Users' Mathboxes Mathbox for metakunt < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  metakunt1 Structured version   Visualization version   GIF version

Theorem metakunt1 42218
Description: A is an endomapping. (Contributed by metakunt, 23-May-2024.)
Hypotheses
Ref Expression
metakunt1.1 (𝜑𝑀 ∈ ℕ)
metakunt1.2 (𝜑𝐼 ∈ ℕ)
metakunt1.3 (𝜑𝐼𝑀)
metakunt1.4 𝐴 = (𝑥 ∈ (1...𝑀) ↦ if(𝑥 = 𝐼, 𝑀, if(𝑥 < 𝐼, 𝑥, (𝑥 − 1))))
Assertion
Ref Expression
metakunt1 (𝜑𝐴:(1...𝑀)⟶(1...𝑀))
Distinct variable groups:   𝑥,𝑀   𝜑,𝑥
Allowed substitution hints:   𝐴(𝑥)   𝐼(𝑥)

Proof of Theorem metakunt1
StepHypRef Expression
1 eleq1 2822 . . 3 (𝑀 = if(𝑥 = 𝐼, 𝑀, if(𝑥 < 𝐼, 𝑥, (𝑥 − 1))) → (𝑀 ∈ (1...𝑀) ↔ if(𝑥 = 𝐼, 𝑀, if(𝑥 < 𝐼, 𝑥, (𝑥 − 1))) ∈ (1...𝑀)))
2 eleq1 2822 . . 3 (if(𝑥 < 𝐼, 𝑥, (𝑥 − 1)) = if(𝑥 = 𝐼, 𝑀, if(𝑥 < 𝐼, 𝑥, (𝑥 − 1))) → (if(𝑥 < 𝐼, 𝑥, (𝑥 − 1)) ∈ (1...𝑀) ↔ if(𝑥 = 𝐼, 𝑀, if(𝑥 < 𝐼, 𝑥, (𝑥 − 1))) ∈ (1...𝑀)))
3 1zzd 12623 . . . 4 (((𝜑𝑥 ∈ (1...𝑀)) ∧ 𝑥 = 𝐼) → 1 ∈ ℤ)
4 metakunt1.1 . . . . . 6 (𝜑𝑀 ∈ ℕ)
54nnzd 12615 . . . . 5 (𝜑𝑀 ∈ ℤ)
65ad2antrr 726 . . . 4 (((𝜑𝑥 ∈ (1...𝑀)) ∧ 𝑥 = 𝐼) → 𝑀 ∈ ℤ)
74ad2antrr 726 . . . . 5 (((𝜑𝑥 ∈ (1...𝑀)) ∧ 𝑥 = 𝐼) → 𝑀 ∈ ℕ)
87nnge1d 12288 . . . 4 (((𝜑𝑥 ∈ (1...𝑀)) ∧ 𝑥 = 𝐼) → 1 ≤ 𝑀)
94nnred 12255 . . . . . 6 (𝜑𝑀 ∈ ℝ)
109ad2antrr 726 . . . . 5 (((𝜑𝑥 ∈ (1...𝑀)) ∧ 𝑥 = 𝐼) → 𝑀 ∈ ℝ)
1110leidd 11803 . . . 4 (((𝜑𝑥 ∈ (1...𝑀)) ∧ 𝑥 = 𝐼) → 𝑀𝑀)
123, 6, 6, 8, 11elfzd 13532 . . 3 (((𝜑𝑥 ∈ (1...𝑀)) ∧ 𝑥 = 𝐼) → 𝑀 ∈ (1...𝑀))
13 eleq1 2822 . . . 4 (𝑥 = if(𝑥 < 𝐼, 𝑥, (𝑥 − 1)) → (𝑥 ∈ (1...𝑀) ↔ if(𝑥 < 𝐼, 𝑥, (𝑥 − 1)) ∈ (1...𝑀)))
14 eleq1 2822 . . . 4 ((𝑥 − 1) = if(𝑥 < 𝐼, 𝑥, (𝑥 − 1)) → ((𝑥 − 1) ∈ (1...𝑀) ↔ if(𝑥 < 𝐼, 𝑥, (𝑥 − 1)) ∈ (1...𝑀)))
15 simpllr 775 . . . 4 ((((𝜑𝑥 ∈ (1...𝑀)) ∧ ¬ 𝑥 = 𝐼) ∧ 𝑥 < 𝐼) → 𝑥 ∈ (1...𝑀))
16 pm4.56 990 . . . . . . 7 ((¬ 𝑥 = 𝐼 ∧ ¬ 𝑥 < 𝐼) ↔ ¬ (𝑥 = 𝐼𝑥 < 𝐼))
1716anbi2i 623 . . . . . 6 (((𝜑𝑥 ∈ (1...𝑀)) ∧ (¬ 𝑥 = 𝐼 ∧ ¬ 𝑥 < 𝐼)) ↔ ((𝜑𝑥 ∈ (1...𝑀)) ∧ ¬ (𝑥 = 𝐼𝑥 < 𝐼)))
18 metakunt1.2 . . . . . . . . . . . . 13 (𝜑𝐼 ∈ ℕ)
1918nnred 12255 . . . . . . . . . . . 12 (𝜑𝐼 ∈ ℝ)
2019adantr 480 . . . . . . . . . . 11 ((𝜑𝑥 ∈ (1...𝑀)) → 𝐼 ∈ ℝ)
21 elfznn 13570 . . . . . . . . . . . . 13 (𝑥 ∈ (1...𝑀) → 𝑥 ∈ ℕ)
2221nnred 12255 . . . . . . . . . . . 12 (𝑥 ∈ (1...𝑀) → 𝑥 ∈ ℝ)
2322adantl 481 . . . . . . . . . . 11 ((𝜑𝑥 ∈ (1...𝑀)) → 𝑥 ∈ ℝ)
2420, 23jca 511 . . . . . . . . . 10 ((𝜑𝑥 ∈ (1...𝑀)) → (𝐼 ∈ ℝ ∧ 𝑥 ∈ ℝ))
25 axlttri 11306 . . . . . . . . . 10 ((𝐼 ∈ ℝ ∧ 𝑥 ∈ ℝ) → (𝐼 < 𝑥 ↔ ¬ (𝐼 = 𝑥𝑥 < 𝐼)))
2624, 25syl 17 . . . . . . . . 9 ((𝜑𝑥 ∈ (1...𝑀)) → (𝐼 < 𝑥 ↔ ¬ (𝐼 = 𝑥𝑥 < 𝐼)))
27 eqcom 2742 . . . . . . . . . . 11 (𝐼 = 𝑥𝑥 = 𝐼)
2827orbi1i 913 . . . . . . . . . 10 ((𝐼 = 𝑥𝑥 < 𝐼) ↔ (𝑥 = 𝐼𝑥 < 𝐼))
2928notbii 320 . . . . . . . . 9 (¬ (𝐼 = 𝑥𝑥 < 𝐼) ↔ ¬ (𝑥 = 𝐼𝑥 < 𝐼))
3026, 29bitrdi 287 . . . . . . . 8 ((𝜑𝑥 ∈ (1...𝑀)) → (𝐼 < 𝑥 ↔ ¬ (𝑥 = 𝐼𝑥 < 𝐼)))
31 1zzd 12623 . . . . . . . . . 10 ((𝜑𝑥 ∈ (1...𝑀) ∧ 𝐼 < 𝑥) → 1 ∈ ℤ)
3253ad2ant1 1133 . . . . . . . . . 10 ((𝜑𝑥 ∈ (1...𝑀) ∧ 𝐼 < 𝑥) → 𝑀 ∈ ℤ)
33 simp2 1137 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ (1...𝑀) ∧ 𝐼 < 𝑥) → 𝑥 ∈ (1...𝑀))
3433elfzelzd 13542 . . . . . . . . . . 11 ((𝜑𝑥 ∈ (1...𝑀) ∧ 𝐼 < 𝑥) → 𝑥 ∈ ℤ)
3534, 31zsubcld 12702 . . . . . . . . . 10 ((𝜑𝑥 ∈ (1...𝑀) ∧ 𝐼 < 𝑥) → (𝑥 − 1) ∈ ℤ)
36 1red 11236 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ (1...𝑀) ∧ 𝐼 < 𝑥) → 1 ∈ ℝ)
37203adant3 1132 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ (1...𝑀) ∧ 𝐼 < 𝑥) → 𝐼 ∈ ℝ)
3833, 22syl 17 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ (1...𝑀) ∧ 𝐼 < 𝑥) → 𝑥 ∈ ℝ)
3918nnge1d 12288 . . . . . . . . . . . . 13 (𝜑 → 1 ≤ 𝐼)
40393ad2ant1 1133 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ (1...𝑀) ∧ 𝐼 < 𝑥) → 1 ≤ 𝐼)
41 simp3 1138 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ (1...𝑀) ∧ 𝐼 < 𝑥) → 𝐼 < 𝑥)
4236, 37, 38, 40, 41lelttrd 11393 . . . . . . . . . . 11 ((𝜑𝑥 ∈ (1...𝑀) ∧ 𝐼 < 𝑥) → 1 < 𝑥)
4331, 34zltlem1d 12646 . . . . . . . . . . 11 ((𝜑𝑥 ∈ (1...𝑀) ∧ 𝐼 < 𝑥) → (1 < 𝑥 ↔ 1 ≤ (𝑥 − 1)))
4442, 43mpbid 232 . . . . . . . . . 10 ((𝜑𝑥 ∈ (1...𝑀) ∧ 𝐼 < 𝑥) → 1 ≤ (𝑥 − 1))
45 1red 11236 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ (1...𝑀)) → 1 ∈ ℝ)
4623, 45resubcld 11665 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ (1...𝑀)) → (𝑥 − 1) ∈ ℝ)
479adantr 480 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ (1...𝑀)) → 𝑀 ∈ ℝ)
48 0le1 11760 . . . . . . . . . . . . . . 15 0 ≤ 1
4948a1i 11 . . . . . . . . . . . . . 14 (𝑥 ∈ (1...𝑀) → 0 ≤ 1)
50 1red 11236 . . . . . . . . . . . . . . 15 (𝑥 ∈ (1...𝑀) → 1 ∈ ℝ)
5122, 50subge02d 11829 . . . . . . . . . . . . . 14 (𝑥 ∈ (1...𝑀) → (0 ≤ 1 ↔ (𝑥 − 1) ≤ 𝑥))
5249, 51mpbid 232 . . . . . . . . . . . . 13 (𝑥 ∈ (1...𝑀) → (𝑥 − 1) ≤ 𝑥)
5352adantl 481 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ (1...𝑀)) → (𝑥 − 1) ≤ 𝑥)
54 elfzle2 13545 . . . . . . . . . . . . 13 (𝑥 ∈ (1...𝑀) → 𝑥𝑀)
5554adantl 481 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ (1...𝑀)) → 𝑥𝑀)
5646, 23, 47, 53, 55letrd 11392 . . . . . . . . . . 11 ((𝜑𝑥 ∈ (1...𝑀)) → (𝑥 − 1) ≤ 𝑀)
57563adant3 1132 . . . . . . . . . 10 ((𝜑𝑥 ∈ (1...𝑀) ∧ 𝐼 < 𝑥) → (𝑥 − 1) ≤ 𝑀)
5831, 32, 35, 44, 57elfzd 13532 . . . . . . . . 9 ((𝜑𝑥 ∈ (1...𝑀) ∧ 𝐼 < 𝑥) → (𝑥 − 1) ∈ (1...𝑀))
59583expia 1121 . . . . . . . 8 ((𝜑𝑥 ∈ (1...𝑀)) → (𝐼 < 𝑥 → (𝑥 − 1) ∈ (1...𝑀)))
6030, 59sylbird 260 . . . . . . 7 ((𝜑𝑥 ∈ (1...𝑀)) → (¬ (𝑥 = 𝐼𝑥 < 𝐼) → (𝑥 − 1) ∈ (1...𝑀)))
6160imp 406 . . . . . 6 (((𝜑𝑥 ∈ (1...𝑀)) ∧ ¬ (𝑥 = 𝐼𝑥 < 𝐼)) → (𝑥 − 1) ∈ (1...𝑀))
6217, 61sylbi 217 . . . . 5 (((𝜑𝑥 ∈ (1...𝑀)) ∧ (¬ 𝑥 = 𝐼 ∧ ¬ 𝑥 < 𝐼)) → (𝑥 − 1) ∈ (1...𝑀))
6362anassrs 467 . . . 4 ((((𝜑𝑥 ∈ (1...𝑀)) ∧ ¬ 𝑥 = 𝐼) ∧ ¬ 𝑥 < 𝐼) → (𝑥 − 1) ∈ (1...𝑀))
6413, 14, 15, 63ifbothda 4539 . . 3 (((𝜑𝑥 ∈ (1...𝑀)) ∧ ¬ 𝑥 = 𝐼) → if(𝑥 < 𝐼, 𝑥, (𝑥 − 1)) ∈ (1...𝑀))
651, 2, 12, 64ifbothda 4539 . 2 ((𝜑𝑥 ∈ (1...𝑀)) → if(𝑥 = 𝐼, 𝑀, if(𝑥 < 𝐼, 𝑥, (𝑥 − 1))) ∈ (1...𝑀))
66 metakunt1.4 . 2 𝐴 = (𝑥 ∈ (1...𝑀) ↦ if(𝑥 = 𝐼, 𝑀, if(𝑥 < 𝐼, 𝑥, (𝑥 − 1))))
6765, 66fmptd 7104 1 (𝜑𝐴:(1...𝑀)⟶(1...𝑀))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 847  w3a 1086   = wceq 1540  wcel 2108  ifcif 4500   class class class wbr 5119  cmpt 5201  wf 6527  (class class class)co 7405  cr 11128  0cc0 11129  1c1 11130   < clt 11269  cle 11270  cmin 11466  cn 12240  cz 12588  ...cfz 13524
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729  ax-cnex 11185  ax-resscn 11186  ax-1cn 11187  ax-icn 11188  ax-addcl 11189  ax-addrcl 11190  ax-mulcl 11191  ax-mulrcl 11192  ax-mulcom 11193  ax-addass 11194  ax-mulass 11195  ax-distr 11196  ax-i2m1 11197  ax-1ne0 11198  ax-1rid 11199  ax-rnegex 11200  ax-rrecex 11201  ax-cnre 11202  ax-pre-lttri 11203  ax-pre-lttrn 11204  ax-pre-ltadd 11205  ax-pre-mulgt0 11206
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-nel 3037  df-ral 3052  df-rex 3061  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-riota 7362  df-ov 7408  df-oprab 7409  df-mpo 7410  df-om 7862  df-1st 7988  df-2nd 7989  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-er 8719  df-en 8960  df-dom 8961  df-sdom 8962  df-pnf 11271  df-mnf 11272  df-xr 11273  df-ltxr 11274  df-le 11275  df-sub 11468  df-neg 11469  df-nn 12241  df-n0 12502  df-z 12589  df-uz 12853  df-fz 13525
This theorem is referenced by:  metakunt5  42222  metakunt6  42223  metakunt8  42225  metakunt14  42231  metakunt33  42250
  Copyright terms: Public domain W3C validator