MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  aaliou3lem9 Structured version   Visualization version   GIF version

Theorem aaliou3lem9 26206
Description: Example of a "Liouville number", a very simple definable transcendental real. (Contributed by Stefan O'Rear, 20-Nov-2014.)
Hypotheses
Ref Expression
aaliou3lem.c 𝐹 = (𝑎 ∈ ℕ ↦ (2↑-(!‘𝑎)))
aaliou3lem.d 𝐿 = Σ𝑏 ∈ ℕ (𝐹𝑏)
aaliou3lem.e 𝐻 = (𝑐 ∈ ℕ ↦ Σ𝑏 ∈ (1...𝑐)(𝐹𝑏))
Assertion
Ref Expression
aaliou3lem9 ¬ 𝐿 ∈ 𝔸
Distinct variable groups:   𝑎,𝑏,𝑐   𝐹,𝑏,𝑐   𝐿,𝑐,𝑎,𝑏
Allowed substitution hints:   𝐹(𝑎)   𝐻(𝑎,𝑏,𝑐)

Proof of Theorem aaliou3lem9
Dummy variables 𝑑 𝑒 𝑓 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 aaliou3lem8 26201 . . . . . 6 ((𝑎 ∈ ℕ ∧ 𝑏 ∈ ℝ+) → ∃𝑒 ∈ ℕ (2 · (2↑-(!‘(𝑒 + 1)))) ≤ (𝑏 / ((2↑(!‘𝑒))↑𝑎)))
2 aaliou3lem.c . . . . . . . . 9 𝐹 = (𝑎 ∈ ℕ ↦ (2↑-(!‘𝑎)))
3 aaliou3lem.d . . . . . . . . 9 𝐿 = Σ𝑏 ∈ ℕ (𝐹𝑏)
4 aaliou3lem.e . . . . . . . . 9 𝐻 = (𝑐 ∈ ℕ ↦ Σ𝑏 ∈ (1...𝑐)(𝐹𝑏))
52, 3, 4aaliou3lem6 26204 . . . . . . . 8 (𝑒 ∈ ℕ → ((𝐻𝑒) · (2↑(!‘𝑒))) ∈ ℤ)
65ad2antrl 725 . . . . . . 7 (((𝑎 ∈ ℕ ∧ 𝑏 ∈ ℝ+) ∧ (𝑒 ∈ ℕ ∧ (2 · (2↑-(!‘(𝑒 + 1)))) ≤ (𝑏 / ((2↑(!‘𝑒))↑𝑎)))) → ((𝐻𝑒) · (2↑(!‘𝑒))) ∈ ℤ)
7 2nn 12283 . . . . . . . 8 2 ∈ ℕ
8 nnnn0 12477 . . . . . . . . . 10 (𝑒 ∈ ℕ → 𝑒 ∈ ℕ0)
98ad2antrl 725 . . . . . . . . 9 (((𝑎 ∈ ℕ ∧ 𝑏 ∈ ℝ+) ∧ (𝑒 ∈ ℕ ∧ (2 · (2↑-(!‘(𝑒 + 1)))) ≤ (𝑏 / ((2↑(!‘𝑒))↑𝑎)))) → 𝑒 ∈ ℕ0)
10 faccl 14241 . . . . . . . . 9 (𝑒 ∈ ℕ0 → (!‘𝑒) ∈ ℕ)
11 nnnn0 12477 . . . . . . . . 9 ((!‘𝑒) ∈ ℕ → (!‘𝑒) ∈ ℕ0)
129, 10, 113syl 18 . . . . . . . 8 (((𝑎 ∈ ℕ ∧ 𝑏 ∈ ℝ+) ∧ (𝑒 ∈ ℕ ∧ (2 · (2↑-(!‘(𝑒 + 1)))) ≤ (𝑏 / ((2↑(!‘𝑒))↑𝑎)))) → (!‘𝑒) ∈ ℕ0)
13 nnexpcl 14038 . . . . . . . 8 ((2 ∈ ℕ ∧ (!‘𝑒) ∈ ℕ0) → (2↑(!‘𝑒)) ∈ ℕ)
147, 12, 13sylancr 586 . . . . . . 7 (((𝑎 ∈ ℕ ∧ 𝑏 ∈ ℝ+) ∧ (𝑒 ∈ ℕ ∧ (2 · (2↑-(!‘(𝑒 + 1)))) ≤ (𝑏 / ((2↑(!‘𝑒))↑𝑎)))) → (2↑(!‘𝑒)) ∈ ℕ)
152, 3, 4aaliou3lem5 26203 . . . . . . . . . . . . 13 (𝑒 ∈ ℕ → (𝐻𝑒) ∈ ℝ)
1615ad2antrl 725 . . . . . . . . . . . 12 (((𝑎 ∈ ℕ ∧ 𝑏 ∈ ℝ+) ∧ (𝑒 ∈ ℕ ∧ (2 · (2↑-(!‘(𝑒 + 1)))) ≤ (𝑏 / ((2↑(!‘𝑒))↑𝑎)))) → (𝐻𝑒) ∈ ℝ)
1716recnd 11240 . . . . . . . . . . 11 (((𝑎 ∈ ℕ ∧ 𝑏 ∈ ℝ+) ∧ (𝑒 ∈ ℕ ∧ (2 · (2↑-(!‘(𝑒 + 1)))) ≤ (𝑏 / ((2↑(!‘𝑒))↑𝑎)))) → (𝐻𝑒) ∈ ℂ)
1814nncnd 12226 . . . . . . . . . . 11 (((𝑎 ∈ ℕ ∧ 𝑏 ∈ ℝ+) ∧ (𝑒 ∈ ℕ ∧ (2 · (2↑-(!‘(𝑒 + 1)))) ≤ (𝑏 / ((2↑(!‘𝑒))↑𝑎)))) → (2↑(!‘𝑒)) ∈ ℂ)
1914nnne0d 12260 . . . . . . . . . . 11 (((𝑎 ∈ ℕ ∧ 𝑏 ∈ ℝ+) ∧ (𝑒 ∈ ℕ ∧ (2 · (2↑-(!‘(𝑒 + 1)))) ≤ (𝑏 / ((2↑(!‘𝑒))↑𝑎)))) → (2↑(!‘𝑒)) ≠ 0)
2017, 18, 19divcan4d 11994 . . . . . . . . . 10 (((𝑎 ∈ ℕ ∧ 𝑏 ∈ ℝ+) ∧ (𝑒 ∈ ℕ ∧ (2 · (2↑-(!‘(𝑒 + 1)))) ≤ (𝑏 / ((2↑(!‘𝑒))↑𝑎)))) → (((𝐻𝑒) · (2↑(!‘𝑒))) / (2↑(!‘𝑒))) = (𝐻𝑒))
212, 3, 4aaliou3lem7 26205 . . . . . . . . . . . 12 (𝑒 ∈ ℕ → ((𝐻𝑒) ≠ 𝐿 ∧ (abs‘(𝐿 − (𝐻𝑒))) ≤ (2 · (2↑-(!‘(𝑒 + 1))))))
2221simpld 494 . . . . . . . . . . 11 (𝑒 ∈ ℕ → (𝐻𝑒) ≠ 𝐿)
2322ad2antrl 725 . . . . . . . . . 10 (((𝑎 ∈ ℕ ∧ 𝑏 ∈ ℝ+) ∧ (𝑒 ∈ ℕ ∧ (2 · (2↑-(!‘(𝑒 + 1)))) ≤ (𝑏 / ((2↑(!‘𝑒))↑𝑎)))) → (𝐻𝑒) ≠ 𝐿)
2420, 23eqnetrd 3000 . . . . . . . . 9 (((𝑎 ∈ ℕ ∧ 𝑏 ∈ ℝ+) ∧ (𝑒 ∈ ℕ ∧ (2 · (2↑-(!‘(𝑒 + 1)))) ≤ (𝑏 / ((2↑(!‘𝑒))↑𝑎)))) → (((𝐻𝑒) · (2↑(!‘𝑒))) / (2↑(!‘𝑒))) ≠ 𝐿)
2524necomd 2988 . . . . . . . 8 (((𝑎 ∈ ℕ ∧ 𝑏 ∈ ℝ+) ∧ (𝑒 ∈ ℕ ∧ (2 · (2↑-(!‘(𝑒 + 1)))) ≤ (𝑏 / ((2↑(!‘𝑒))↑𝑎)))) → 𝐿 ≠ (((𝐻𝑒) · (2↑(!‘𝑒))) / (2↑(!‘𝑒))))
2625neneqd 2937 . . . . . . 7 (((𝑎 ∈ ℕ ∧ 𝑏 ∈ ℝ+) ∧ (𝑒 ∈ ℕ ∧ (2 · (2↑-(!‘(𝑒 + 1)))) ≤ (𝑏 / ((2↑(!‘𝑒))↑𝑎)))) → ¬ 𝐿 = (((𝐻𝑒) · (2↑(!‘𝑒))) / (2↑(!‘𝑒))))
272, 3, 4aaliou3lem4 26202 . . . . . . . . . . 11 𝐿 ∈ ℝ
2814nnred 12225 . . . . . . . . . . . . 13 (((𝑎 ∈ ℕ ∧ 𝑏 ∈ ℝ+) ∧ (𝑒 ∈ ℕ ∧ (2 · (2↑-(!‘(𝑒 + 1)))) ≤ (𝑏 / ((2↑(!‘𝑒))↑𝑎)))) → (2↑(!‘𝑒)) ∈ ℝ)
2916, 28remulcld 11242 . . . . . . . . . . . 12 (((𝑎 ∈ ℕ ∧ 𝑏 ∈ ℝ+) ∧ (𝑒 ∈ ℕ ∧ (2 · (2↑-(!‘(𝑒 + 1)))) ≤ (𝑏 / ((2↑(!‘𝑒))↑𝑎)))) → ((𝐻𝑒) · (2↑(!‘𝑒))) ∈ ℝ)
3029, 14nndivred 12264 . . . . . . . . . . 11 (((𝑎 ∈ ℕ ∧ 𝑏 ∈ ℝ+) ∧ (𝑒 ∈ ℕ ∧ (2 · (2↑-(!‘(𝑒 + 1)))) ≤ (𝑏 / ((2↑(!‘𝑒))↑𝑎)))) → (((𝐻𝑒) · (2↑(!‘𝑒))) / (2↑(!‘𝑒))) ∈ ℝ)
31 resubcl 11522 . . . . . . . . . . 11 ((𝐿 ∈ ℝ ∧ (((𝐻𝑒) · (2↑(!‘𝑒))) / (2↑(!‘𝑒))) ∈ ℝ) → (𝐿 − (((𝐻𝑒) · (2↑(!‘𝑒))) / (2↑(!‘𝑒)))) ∈ ℝ)
3227, 30, 31sylancr 586 . . . . . . . . . 10 (((𝑎 ∈ ℕ ∧ 𝑏 ∈ ℝ+) ∧ (𝑒 ∈ ℕ ∧ (2 · (2↑-(!‘(𝑒 + 1)))) ≤ (𝑏 / ((2↑(!‘𝑒))↑𝑎)))) → (𝐿 − (((𝐻𝑒) · (2↑(!‘𝑒))) / (2↑(!‘𝑒)))) ∈ ℝ)
3332recnd 11240 . . . . . . . . 9 (((𝑎 ∈ ℕ ∧ 𝑏 ∈ ℝ+) ∧ (𝑒 ∈ ℕ ∧ (2 · (2↑-(!‘(𝑒 + 1)))) ≤ (𝑏 / ((2↑(!‘𝑒))↑𝑎)))) → (𝐿 − (((𝐻𝑒) · (2↑(!‘𝑒))) / (2↑(!‘𝑒)))) ∈ ℂ)
3433abscld 15381 . . . . . . . 8 (((𝑎 ∈ ℕ ∧ 𝑏 ∈ ℝ+) ∧ (𝑒 ∈ ℕ ∧ (2 · (2↑-(!‘(𝑒 + 1)))) ≤ (𝑏 / ((2↑(!‘𝑒))↑𝑎)))) → (abs‘(𝐿 − (((𝐻𝑒) · (2↑(!‘𝑒))) / (2↑(!‘𝑒))))) ∈ ℝ)
35 simplr 766 . . . . . . . . . 10 (((𝑎 ∈ ℕ ∧ 𝑏 ∈ ℝ+) ∧ (𝑒 ∈ ℕ ∧ (2 · (2↑-(!‘(𝑒 + 1)))) ≤ (𝑏 / ((2↑(!‘𝑒))↑𝑎)))) → 𝑏 ∈ ℝ+)
36 nnnn0 12477 . . . . . . . . . . . . 13 (𝑎 ∈ ℕ → 𝑎 ∈ ℕ0)
3736ad2antrr 723 . . . . . . . . . . . 12 (((𝑎 ∈ ℕ ∧ 𝑏 ∈ ℝ+) ∧ (𝑒 ∈ ℕ ∧ (2 · (2↑-(!‘(𝑒 + 1)))) ≤ (𝑏 / ((2↑(!‘𝑒))↑𝑎)))) → 𝑎 ∈ ℕ0)
3814, 37nnexpcld 14206 . . . . . . . . . . 11 (((𝑎 ∈ ℕ ∧ 𝑏 ∈ ℝ+) ∧ (𝑒 ∈ ℕ ∧ (2 · (2↑-(!‘(𝑒 + 1)))) ≤ (𝑏 / ((2↑(!‘𝑒))↑𝑎)))) → ((2↑(!‘𝑒))↑𝑎) ∈ ℕ)
3938nnrpd 13012 . . . . . . . . . 10 (((𝑎 ∈ ℕ ∧ 𝑏 ∈ ℝ+) ∧ (𝑒 ∈ ℕ ∧ (2 · (2↑-(!‘(𝑒 + 1)))) ≤ (𝑏 / ((2↑(!‘𝑒))↑𝑎)))) → ((2↑(!‘𝑒))↑𝑎) ∈ ℝ+)
4035, 39rpdivcld 13031 . . . . . . . . 9 (((𝑎 ∈ ℕ ∧ 𝑏 ∈ ℝ+) ∧ (𝑒 ∈ ℕ ∧ (2 · (2↑-(!‘(𝑒 + 1)))) ≤ (𝑏 / ((2↑(!‘𝑒))↑𝑎)))) → (𝑏 / ((2↑(!‘𝑒))↑𝑎)) ∈ ℝ+)
4140rpred 13014 . . . . . . . 8 (((𝑎 ∈ ℕ ∧ 𝑏 ∈ ℝ+) ∧ (𝑒 ∈ ℕ ∧ (2 · (2↑-(!‘(𝑒 + 1)))) ≤ (𝑏 / ((2↑(!‘𝑒))↑𝑎)))) → (𝑏 / ((2↑(!‘𝑒))↑𝑎)) ∈ ℝ)
42 2rp 12977 . . . . . . . . . . 11 2 ∈ ℝ+
43 peano2nn0 12510 . . . . . . . . . . . . . 14 (𝑒 ∈ ℕ0 → (𝑒 + 1) ∈ ℕ0)
44 faccl 14241 . . . . . . . . . . . . . 14 ((𝑒 + 1) ∈ ℕ0 → (!‘(𝑒 + 1)) ∈ ℕ)
459, 43, 443syl 18 . . . . . . . . . . . . 13 (((𝑎 ∈ ℕ ∧ 𝑏 ∈ ℝ+) ∧ (𝑒 ∈ ℕ ∧ (2 · (2↑-(!‘(𝑒 + 1)))) ≤ (𝑏 / ((2↑(!‘𝑒))↑𝑎)))) → (!‘(𝑒 + 1)) ∈ ℕ)
46 nnz 12577 . . . . . . . . . . . . 13 ((!‘(𝑒 + 1)) ∈ ℕ → (!‘(𝑒 + 1)) ∈ ℤ)
47 znegcl 12595 . . . . . . . . . . . . 13 ((!‘(𝑒 + 1)) ∈ ℤ → -(!‘(𝑒 + 1)) ∈ ℤ)
4845, 46, 473syl 18 . . . . . . . . . . . 12 (((𝑎 ∈ ℕ ∧ 𝑏 ∈ ℝ+) ∧ (𝑒 ∈ ℕ ∧ (2 · (2↑-(!‘(𝑒 + 1)))) ≤ (𝑏 / ((2↑(!‘𝑒))↑𝑎)))) → -(!‘(𝑒 + 1)) ∈ ℤ)
49 rpexpcl 14044 . . . . . . . . . . . 12 ((2 ∈ ℝ+ ∧ -(!‘(𝑒 + 1)) ∈ ℤ) → (2↑-(!‘(𝑒 + 1))) ∈ ℝ+)
5042, 48, 49sylancr 586 . . . . . . . . . . 11 (((𝑎 ∈ ℕ ∧ 𝑏 ∈ ℝ+) ∧ (𝑒 ∈ ℕ ∧ (2 · (2↑-(!‘(𝑒 + 1)))) ≤ (𝑏 / ((2↑(!‘𝑒))↑𝑎)))) → (2↑-(!‘(𝑒 + 1))) ∈ ℝ+)
51 rpmulcl 12995 . . . . . . . . . . 11 ((2 ∈ ℝ+ ∧ (2↑-(!‘(𝑒 + 1))) ∈ ℝ+) → (2 · (2↑-(!‘(𝑒 + 1)))) ∈ ℝ+)
5242, 50, 51sylancr 586 . . . . . . . . . 10 (((𝑎 ∈ ℕ ∧ 𝑏 ∈ ℝ+) ∧ (𝑒 ∈ ℕ ∧ (2 · (2↑-(!‘(𝑒 + 1)))) ≤ (𝑏 / ((2↑(!‘𝑒))↑𝑎)))) → (2 · (2↑-(!‘(𝑒 + 1)))) ∈ ℝ+)
5352rpred 13014 . . . . . . . . 9 (((𝑎 ∈ ℕ ∧ 𝑏 ∈ ℝ+) ∧ (𝑒 ∈ ℕ ∧ (2 · (2↑-(!‘(𝑒 + 1)))) ≤ (𝑏 / ((2↑(!‘𝑒))↑𝑎)))) → (2 · (2↑-(!‘(𝑒 + 1)))) ∈ ℝ)
5420oveq2d 7418 . . . . . . . . . . 11 (((𝑎 ∈ ℕ ∧ 𝑏 ∈ ℝ+) ∧ (𝑒 ∈ ℕ ∧ (2 · (2↑-(!‘(𝑒 + 1)))) ≤ (𝑏 / ((2↑(!‘𝑒))↑𝑎)))) → (𝐿 − (((𝐻𝑒) · (2↑(!‘𝑒))) / (2↑(!‘𝑒)))) = (𝐿 − (𝐻𝑒)))
5554fveq2d 6886 . . . . . . . . . 10 (((𝑎 ∈ ℕ ∧ 𝑏 ∈ ℝ+) ∧ (𝑒 ∈ ℕ ∧ (2 · (2↑-(!‘(𝑒 + 1)))) ≤ (𝑏 / ((2↑(!‘𝑒))↑𝑎)))) → (abs‘(𝐿 − (((𝐻𝑒) · (2↑(!‘𝑒))) / (2↑(!‘𝑒))))) = (abs‘(𝐿 − (𝐻𝑒))))
5621simprd 495 . . . . . . . . . . 11 (𝑒 ∈ ℕ → (abs‘(𝐿 − (𝐻𝑒))) ≤ (2 · (2↑-(!‘(𝑒 + 1)))))
5756ad2antrl 725 . . . . . . . . . 10 (((𝑎 ∈ ℕ ∧ 𝑏 ∈ ℝ+) ∧ (𝑒 ∈ ℕ ∧ (2 · (2↑-(!‘(𝑒 + 1)))) ≤ (𝑏 / ((2↑(!‘𝑒))↑𝑎)))) → (abs‘(𝐿 − (𝐻𝑒))) ≤ (2 · (2↑-(!‘(𝑒 + 1)))))
5855, 57eqbrtrd 5161 . . . . . . . . 9 (((𝑎 ∈ ℕ ∧ 𝑏 ∈ ℝ+) ∧ (𝑒 ∈ ℕ ∧ (2 · (2↑-(!‘(𝑒 + 1)))) ≤ (𝑏 / ((2↑(!‘𝑒))↑𝑎)))) → (abs‘(𝐿 − (((𝐻𝑒) · (2↑(!‘𝑒))) / (2↑(!‘𝑒))))) ≤ (2 · (2↑-(!‘(𝑒 + 1)))))
59 simprr 770 . . . . . . . . 9 (((𝑎 ∈ ℕ ∧ 𝑏 ∈ ℝ+) ∧ (𝑒 ∈ ℕ ∧ (2 · (2↑-(!‘(𝑒 + 1)))) ≤ (𝑏 / ((2↑(!‘𝑒))↑𝑎)))) → (2 · (2↑-(!‘(𝑒 + 1)))) ≤ (𝑏 / ((2↑(!‘𝑒))↑𝑎)))
6034, 53, 41, 58, 59letrd 11369 . . . . . . . 8 (((𝑎 ∈ ℕ ∧ 𝑏 ∈ ℝ+) ∧ (𝑒 ∈ ℕ ∧ (2 · (2↑-(!‘(𝑒 + 1)))) ≤ (𝑏 / ((2↑(!‘𝑒))↑𝑎)))) → (abs‘(𝐿 − (((𝐻𝑒) · (2↑(!‘𝑒))) / (2↑(!‘𝑒))))) ≤ (𝑏 / ((2↑(!‘𝑒))↑𝑎)))
6134, 41, 60lensymd 11363 . . . . . . 7 (((𝑎 ∈ ℕ ∧ 𝑏 ∈ ℝ+) ∧ (𝑒 ∈ ℕ ∧ (2 · (2↑-(!‘(𝑒 + 1)))) ≤ (𝑏 / ((2↑(!‘𝑒))↑𝑎)))) → ¬ (𝑏 / ((2↑(!‘𝑒))↑𝑎)) < (abs‘(𝐿 − (((𝐻𝑒) · (2↑(!‘𝑒))) / (2↑(!‘𝑒))))))
62 oveq1 7409 . . . . . . . . . . 11 (𝑓 = ((𝐻𝑒) · (2↑(!‘𝑒))) → (𝑓 / 𝑑) = (((𝐻𝑒) · (2↑(!‘𝑒))) / 𝑑))
6362eqeq2d 2735 . . . . . . . . . 10 (𝑓 = ((𝐻𝑒) · (2↑(!‘𝑒))) → (𝐿 = (𝑓 / 𝑑) ↔ 𝐿 = (((𝐻𝑒) · (2↑(!‘𝑒))) / 𝑑)))
6463notbid 318 . . . . . . . . 9 (𝑓 = ((𝐻𝑒) · (2↑(!‘𝑒))) → (¬ 𝐿 = (𝑓 / 𝑑) ↔ ¬ 𝐿 = (((𝐻𝑒) · (2↑(!‘𝑒))) / 𝑑)))
6562oveq2d 7418 . . . . . . . . . . . 12 (𝑓 = ((𝐻𝑒) · (2↑(!‘𝑒))) → (𝐿 − (𝑓 / 𝑑)) = (𝐿 − (((𝐻𝑒) · (2↑(!‘𝑒))) / 𝑑)))
6665fveq2d 6886 . . . . . . . . . . 11 (𝑓 = ((𝐻𝑒) · (2↑(!‘𝑒))) → (abs‘(𝐿 − (𝑓 / 𝑑))) = (abs‘(𝐿 − (((𝐻𝑒) · (2↑(!‘𝑒))) / 𝑑))))
6766breq2d 5151 . . . . . . . . . 10 (𝑓 = ((𝐻𝑒) · (2↑(!‘𝑒))) → ((𝑏 / (𝑑𝑎)) < (abs‘(𝐿 − (𝑓 / 𝑑))) ↔ (𝑏 / (𝑑𝑎)) < (abs‘(𝐿 − (((𝐻𝑒) · (2↑(!‘𝑒))) / 𝑑)))))
6867notbid 318 . . . . . . . . 9 (𝑓 = ((𝐻𝑒) · (2↑(!‘𝑒))) → (¬ (𝑏 / (𝑑𝑎)) < (abs‘(𝐿 − (𝑓 / 𝑑))) ↔ ¬ (𝑏 / (𝑑𝑎)) < (abs‘(𝐿 − (((𝐻𝑒) · (2↑(!‘𝑒))) / 𝑑)))))
6964, 68anbi12d 630 . . . . . . . 8 (𝑓 = ((𝐻𝑒) · (2↑(!‘𝑒))) → ((¬ 𝐿 = (𝑓 / 𝑑) ∧ ¬ (𝑏 / (𝑑𝑎)) < (abs‘(𝐿 − (𝑓 / 𝑑)))) ↔ (¬ 𝐿 = (((𝐻𝑒) · (2↑(!‘𝑒))) / 𝑑) ∧ ¬ (𝑏 / (𝑑𝑎)) < (abs‘(𝐿 − (((𝐻𝑒) · (2↑(!‘𝑒))) / 𝑑))))))
70 oveq2 7410 . . . . . . . . . . 11 (𝑑 = (2↑(!‘𝑒)) → (((𝐻𝑒) · (2↑(!‘𝑒))) / 𝑑) = (((𝐻𝑒) · (2↑(!‘𝑒))) / (2↑(!‘𝑒))))
7170eqeq2d 2735 . . . . . . . . . 10 (𝑑 = (2↑(!‘𝑒)) → (𝐿 = (((𝐻𝑒) · (2↑(!‘𝑒))) / 𝑑) ↔ 𝐿 = (((𝐻𝑒) · (2↑(!‘𝑒))) / (2↑(!‘𝑒)))))
7271notbid 318 . . . . . . . . 9 (𝑑 = (2↑(!‘𝑒)) → (¬ 𝐿 = (((𝐻𝑒) · (2↑(!‘𝑒))) / 𝑑) ↔ ¬ 𝐿 = (((𝐻𝑒) · (2↑(!‘𝑒))) / (2↑(!‘𝑒)))))
73 oveq1 7409 . . . . . . . . . . . 12 (𝑑 = (2↑(!‘𝑒)) → (𝑑𝑎) = ((2↑(!‘𝑒))↑𝑎))
7473oveq2d 7418 . . . . . . . . . . 11 (𝑑 = (2↑(!‘𝑒)) → (𝑏 / (𝑑𝑎)) = (𝑏 / ((2↑(!‘𝑒))↑𝑎)))
7570oveq2d 7418 . . . . . . . . . . . 12 (𝑑 = (2↑(!‘𝑒)) → (𝐿 − (((𝐻𝑒) · (2↑(!‘𝑒))) / 𝑑)) = (𝐿 − (((𝐻𝑒) · (2↑(!‘𝑒))) / (2↑(!‘𝑒)))))
7675fveq2d 6886 . . . . . . . . . . 11 (𝑑 = (2↑(!‘𝑒)) → (abs‘(𝐿 − (((𝐻𝑒) · (2↑(!‘𝑒))) / 𝑑))) = (abs‘(𝐿 − (((𝐻𝑒) · (2↑(!‘𝑒))) / (2↑(!‘𝑒))))))
7774, 76breq12d 5152 . . . . . . . . . 10 (𝑑 = (2↑(!‘𝑒)) → ((𝑏 / (𝑑𝑎)) < (abs‘(𝐿 − (((𝐻𝑒) · (2↑(!‘𝑒))) / 𝑑))) ↔ (𝑏 / ((2↑(!‘𝑒))↑𝑎)) < (abs‘(𝐿 − (((𝐻𝑒) · (2↑(!‘𝑒))) / (2↑(!‘𝑒)))))))
7877notbid 318 . . . . . . . . 9 (𝑑 = (2↑(!‘𝑒)) → (¬ (𝑏 / (𝑑𝑎)) < (abs‘(𝐿 − (((𝐻𝑒) · (2↑(!‘𝑒))) / 𝑑))) ↔ ¬ (𝑏 / ((2↑(!‘𝑒))↑𝑎)) < (abs‘(𝐿 − (((𝐻𝑒) · (2↑(!‘𝑒))) / (2↑(!‘𝑒)))))))
7972, 78anbi12d 630 . . . . . . . 8 (𝑑 = (2↑(!‘𝑒)) → ((¬ 𝐿 = (((𝐻𝑒) · (2↑(!‘𝑒))) / 𝑑) ∧ ¬ (𝑏 / (𝑑𝑎)) < (abs‘(𝐿 − (((𝐻𝑒) · (2↑(!‘𝑒))) / 𝑑)))) ↔ (¬ 𝐿 = (((𝐻𝑒) · (2↑(!‘𝑒))) / (2↑(!‘𝑒))) ∧ ¬ (𝑏 / ((2↑(!‘𝑒))↑𝑎)) < (abs‘(𝐿 − (((𝐻𝑒) · (2↑(!‘𝑒))) / (2↑(!‘𝑒))))))))
8069, 79rspc2ev 3617 . . . . . . 7 ((((𝐻𝑒) · (2↑(!‘𝑒))) ∈ ℤ ∧ (2↑(!‘𝑒)) ∈ ℕ ∧ (¬ 𝐿 = (((𝐻𝑒) · (2↑(!‘𝑒))) / (2↑(!‘𝑒))) ∧ ¬ (𝑏 / ((2↑(!‘𝑒))↑𝑎)) < (abs‘(𝐿 − (((𝐻𝑒) · (2↑(!‘𝑒))) / (2↑(!‘𝑒))))))) → ∃𝑓 ∈ ℤ ∃𝑑 ∈ ℕ (¬ 𝐿 = (𝑓 / 𝑑) ∧ ¬ (𝑏 / (𝑑𝑎)) < (abs‘(𝐿 − (𝑓 / 𝑑)))))
816, 14, 26, 61, 80syl112anc 1371 . . . . . 6 (((𝑎 ∈ ℕ ∧ 𝑏 ∈ ℝ+) ∧ (𝑒 ∈ ℕ ∧ (2 · (2↑-(!‘(𝑒 + 1)))) ≤ (𝑏 / ((2↑(!‘𝑒))↑𝑎)))) → ∃𝑓 ∈ ℤ ∃𝑑 ∈ ℕ (¬ 𝐿 = (𝑓 / 𝑑) ∧ ¬ (𝑏 / (𝑑𝑎)) < (abs‘(𝐿 − (𝑓 / 𝑑)))))
821, 81rexlimddv 3153 . . . . 5 ((𝑎 ∈ ℕ ∧ 𝑏 ∈ ℝ+) → ∃𝑓 ∈ ℤ ∃𝑑 ∈ ℕ (¬ 𝐿 = (𝑓 / 𝑑) ∧ ¬ (𝑏 / (𝑑𝑎)) < (abs‘(𝐿 − (𝑓 / 𝑑)))))
83 pm4.56 985 . . . . . . . . 9 ((¬ 𝐿 = (𝑓 / 𝑑) ∧ ¬ (𝑏 / (𝑑𝑎)) < (abs‘(𝐿 − (𝑓 / 𝑑)))) ↔ ¬ (𝐿 = (𝑓 / 𝑑) ∨ (𝑏 / (𝑑𝑎)) < (abs‘(𝐿 − (𝑓 / 𝑑)))))
8483rexbii 3086 . . . . . . . 8 (∃𝑑 ∈ ℕ (¬ 𝐿 = (𝑓 / 𝑑) ∧ ¬ (𝑏 / (𝑑𝑎)) < (abs‘(𝐿 − (𝑓 / 𝑑)))) ↔ ∃𝑑 ∈ ℕ ¬ (𝐿 = (𝑓 / 𝑑) ∨ (𝑏 / (𝑑𝑎)) < (abs‘(𝐿 − (𝑓 / 𝑑)))))
85 rexnal 3092 . . . . . . . 8 (∃𝑑 ∈ ℕ ¬ (𝐿 = (𝑓 / 𝑑) ∨ (𝑏 / (𝑑𝑎)) < (abs‘(𝐿 − (𝑓 / 𝑑)))) ↔ ¬ ∀𝑑 ∈ ℕ (𝐿 = (𝑓 / 𝑑) ∨ (𝑏 / (𝑑𝑎)) < (abs‘(𝐿 − (𝑓 / 𝑑)))))
8684, 85bitri 275 . . . . . . 7 (∃𝑑 ∈ ℕ (¬ 𝐿 = (𝑓 / 𝑑) ∧ ¬ (𝑏 / (𝑑𝑎)) < (abs‘(𝐿 − (𝑓 / 𝑑)))) ↔ ¬ ∀𝑑 ∈ ℕ (𝐿 = (𝑓 / 𝑑) ∨ (𝑏 / (𝑑𝑎)) < (abs‘(𝐿 − (𝑓 / 𝑑)))))
8786rexbii 3086 . . . . . 6 (∃𝑓 ∈ ℤ ∃𝑑 ∈ ℕ (¬ 𝐿 = (𝑓 / 𝑑) ∧ ¬ (𝑏 / (𝑑𝑎)) < (abs‘(𝐿 − (𝑓 / 𝑑)))) ↔ ∃𝑓 ∈ ℤ ¬ ∀𝑑 ∈ ℕ (𝐿 = (𝑓 / 𝑑) ∨ (𝑏 / (𝑑𝑎)) < (abs‘(𝐿 − (𝑓 / 𝑑)))))
88 rexnal 3092 . . . . . 6 (∃𝑓 ∈ ℤ ¬ ∀𝑑 ∈ ℕ (𝐿 = (𝑓 / 𝑑) ∨ (𝑏 / (𝑑𝑎)) < (abs‘(𝐿 − (𝑓 / 𝑑)))) ↔ ¬ ∀𝑓 ∈ ℤ ∀𝑑 ∈ ℕ (𝐿 = (𝑓 / 𝑑) ∨ (𝑏 / (𝑑𝑎)) < (abs‘(𝐿 − (𝑓 / 𝑑)))))
8987, 88bitri 275 . . . . 5 (∃𝑓 ∈ ℤ ∃𝑑 ∈ ℕ (¬ 𝐿 = (𝑓 / 𝑑) ∧ ¬ (𝑏 / (𝑑𝑎)) < (abs‘(𝐿 − (𝑓 / 𝑑)))) ↔ ¬ ∀𝑓 ∈ ℤ ∀𝑑 ∈ ℕ (𝐿 = (𝑓 / 𝑑) ∨ (𝑏 / (𝑑𝑎)) < (abs‘(𝐿 − (𝑓 / 𝑑)))))
9082, 89sylib 217 . . . 4 ((𝑎 ∈ ℕ ∧ 𝑏 ∈ ℝ+) → ¬ ∀𝑓 ∈ ℤ ∀𝑑 ∈ ℕ (𝐿 = (𝑓 / 𝑑) ∨ (𝑏 / (𝑑𝑎)) < (abs‘(𝐿 − (𝑓 / 𝑑)))))
9190nrexdv 3141 . . 3 (𝑎 ∈ ℕ → ¬ ∃𝑏 ∈ ℝ+𝑓 ∈ ℤ ∀𝑑 ∈ ℕ (𝐿 = (𝑓 / 𝑑) ∨ (𝑏 / (𝑑𝑎)) < (abs‘(𝐿 − (𝑓 / 𝑑)))))
9291nrex 3066 . 2 ¬ ∃𝑎 ∈ ℕ ∃𝑏 ∈ ℝ+𝑓 ∈ ℤ ∀𝑑 ∈ ℕ (𝐿 = (𝑓 / 𝑑) ∨ (𝑏 / (𝑑𝑎)) < (abs‘(𝐿 − (𝑓 / 𝑑))))
93 aaliou2b 26197 . 2 (𝐿 ∈ 𝔸 → ∃𝑎 ∈ ℕ ∃𝑏 ∈ ℝ+𝑓 ∈ ℤ ∀𝑑 ∈ ℕ (𝐿 = (𝑓 / 𝑑) ∨ (𝑏 / (𝑑𝑎)) < (abs‘(𝐿 − (𝑓 / 𝑑)))))
9492, 93mto 196 1 ¬ 𝐿 ∈ 𝔸
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wa 395  wo 844   = wceq 1533  wcel 2098  wne 2932  wral 3053  wrex 3062   class class class wbr 5139  cmpt 5222  cfv 6534  (class class class)co 7402  cr 11106  1c1 11108   + caddc 11110   · cmul 11112   < clt 11246  cle 11247  cmin 11442  -cneg 11443   / cdiv 11869  cn 12210  2c2 12265  0cn0 12470  cz 12556  +crp 12972  ...cfz 13482  cexp 14025  !cfa 14231  abscabs 15179  Σcsu 15630  𝔸caa 26170
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2695  ax-rep 5276  ax-sep 5290  ax-nul 5297  ax-pow 5354  ax-pr 5418  ax-un 7719  ax-inf2 9633  ax-cnex 11163  ax-resscn 11164  ax-1cn 11165  ax-icn 11166  ax-addcl 11167  ax-addrcl 11168  ax-mulcl 11169  ax-mulrcl 11170  ax-mulcom 11171  ax-addass 11172  ax-mulass 11173  ax-distr 11174  ax-i2m1 11175  ax-1ne0 11176  ax-1rid 11177  ax-rnegex 11178  ax-rrecex 11179  ax-cnre 11180  ax-pre-lttri 11181  ax-pre-lttrn 11182  ax-pre-ltadd 11183  ax-pre-mulgt0 11184  ax-pre-sup 11185  ax-addf 11186  ax-mulf 11187
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2526  df-eu 2555  df-clab 2702  df-cleq 2716  df-clel 2802  df-nfc 2877  df-ne 2933  df-nel 3039  df-ral 3054  df-rex 3063  df-rmo 3368  df-reu 3369  df-rab 3425  df-v 3468  df-sbc 3771  df-csb 3887  df-dif 3944  df-un 3946  df-in 3948  df-ss 3958  df-pss 3960  df-nul 4316  df-if 4522  df-pw 4597  df-sn 4622  df-pr 4624  df-tp 4626  df-op 4628  df-uni 4901  df-int 4942  df-iun 4990  df-iin 4991  df-br 5140  df-opab 5202  df-mpt 5223  df-tr 5257  df-id 5565  df-eprel 5571  df-po 5579  df-so 5580  df-fr 5622  df-se 5623  df-we 5624  df-xp 5673  df-rel 5674  df-cnv 5675  df-co 5676  df-dm 5677  df-rn 5678  df-res 5679  df-ima 5680  df-pred 6291  df-ord 6358  df-on 6359  df-lim 6360  df-suc 6361  df-iota 6486  df-fun 6536  df-fn 6537  df-f 6538  df-f1 6539  df-fo 6540  df-f1o 6541  df-fv 6542  df-isom 6543  df-riota 7358  df-ov 7405  df-oprab 7406  df-mpo 7407  df-of 7664  df-om 7850  df-1st 7969  df-2nd 7970  df-supp 8142  df-frecs 8262  df-wrecs 8293  df-recs 8367  df-rdg 8406  df-1o 8462  df-2o 8463  df-oadd 8466  df-er 8700  df-map 8819  df-pm 8820  df-ixp 8889  df-en 8937  df-dom 8938  df-sdom 8939  df-fin 8940  df-fsupp 9359  df-fi 9403  df-sup 9434  df-inf 9435  df-oi 9502  df-dju 9893  df-card 9931  df-pnf 11248  df-mnf 11249  df-xr 11250  df-ltxr 11251  df-le 11252  df-sub 11444  df-neg 11445  df-div 11870  df-nn 12211  df-2 12273  df-3 12274  df-4 12275  df-5 12276  df-6 12277  df-7 12278  df-8 12279  df-9 12280  df-n0 12471  df-xnn0 12543  df-z 12557  df-dec 12676  df-uz 12821  df-q 12931  df-rp 12973  df-xneg 13090  df-xadd 13091  df-xmul 13092  df-ioo 13326  df-ioc 13327  df-ico 13328  df-icc 13329  df-fz 13483  df-fzo 13626  df-fl 13755  df-seq 13965  df-exp 14026  df-fac 14232  df-hash 14289  df-shft 15012  df-cj 15044  df-re 15045  df-im 15046  df-sqrt 15180  df-abs 15181  df-limsup 15413  df-clim 15430  df-rlim 15431  df-sum 15631  df-struct 17081  df-sets 17098  df-slot 17116  df-ndx 17128  df-base 17146  df-ress 17175  df-plusg 17211  df-mulr 17212  df-starv 17213  df-sca 17214  df-vsca 17215  df-ip 17216  df-tset 17217  df-ple 17218  df-ds 17220  df-unif 17221  df-hom 17222  df-cco 17223  df-rest 17369  df-topn 17370  df-0g 17388  df-gsum 17389  df-topgen 17390  df-pt 17391  df-prds 17394  df-xrs 17449  df-qtop 17454  df-imas 17455  df-xps 17457  df-mre 17531  df-mrc 17532  df-acs 17534  df-mgm 18565  df-sgrp 18644  df-mnd 18660  df-submnd 18706  df-grp 18858  df-minusg 18859  df-mulg 18988  df-subg 19042  df-cntz 19225  df-cmn 19694  df-abl 19695  df-mgp 20032  df-rng 20050  df-ur 20079  df-ring 20132  df-cring 20133  df-subrng 20438  df-subrg 20463  df-psmet 21222  df-xmet 21223  df-met 21224  df-bl 21225  df-mopn 21226  df-fbas 21227  df-fg 21228  df-cnfld 21231  df-top 22720  df-topon 22737  df-topsp 22759  df-bases 22773  df-cld 22847  df-ntr 22848  df-cls 22849  df-nei 22926  df-lp 22964  df-perf 22965  df-cn 23055  df-cnp 23056  df-haus 23143  df-cmp 23215  df-tx 23390  df-hmeo 23583  df-fil 23674  df-fm 23766  df-flim 23767  df-flf 23768  df-xms 24150  df-ms 24151  df-tms 24152  df-cncf 24722  df-0p 25523  df-limc 25719  df-dv 25720  df-dvn 25721  df-cpn 25722  df-ply 26044  df-idp 26045  df-coe 26046  df-dgr 26047  df-quot 26147  df-aa 26171
This theorem is referenced by:  aaliou3  26207
  Copyright terms: Public domain W3C validator