10698  cle 10699  cmin 10893  cn 11659  cz 12005  ...cfz 12924
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2159  ax-12 2176  ax-ext 2730  ax-sep 5162  ax-nul 5169  ax-pow 5227  ax-pr 5291  ax-un 7452  ax-cnex 10616  ax-resscn 10617  ax-1cn 10618  ax-icn 10619  ax-addcl 10620  ax-addrcl 10621  ax-mulcl 10622  ax-mulrcl 10623  ax-mulcom 10624  ax-addass 10625  ax-mulass 10626  ax-distr 10627  ax-i2m1 10628  ax-1ne0 10629  ax-1rid 10630  ax-rnegex 10631  ax-rrecex 10632  ax-cnre 10633  ax-pre-lttri 10634  ax-pre-lttrn 10635  ax-pre-ltadd 10636  ax-pre-mulgt0 10637
This theorem depends on definitions:  df-bi 210  df-an 401  df-or 846  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2071  df-mo 2558  df-eu 2589  df-clab 2737  df-cleq 2751  df-clel 2831  df-nfc 2899  df-ne 2950  df-nel 3054  df-ral 3073  df-rex 3074  df-reu 3075  df-rab 3077  df-v 3409  df-sbc 3694  df-csb 3802  df-dif 3857  df-un 3859  df-in 3861  df-ss 3871  df-pss 3873  df-nul 4222  df-if 4414  df-pw 4489  df-sn 4516  df-pr 4518  df-tp 4520  df-op 4522  df-uni 4792  df-iun 4878  df-br 5026  df-opab 5088  df-mpt 5106  df-tr 5132  df-id 5423  df-eprel 5428  df-po 5436  df-so 5437  df-fr 5476  df-we 5478  df-xp 5523  df-rel 5524  df-cnv 5525  df-co 5526  df-dm 5527  df-rn 5528  df-res 5529  df-ima 5530  df-pred 6119  df-ord 6165  df-on 6166  df-lim 6167  df-suc 6168  df-iota 6287  df-fun 6330  df-fn 6331  df-f 6332  df-f1 6333  df-fo 6334  df-f1o 6335  df-fv 6336  df-riota 7101  df-ov 7146  df-oprab 7147  df-mpo 7148  df-om 7573  df-1st 7686  df-2nd 7687  df-wrecs 7950  df-recs 8011  df-rdg 8049  df-er 8292  df-en 8521  df-dom 8522  df-sdom 8523  df-pnf 10700  df-mnf 10701  df-xr 10702  df-ltxr 10703  df-le 10704  df-sub 10895  df-neg 10896  df-nn 11660  df-n0 11920  df-z 12006  df-uz 12268  df-fz 12925
This theorem is referenced by:  metakunt5  39636  metakunt6  39637  metakunt8  39639  metakunt14  39645  metakunt33  39664
  Copyright terms: Public domain W3C validator