Users' Mathboxes Mathbox for metakunt < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  metakunt1 Structured version   Visualization version   GIF version

Theorem metakunt1 40053
Description: A is an endomapping. (Contributed by metakunt, 23-May-2024.)
Hypotheses
Ref Expression
metakunt1.1 (𝜑𝑀 ∈ ℕ)
metakunt1.2 (𝜑𝐼 ∈ ℕ)
metakunt1.3 (𝜑𝐼𝑀)
metakunt1.4 𝐴 = (𝑥 ∈ (1...𝑀) ↦ if(𝑥 = 𝐼, 𝑀, if(𝑥 < 𝐼, 𝑥, (𝑥 − 1))))
Assertion
Ref Expression
metakunt1 (𝜑𝐴:(1...𝑀)⟶(1...𝑀))
Distinct variable groups:   𝑥,𝑀   𝜑,𝑥
Allowed substitution hints:   𝐴(𝑥)   𝐼(𝑥)

Proof of Theorem metakunt1
StepHypRef Expression
1 eleq1 2826 . . 3 (𝑀 = if(𝑥 = 𝐼, 𝑀, if(𝑥 < 𝐼, 𝑥, (𝑥 − 1))) → (𝑀 ∈ (1...𝑀) ↔ if(𝑥 = 𝐼, 𝑀, if(𝑥 < 𝐼, 𝑥, (𝑥 − 1))) ∈ (1...𝑀)))
2 eleq1 2826 . . 3 (if(𝑥 < 𝐼, 𝑥, (𝑥 − 1)) = if(𝑥 = 𝐼, 𝑀, if(𝑥 < 𝐼, 𝑥, (𝑥 − 1))) → (if(𝑥 < 𝐼, 𝑥, (𝑥 − 1)) ∈ (1...𝑀) ↔ if(𝑥 = 𝐼, 𝑀, if(𝑥 < 𝐼, 𝑥, (𝑥 − 1))) ∈ (1...𝑀)))
3 1zzd 12281 . . . 4 (((𝜑𝑥 ∈ (1...𝑀)) ∧ 𝑥 = 𝐼) → 1 ∈ ℤ)
4 metakunt1.1 . . . . . 6 (𝜑𝑀 ∈ ℕ)
54nnzd 12354 . . . . 5 (𝜑𝑀 ∈ ℤ)
65ad2antrr 722 . . . 4 (((𝜑𝑥 ∈ (1...𝑀)) ∧ 𝑥 = 𝐼) → 𝑀 ∈ ℤ)
74ad2antrr 722 . . . . 5 (((𝜑𝑥 ∈ (1...𝑀)) ∧ 𝑥 = 𝐼) → 𝑀 ∈ ℕ)
87nnge1d 11951 . . . 4 (((𝜑𝑥 ∈ (1...𝑀)) ∧ 𝑥 = 𝐼) → 1 ≤ 𝑀)
94nnred 11918 . . . . . 6 (𝜑𝑀 ∈ ℝ)
109ad2antrr 722 . . . . 5 (((𝜑𝑥 ∈ (1...𝑀)) ∧ 𝑥 = 𝐼) → 𝑀 ∈ ℝ)
1110leidd 11471 . . . 4 (((𝜑𝑥 ∈ (1...𝑀)) ∧ 𝑥 = 𝐼) → 𝑀𝑀)
123, 6, 6, 8, 11elfzd 13176 . . 3 (((𝜑𝑥 ∈ (1...𝑀)) ∧ 𝑥 = 𝐼) → 𝑀 ∈ (1...𝑀))
13 eleq1 2826 . . . 4 (𝑥 = if(𝑥 < 𝐼, 𝑥, (𝑥 − 1)) → (𝑥 ∈ (1...𝑀) ↔ if(𝑥 < 𝐼, 𝑥, (𝑥 − 1)) ∈ (1...𝑀)))
14 eleq1 2826 . . . 4 ((𝑥 − 1) = if(𝑥 < 𝐼, 𝑥, (𝑥 − 1)) → ((𝑥 − 1) ∈ (1...𝑀) ↔ if(𝑥 < 𝐼, 𝑥, (𝑥 − 1)) ∈ (1...𝑀)))
15 simpllr 772 . . . 4 ((((𝜑𝑥 ∈ (1...𝑀)) ∧ ¬ 𝑥 = 𝐼) ∧ 𝑥 < 𝐼) → 𝑥 ∈ (1...𝑀))
16 pm4.56 985 . . . . . . 7 ((¬ 𝑥 = 𝐼 ∧ ¬ 𝑥 < 𝐼) ↔ ¬ (𝑥 = 𝐼𝑥 < 𝐼))
1716anbi2i 622 . . . . . 6 (((𝜑𝑥 ∈ (1...𝑀)) ∧ (¬ 𝑥 = 𝐼 ∧ ¬ 𝑥 < 𝐼)) ↔ ((𝜑𝑥 ∈ (1...𝑀)) ∧ ¬ (𝑥 = 𝐼𝑥 < 𝐼)))
18 metakunt1.2 . . . . . . . . . . . . 13 (𝜑𝐼 ∈ ℕ)
1918nnred 11918 . . . . . . . . . . . 12 (𝜑𝐼 ∈ ℝ)
2019adantr 480 . . . . . . . . . . 11 ((𝜑𝑥 ∈ (1...𝑀)) → 𝐼 ∈ ℝ)
21 elfznn 13214 . . . . . . . . . . . . 13 (𝑥 ∈ (1...𝑀) → 𝑥 ∈ ℕ)
2221nnred 11918 . . . . . . . . . . . 12 (𝑥 ∈ (1...𝑀) → 𝑥 ∈ ℝ)
2322adantl 481 . . . . . . . . . . 11 ((𝜑𝑥 ∈ (1...𝑀)) → 𝑥 ∈ ℝ)
2420, 23jca 511 . . . . . . . . . 10 ((𝜑𝑥 ∈ (1...𝑀)) → (𝐼 ∈ ℝ ∧ 𝑥 ∈ ℝ))
25 axlttri 10977 . . . . . . . . . 10 ((𝐼 ∈ ℝ ∧ 𝑥 ∈ ℝ) → (𝐼 < 𝑥 ↔ ¬ (𝐼 = 𝑥𝑥 < 𝐼)))
2624, 25syl 17 . . . . . . . . 9 ((𝜑𝑥 ∈ (1...𝑀)) → (𝐼 < 𝑥 ↔ ¬ (𝐼 = 𝑥𝑥 < 𝐼)))
27 eqcom 2745 . . . . . . . . . . 11 (𝐼 = 𝑥𝑥 = 𝐼)
2827orbi1i 910 . . . . . . . . . 10 ((𝐼 = 𝑥𝑥 < 𝐼) ↔ (𝑥 = 𝐼𝑥 < 𝐼))
2928notbii 319 . . . . . . . . 9 (¬ (𝐼 = 𝑥𝑥 < 𝐼) ↔ ¬ (𝑥 = 𝐼𝑥 < 𝐼))
3026, 29bitrdi 286 . . . . . . . 8 ((𝜑𝑥 ∈ (1...𝑀)) → (𝐼 < 𝑥 ↔ ¬ (𝑥 = 𝐼𝑥 < 𝐼)))
31 1zzd 12281 . . . . . . . . . 10 ((𝜑𝑥 ∈ (1...𝑀) ∧ 𝐼 < 𝑥) → 1 ∈ ℤ)
3253ad2ant1 1131 . . . . . . . . . 10 ((𝜑𝑥 ∈ (1...𝑀) ∧ 𝐼 < 𝑥) → 𝑀 ∈ ℤ)
33 simp2 1135 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ (1...𝑀) ∧ 𝐼 < 𝑥) → 𝑥 ∈ (1...𝑀))
3433elfzelzd 13186 . . . . . . . . . . 11 ((𝜑𝑥 ∈ (1...𝑀) ∧ 𝐼 < 𝑥) → 𝑥 ∈ ℤ)
3534, 31zsubcld 12360 . . . . . . . . . 10 ((𝜑𝑥 ∈ (1...𝑀) ∧ 𝐼 < 𝑥) → (𝑥 − 1) ∈ ℤ)
36 1red 10907 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ (1...𝑀) ∧ 𝐼 < 𝑥) → 1 ∈ ℝ)
37203adant3 1130 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ (1...𝑀) ∧ 𝐼 < 𝑥) → 𝐼 ∈ ℝ)
3833, 22syl 17 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ (1...𝑀) ∧ 𝐼 < 𝑥) → 𝑥 ∈ ℝ)
3918nnge1d 11951 . . . . . . . . . . . . 13 (𝜑 → 1 ≤ 𝐼)
40393ad2ant1 1131 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ (1...𝑀) ∧ 𝐼 < 𝑥) → 1 ≤ 𝐼)
41 simp3 1136 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ (1...𝑀) ∧ 𝐼 < 𝑥) → 𝐼 < 𝑥)
4236, 37, 38, 40, 41lelttrd 11063 . . . . . . . . . . 11 ((𝜑𝑥 ∈ (1...𝑀) ∧ 𝐼 < 𝑥) → 1 < 𝑥)
4331, 34zltlem1d 39915 . . . . . . . . . . 11 ((𝜑𝑥 ∈ (1...𝑀) ∧ 𝐼 < 𝑥) → (1 < 𝑥 ↔ 1 ≤ (𝑥 − 1)))
4442, 43mpbid 231 . . . . . . . . . 10 ((𝜑𝑥 ∈ (1...𝑀) ∧ 𝐼 < 𝑥) → 1 ≤ (𝑥 − 1))
45 1red 10907 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ (1...𝑀)) → 1 ∈ ℝ)
4623, 45resubcld 11333 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ (1...𝑀)) → (𝑥 − 1) ∈ ℝ)
479adantr 480 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ (1...𝑀)) → 𝑀 ∈ ℝ)
48 0le1 11428 . . . . . . . . . . . . . . 15 0 ≤ 1
4948a1i 11 . . . . . . . . . . . . . 14 (𝑥 ∈ (1...𝑀) → 0 ≤ 1)
50 1red 10907 . . . . . . . . . . . . . . 15 (𝑥 ∈ (1...𝑀) → 1 ∈ ℝ)
5122, 50subge02d 11497 . . . . . . . . . . . . . 14 (𝑥 ∈ (1...𝑀) → (0 ≤ 1 ↔ (𝑥 − 1) ≤ 𝑥))
5249, 51mpbid 231 . . . . . . . . . . . . 13 (𝑥 ∈ (1...𝑀) → (𝑥 − 1) ≤ 𝑥)
5352adantl 481 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ (1...𝑀)) → (𝑥 − 1) ≤ 𝑥)
54 elfzle2 13189 . . . . . . . . . . . . 13 (𝑥 ∈ (1...𝑀) → 𝑥𝑀)
5554adantl 481 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ (1...𝑀)) → 𝑥𝑀)
5646, 23, 47, 53, 55letrd 11062 . . . . . . . . . . 11 ((𝜑𝑥 ∈ (1...𝑀)) → (𝑥 − 1) ≤ 𝑀)
57563adant3 1130 . . . . . . . . . 10 ((𝜑𝑥 ∈ (1...𝑀) ∧ 𝐼 < 𝑥) → (𝑥 − 1) ≤ 𝑀)
5831, 32, 35, 44, 57elfzd 13176 . . . . . . . . 9 ((𝜑𝑥 ∈ (1...𝑀) ∧ 𝐼 < 𝑥) → (𝑥 − 1) ∈ (1...𝑀))
59583expia 1119 . . . . . . . 8 ((𝜑𝑥 ∈ (1...𝑀)) → (𝐼 < 𝑥 → (𝑥 − 1) ∈ (1...𝑀)))
6030, 59sylbird 259 . . . . . . 7 ((𝜑𝑥 ∈ (1...𝑀)) → (¬ (𝑥 = 𝐼𝑥 < 𝐼) → (𝑥 − 1) ∈ (1...𝑀)))
6160imp 406 . . . . . 6 (((𝜑𝑥 ∈ (1...𝑀)) ∧ ¬ (𝑥 = 𝐼𝑥 < 𝐼)) → (𝑥 − 1) ∈ (1...𝑀))
6217, 61sylbi 216 . . . . 5 (((𝜑𝑥 ∈ (1...𝑀)) ∧ (¬ 𝑥 = 𝐼 ∧ ¬ 𝑥 < 𝐼)) → (𝑥 − 1) ∈ (1...𝑀))
6362anassrs 467 . . . 4 ((((𝜑𝑥 ∈ (1...𝑀)) ∧ ¬ 𝑥 = 𝐼) ∧ ¬ 𝑥 < 𝐼) → (𝑥 − 1) ∈ (1...𝑀))
6413, 14, 15, 63ifbothda 4494 . . 3 (((𝜑𝑥 ∈ (1...𝑀)) ∧ ¬ 𝑥 = 𝐼) → if(𝑥 < 𝐼, 𝑥, (𝑥 − 1)) ∈ (1...𝑀))
651, 2, 12, 64ifbothda 4494 . 2 ((𝜑𝑥 ∈ (1...𝑀)) → if(𝑥 = 𝐼, 𝑀, if(𝑥 < 𝐼, 𝑥, (𝑥 − 1))) ∈ (1...𝑀))
66 metakunt1.4 . 2 𝐴 = (𝑥 ∈ (1...𝑀) ↦ if(𝑥 = 𝐼, 𝑀, if(𝑥 < 𝐼, 𝑥, (𝑥 − 1))))
6765, 66fmptd 6970 1 (𝜑𝐴:(1...𝑀)⟶(1...𝑀))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 395  wo 843  w3a 1085   = wceq 1539  wcel 2108  ifcif 4456   class class class wbr 5070  cmpt 5153  wf 6414  (class class class)co 7255  cr 10801  0cc0 10802  1c1 10803   < clt 10940  cle 10941  cmin 11135  cn 11903  cz 12249  ...cfz 13168
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-1st 7804  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-er 8456  df-en 8692  df-dom 8693  df-sdom 8694  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-nn 11904  df-n0 12164  df-z 12250  df-uz 12512  df-fz 13169
This theorem is referenced by:  metakunt5  40057  metakunt6  40058  metakunt8  40060  metakunt14  40066  metakunt33  40085
  Copyright terms: Public domain W3C validator