MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  aaliou3lem9 Structured version   Visualization version   GIF version

Theorem aaliou3lem9 26407
Description: Example of a "Liouville number", a very simple definable transcendental real. (Contributed by Stefan O'Rear, 20-Nov-2014.)
Hypotheses
Ref Expression
aaliou3lem.c 𝐹 = (𝑎 ∈ ℕ ↦ (2↑-(!‘𝑎)))
aaliou3lem.d 𝐿 = Σ𝑏 ∈ ℕ (𝐹𝑏)
aaliou3lem.e 𝐻 = (𝑐 ∈ ℕ ↦ Σ𝑏 ∈ (1...𝑐)(𝐹𝑏))
Assertion
Ref Expression
aaliou3lem9 ¬ 𝐿 ∈ 𝔸
Distinct variable groups:   𝑎,𝑏,𝑐   𝐹,𝑏,𝑐   𝐿,𝑐,𝑎,𝑏
Allowed substitution hints:   𝐹(𝑎)   𝐻(𝑎,𝑏,𝑐)

Proof of Theorem aaliou3lem9
Dummy variables 𝑑 𝑒 𝑓 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 aaliou3lem8 26402 . . . . . 6 ((𝑎 ∈ ℕ ∧ 𝑏 ∈ ℝ+) → ∃𝑒 ∈ ℕ (2 · (2↑-(!‘(𝑒 + 1)))) ≤ (𝑏 / ((2↑(!‘𝑒))↑𝑎)))
2 aaliou3lem.c . . . . . . . . 9 𝐹 = (𝑎 ∈ ℕ ↦ (2↑-(!‘𝑎)))
3 aaliou3lem.d . . . . . . . . 9 𝐿 = Σ𝑏 ∈ ℕ (𝐹𝑏)
4 aaliou3lem.e . . . . . . . . 9 𝐻 = (𝑐 ∈ ℕ ↦ Σ𝑏 ∈ (1...𝑐)(𝐹𝑏))
52, 3, 4aaliou3lem6 26405 . . . . . . . 8 (𝑒 ∈ ℕ → ((𝐻𝑒) · (2↑(!‘𝑒))) ∈ ℤ)
65ad2antrl 728 . . . . . . 7 (((𝑎 ∈ ℕ ∧ 𝑏 ∈ ℝ+) ∧ (𝑒 ∈ ℕ ∧ (2 · (2↑-(!‘(𝑒 + 1)))) ≤ (𝑏 / ((2↑(!‘𝑒))↑𝑎)))) → ((𝐻𝑒) · (2↑(!‘𝑒))) ∈ ℤ)
7 2nn 12337 . . . . . . . 8 2 ∈ ℕ
8 nnnn0 12531 . . . . . . . . . 10 (𝑒 ∈ ℕ → 𝑒 ∈ ℕ0)
98ad2antrl 728 . . . . . . . . 9 (((𝑎 ∈ ℕ ∧ 𝑏 ∈ ℝ+) ∧ (𝑒 ∈ ℕ ∧ (2 · (2↑-(!‘(𝑒 + 1)))) ≤ (𝑏 / ((2↑(!‘𝑒))↑𝑎)))) → 𝑒 ∈ ℕ0)
10 faccl 14319 . . . . . . . . 9 (𝑒 ∈ ℕ0 → (!‘𝑒) ∈ ℕ)
11 nnnn0 12531 . . . . . . . . 9 ((!‘𝑒) ∈ ℕ → (!‘𝑒) ∈ ℕ0)
129, 10, 113syl 18 . . . . . . . 8 (((𝑎 ∈ ℕ ∧ 𝑏 ∈ ℝ+) ∧ (𝑒 ∈ ℕ ∧ (2 · (2↑-(!‘(𝑒 + 1)))) ≤ (𝑏 / ((2↑(!‘𝑒))↑𝑎)))) → (!‘𝑒) ∈ ℕ0)
13 nnexpcl 14112 . . . . . . . 8 ((2 ∈ ℕ ∧ (!‘𝑒) ∈ ℕ0) → (2↑(!‘𝑒)) ∈ ℕ)
147, 12, 13sylancr 587 . . . . . . 7 (((𝑎 ∈ ℕ ∧ 𝑏 ∈ ℝ+) ∧ (𝑒 ∈ ℕ ∧ (2 · (2↑-(!‘(𝑒 + 1)))) ≤ (𝑏 / ((2↑(!‘𝑒))↑𝑎)))) → (2↑(!‘𝑒)) ∈ ℕ)
152, 3, 4aaliou3lem5 26404 . . . . . . . . . . . . 13 (𝑒 ∈ ℕ → (𝐻𝑒) ∈ ℝ)
1615ad2antrl 728 . . . . . . . . . . . 12 (((𝑎 ∈ ℕ ∧ 𝑏 ∈ ℝ+) ∧ (𝑒 ∈ ℕ ∧ (2 · (2↑-(!‘(𝑒 + 1)))) ≤ (𝑏 / ((2↑(!‘𝑒))↑𝑎)))) → (𝐻𝑒) ∈ ℝ)
1716recnd 11287 . . . . . . . . . . 11 (((𝑎 ∈ ℕ ∧ 𝑏 ∈ ℝ+) ∧ (𝑒 ∈ ℕ ∧ (2 · (2↑-(!‘(𝑒 + 1)))) ≤ (𝑏 / ((2↑(!‘𝑒))↑𝑎)))) → (𝐻𝑒) ∈ ℂ)
1814nncnd 12280 . . . . . . . . . . 11 (((𝑎 ∈ ℕ ∧ 𝑏 ∈ ℝ+) ∧ (𝑒 ∈ ℕ ∧ (2 · (2↑-(!‘(𝑒 + 1)))) ≤ (𝑏 / ((2↑(!‘𝑒))↑𝑎)))) → (2↑(!‘𝑒)) ∈ ℂ)
1914nnne0d 12314 . . . . . . . . . . 11 (((𝑎 ∈ ℕ ∧ 𝑏 ∈ ℝ+) ∧ (𝑒 ∈ ℕ ∧ (2 · (2↑-(!‘(𝑒 + 1)))) ≤ (𝑏 / ((2↑(!‘𝑒))↑𝑎)))) → (2↑(!‘𝑒)) ≠ 0)
2017, 18, 19divcan4d 12047 . . . . . . . . . 10 (((𝑎 ∈ ℕ ∧ 𝑏 ∈ ℝ+) ∧ (𝑒 ∈ ℕ ∧ (2 · (2↑-(!‘(𝑒 + 1)))) ≤ (𝑏 / ((2↑(!‘𝑒))↑𝑎)))) → (((𝐻𝑒) · (2↑(!‘𝑒))) / (2↑(!‘𝑒))) = (𝐻𝑒))
212, 3, 4aaliou3lem7 26406 . . . . . . . . . . . 12 (𝑒 ∈ ℕ → ((𝐻𝑒) ≠ 𝐿 ∧ (abs‘(𝐿 − (𝐻𝑒))) ≤ (2 · (2↑-(!‘(𝑒 + 1))))))
2221simpld 494 . . . . . . . . . . 11 (𝑒 ∈ ℕ → (𝐻𝑒) ≠ 𝐿)
2322ad2antrl 728 . . . . . . . . . 10 (((𝑎 ∈ ℕ ∧ 𝑏 ∈ ℝ+) ∧ (𝑒 ∈ ℕ ∧ (2 · (2↑-(!‘(𝑒 + 1)))) ≤ (𝑏 / ((2↑(!‘𝑒))↑𝑎)))) → (𝐻𝑒) ≠ 𝐿)
2420, 23eqnetrd 3006 . . . . . . . . 9 (((𝑎 ∈ ℕ ∧ 𝑏 ∈ ℝ+) ∧ (𝑒 ∈ ℕ ∧ (2 · (2↑-(!‘(𝑒 + 1)))) ≤ (𝑏 / ((2↑(!‘𝑒))↑𝑎)))) → (((𝐻𝑒) · (2↑(!‘𝑒))) / (2↑(!‘𝑒))) ≠ 𝐿)
2524necomd 2994 . . . . . . . 8 (((𝑎 ∈ ℕ ∧ 𝑏 ∈ ℝ+) ∧ (𝑒 ∈ ℕ ∧ (2 · (2↑-(!‘(𝑒 + 1)))) ≤ (𝑏 / ((2↑(!‘𝑒))↑𝑎)))) → 𝐿 ≠ (((𝐻𝑒) · (2↑(!‘𝑒))) / (2↑(!‘𝑒))))
2625neneqd 2943 . . . . . . 7 (((𝑎 ∈ ℕ ∧ 𝑏 ∈ ℝ+) ∧ (𝑒 ∈ ℕ ∧ (2 · (2↑-(!‘(𝑒 + 1)))) ≤ (𝑏 / ((2↑(!‘𝑒))↑𝑎)))) → ¬ 𝐿 = (((𝐻𝑒) · (2↑(!‘𝑒))) / (2↑(!‘𝑒))))
272, 3, 4aaliou3lem4 26403 . . . . . . . . . . 11 𝐿 ∈ ℝ
2814nnred 12279 . . . . . . . . . . . . 13 (((𝑎 ∈ ℕ ∧ 𝑏 ∈ ℝ+) ∧ (𝑒 ∈ ℕ ∧ (2 · (2↑-(!‘(𝑒 + 1)))) ≤ (𝑏 / ((2↑(!‘𝑒))↑𝑎)))) → (2↑(!‘𝑒)) ∈ ℝ)
2916, 28remulcld 11289 . . . . . . . . . . . 12 (((𝑎 ∈ ℕ ∧ 𝑏 ∈ ℝ+) ∧ (𝑒 ∈ ℕ ∧ (2 · (2↑-(!‘(𝑒 + 1)))) ≤ (𝑏 / ((2↑(!‘𝑒))↑𝑎)))) → ((𝐻𝑒) · (2↑(!‘𝑒))) ∈ ℝ)
3029, 14nndivred 12318 . . . . . . . . . . 11 (((𝑎 ∈ ℕ ∧ 𝑏 ∈ ℝ+) ∧ (𝑒 ∈ ℕ ∧ (2 · (2↑-(!‘(𝑒 + 1)))) ≤ (𝑏 / ((2↑(!‘𝑒))↑𝑎)))) → (((𝐻𝑒) · (2↑(!‘𝑒))) / (2↑(!‘𝑒))) ∈ ℝ)
31 resubcl 11571 . . . . . . . . . . 11 ((𝐿 ∈ ℝ ∧ (((𝐻𝑒) · (2↑(!‘𝑒))) / (2↑(!‘𝑒))) ∈ ℝ) → (𝐿 − (((𝐻𝑒) · (2↑(!‘𝑒))) / (2↑(!‘𝑒)))) ∈ ℝ)
3227, 30, 31sylancr 587 . . . . . . . . . 10 (((𝑎 ∈ ℕ ∧ 𝑏 ∈ ℝ+) ∧ (𝑒 ∈ ℕ ∧ (2 · (2↑-(!‘(𝑒 + 1)))) ≤ (𝑏 / ((2↑(!‘𝑒))↑𝑎)))) → (𝐿 − (((𝐻𝑒) · (2↑(!‘𝑒))) / (2↑(!‘𝑒)))) ∈ ℝ)
3332recnd 11287 . . . . . . . . 9 (((𝑎 ∈ ℕ ∧ 𝑏 ∈ ℝ+) ∧ (𝑒 ∈ ℕ ∧ (2 · (2↑-(!‘(𝑒 + 1)))) ≤ (𝑏 / ((2↑(!‘𝑒))↑𝑎)))) → (𝐿 − (((𝐻𝑒) · (2↑(!‘𝑒))) / (2↑(!‘𝑒)))) ∈ ℂ)
3433abscld 15472 . . . . . . . 8 (((𝑎 ∈ ℕ ∧ 𝑏 ∈ ℝ+) ∧ (𝑒 ∈ ℕ ∧ (2 · (2↑-(!‘(𝑒 + 1)))) ≤ (𝑏 / ((2↑(!‘𝑒))↑𝑎)))) → (abs‘(𝐿 − (((𝐻𝑒) · (2↑(!‘𝑒))) / (2↑(!‘𝑒))))) ∈ ℝ)
35 simplr 769 . . . . . . . . . 10 (((𝑎 ∈ ℕ ∧ 𝑏 ∈ ℝ+) ∧ (𝑒 ∈ ℕ ∧ (2 · (2↑-(!‘(𝑒 + 1)))) ≤ (𝑏 / ((2↑(!‘𝑒))↑𝑎)))) → 𝑏 ∈ ℝ+)
36 nnnn0 12531 . . . . . . . . . . . . 13 (𝑎 ∈ ℕ → 𝑎 ∈ ℕ0)
3736ad2antrr 726 . . . . . . . . . . . 12 (((𝑎 ∈ ℕ ∧ 𝑏 ∈ ℝ+) ∧ (𝑒 ∈ ℕ ∧ (2 · (2↑-(!‘(𝑒 + 1)))) ≤ (𝑏 / ((2↑(!‘𝑒))↑𝑎)))) → 𝑎 ∈ ℕ0)
3814, 37nnexpcld 14281 . . . . . . . . . . 11 (((𝑎 ∈ ℕ ∧ 𝑏 ∈ ℝ+) ∧ (𝑒 ∈ ℕ ∧ (2 · (2↑-(!‘(𝑒 + 1)))) ≤ (𝑏 / ((2↑(!‘𝑒))↑𝑎)))) → ((2↑(!‘𝑒))↑𝑎) ∈ ℕ)
3938nnrpd 13073 . . . . . . . . . 10 (((𝑎 ∈ ℕ ∧ 𝑏 ∈ ℝ+) ∧ (𝑒 ∈ ℕ ∧ (2 · (2↑-(!‘(𝑒 + 1)))) ≤ (𝑏 / ((2↑(!‘𝑒))↑𝑎)))) → ((2↑(!‘𝑒))↑𝑎) ∈ ℝ+)
4035, 39rpdivcld 13092 . . . . . . . . 9 (((𝑎 ∈ ℕ ∧ 𝑏 ∈ ℝ+) ∧ (𝑒 ∈ ℕ ∧ (2 · (2↑-(!‘(𝑒 + 1)))) ≤ (𝑏 / ((2↑(!‘𝑒))↑𝑎)))) → (𝑏 / ((2↑(!‘𝑒))↑𝑎)) ∈ ℝ+)
4140rpred 13075 . . . . . . . 8 (((𝑎 ∈ ℕ ∧ 𝑏 ∈ ℝ+) ∧ (𝑒 ∈ ℕ ∧ (2 · (2↑-(!‘(𝑒 + 1)))) ≤ (𝑏 / ((2↑(!‘𝑒))↑𝑎)))) → (𝑏 / ((2↑(!‘𝑒))↑𝑎)) ∈ ℝ)
42 2rp 13037 . . . . . . . . . . 11 2 ∈ ℝ+
43 peano2nn0 12564 . . . . . . . . . . . . . 14 (𝑒 ∈ ℕ0 → (𝑒 + 1) ∈ ℕ0)
44 faccl 14319 . . . . . . . . . . . . . 14 ((𝑒 + 1) ∈ ℕ0 → (!‘(𝑒 + 1)) ∈ ℕ)
459, 43, 443syl 18 . . . . . . . . . . . . 13 (((𝑎 ∈ ℕ ∧ 𝑏 ∈ ℝ+) ∧ (𝑒 ∈ ℕ ∧ (2 · (2↑-(!‘(𝑒 + 1)))) ≤ (𝑏 / ((2↑(!‘𝑒))↑𝑎)))) → (!‘(𝑒 + 1)) ∈ ℕ)
46 nnz 12632 . . . . . . . . . . . . 13 ((!‘(𝑒 + 1)) ∈ ℕ → (!‘(𝑒 + 1)) ∈ ℤ)
47 znegcl 12650 . . . . . . . . . . . . 13 ((!‘(𝑒 + 1)) ∈ ℤ → -(!‘(𝑒 + 1)) ∈ ℤ)
4845, 46, 473syl 18 . . . . . . . . . . . 12 (((𝑎 ∈ ℕ ∧ 𝑏 ∈ ℝ+) ∧ (𝑒 ∈ ℕ ∧ (2 · (2↑-(!‘(𝑒 + 1)))) ≤ (𝑏 / ((2↑(!‘𝑒))↑𝑎)))) → -(!‘(𝑒 + 1)) ∈ ℤ)
49 rpexpcl 14118 . . . . . . . . . . . 12 ((2 ∈ ℝ+ ∧ -(!‘(𝑒 + 1)) ∈ ℤ) → (2↑-(!‘(𝑒 + 1))) ∈ ℝ+)
5042, 48, 49sylancr 587 . . . . . . . . . . 11 (((𝑎 ∈ ℕ ∧ 𝑏 ∈ ℝ+) ∧ (𝑒 ∈ ℕ ∧ (2 · (2↑-(!‘(𝑒 + 1)))) ≤ (𝑏 / ((2↑(!‘𝑒))↑𝑎)))) → (2↑-(!‘(𝑒 + 1))) ∈ ℝ+)
51 rpmulcl 13056 . . . . . . . . . . 11 ((2 ∈ ℝ+ ∧ (2↑-(!‘(𝑒 + 1))) ∈ ℝ+) → (2 · (2↑-(!‘(𝑒 + 1)))) ∈ ℝ+)
5242, 50, 51sylancr 587 . . . . . . . . . 10 (((𝑎 ∈ ℕ ∧ 𝑏 ∈ ℝ+) ∧ (𝑒 ∈ ℕ ∧ (2 · (2↑-(!‘(𝑒 + 1)))) ≤ (𝑏 / ((2↑(!‘𝑒))↑𝑎)))) → (2 · (2↑-(!‘(𝑒 + 1)))) ∈ ℝ+)
5352rpred 13075 . . . . . . . . 9 (((𝑎 ∈ ℕ ∧ 𝑏 ∈ ℝ+) ∧ (𝑒 ∈ ℕ ∧ (2 · (2↑-(!‘(𝑒 + 1)))) ≤ (𝑏 / ((2↑(!‘𝑒))↑𝑎)))) → (2 · (2↑-(!‘(𝑒 + 1)))) ∈ ℝ)
5420oveq2d 7447 . . . . . . . . . . 11 (((𝑎 ∈ ℕ ∧ 𝑏 ∈ ℝ+) ∧ (𝑒 ∈ ℕ ∧ (2 · (2↑-(!‘(𝑒 + 1)))) ≤ (𝑏 / ((2↑(!‘𝑒))↑𝑎)))) → (𝐿 − (((𝐻𝑒) · (2↑(!‘𝑒))) / (2↑(!‘𝑒)))) = (𝐿 − (𝐻𝑒)))
5554fveq2d 6911 . . . . . . . . . 10 (((𝑎 ∈ ℕ ∧ 𝑏 ∈ ℝ+) ∧ (𝑒 ∈ ℕ ∧ (2 · (2↑-(!‘(𝑒 + 1)))) ≤ (𝑏 / ((2↑(!‘𝑒))↑𝑎)))) → (abs‘(𝐿 − (((𝐻𝑒) · (2↑(!‘𝑒))) / (2↑(!‘𝑒))))) = (abs‘(𝐿 − (𝐻𝑒))))
5621simprd 495 . . . . . . . . . . 11 (𝑒 ∈ ℕ → (abs‘(𝐿 − (𝐻𝑒))) ≤ (2 · (2↑-(!‘(𝑒 + 1)))))
5756ad2antrl 728 . . . . . . . . . 10 (((𝑎 ∈ ℕ ∧ 𝑏 ∈ ℝ+) ∧ (𝑒 ∈ ℕ ∧ (2 · (2↑-(!‘(𝑒 + 1)))) ≤ (𝑏 / ((2↑(!‘𝑒))↑𝑎)))) → (abs‘(𝐿 − (𝐻𝑒))) ≤ (2 · (2↑-(!‘(𝑒 + 1)))))
5855, 57eqbrtrd 5170 . . . . . . . . 9 (((𝑎 ∈ ℕ ∧ 𝑏 ∈ ℝ+) ∧ (𝑒 ∈ ℕ ∧ (2 · (2↑-(!‘(𝑒 + 1)))) ≤ (𝑏 / ((2↑(!‘𝑒))↑𝑎)))) → (abs‘(𝐿 − (((𝐻𝑒) · (2↑(!‘𝑒))) / (2↑(!‘𝑒))))) ≤ (2 · (2↑-(!‘(𝑒 + 1)))))
59 simprr 773 . . . . . . . . 9 (((𝑎 ∈ ℕ ∧ 𝑏 ∈ ℝ+) ∧ (𝑒 ∈ ℕ ∧ (2 · (2↑-(!‘(𝑒 + 1)))) ≤ (𝑏 / ((2↑(!‘𝑒))↑𝑎)))) → (2 · (2↑-(!‘(𝑒 + 1)))) ≤ (𝑏 / ((2↑(!‘𝑒))↑𝑎)))
6034, 53, 41, 58, 59letrd 11416 . . . . . . . 8 (((𝑎 ∈ ℕ ∧ 𝑏 ∈ ℝ+) ∧ (𝑒 ∈ ℕ ∧ (2 · (2↑-(!‘(𝑒 + 1)))) ≤ (𝑏 / ((2↑(!‘𝑒))↑𝑎)))) → (abs‘(𝐿 − (((𝐻𝑒) · (2↑(!‘𝑒))) / (2↑(!‘𝑒))))) ≤ (𝑏 / ((2↑(!‘𝑒))↑𝑎)))
6134, 41, 60lensymd 11410 . . . . . . 7 (((𝑎 ∈ ℕ ∧ 𝑏 ∈ ℝ+) ∧ (𝑒 ∈ ℕ ∧ (2 · (2↑-(!‘(𝑒 + 1)))) ≤ (𝑏 / ((2↑(!‘𝑒))↑𝑎)))) → ¬ (𝑏 / ((2↑(!‘𝑒))↑𝑎)) < (abs‘(𝐿 − (((𝐻𝑒) · (2↑(!‘𝑒))) / (2↑(!‘𝑒))))))
62 oveq1 7438 . . . . . . . . . . 11 (𝑓 = ((𝐻𝑒) · (2↑(!‘𝑒))) → (𝑓 / 𝑑) = (((𝐻𝑒) · (2↑(!‘𝑒))) / 𝑑))
6362eqeq2d 2746 . . . . . . . . . 10 (𝑓 = ((𝐻𝑒) · (2↑(!‘𝑒))) → (𝐿 = (𝑓 / 𝑑) ↔ 𝐿 = (((𝐻𝑒) · (2↑(!‘𝑒))) / 𝑑)))
6463notbid 318 . . . . . . . . 9 (𝑓 = ((𝐻𝑒) · (2↑(!‘𝑒))) → (¬ 𝐿 = (𝑓 / 𝑑) ↔ ¬ 𝐿 = (((𝐻𝑒) · (2↑(!‘𝑒))) / 𝑑)))
6562oveq2d 7447 . . . . . . . . . . . 12 (𝑓 = ((𝐻𝑒) · (2↑(!‘𝑒))) → (𝐿 − (𝑓 / 𝑑)) = (𝐿 − (((𝐻𝑒) · (2↑(!‘𝑒))) / 𝑑)))
6665fveq2d 6911 . . . . . . . . . . 11 (𝑓 = ((𝐻𝑒) · (2↑(!‘𝑒))) → (abs‘(𝐿 − (𝑓 / 𝑑))) = (abs‘(𝐿 − (((𝐻𝑒) · (2↑(!‘𝑒))) / 𝑑))))
6766breq2d 5160 . . . . . . . . . 10 (𝑓 = ((𝐻𝑒) · (2↑(!‘𝑒))) → ((𝑏 / (𝑑𝑎)) < (abs‘(𝐿 − (𝑓 / 𝑑))) ↔ (𝑏 / (𝑑𝑎)) < (abs‘(𝐿 − (((𝐻𝑒) · (2↑(!‘𝑒))) / 𝑑)))))
6867notbid 318 . . . . . . . . 9 (𝑓 = ((𝐻𝑒) · (2↑(!‘𝑒))) → (¬ (𝑏 / (𝑑𝑎)) < (abs‘(𝐿 − (𝑓 / 𝑑))) ↔ ¬ (𝑏 / (𝑑𝑎)) < (abs‘(𝐿 − (((𝐻𝑒) · (2↑(!‘𝑒))) / 𝑑)))))
6964, 68anbi12d 632 . . . . . . . 8 (𝑓 = ((𝐻𝑒) · (2↑(!‘𝑒))) → ((¬ 𝐿 = (𝑓 / 𝑑) ∧ ¬ (𝑏 / (𝑑𝑎)) < (abs‘(𝐿 − (𝑓 / 𝑑)))) ↔ (¬ 𝐿 = (((𝐻𝑒) · (2↑(!‘𝑒))) / 𝑑) ∧ ¬ (𝑏 / (𝑑𝑎)) < (abs‘(𝐿 − (((𝐻𝑒) · (2↑(!‘𝑒))) / 𝑑))))))
70 oveq2 7439 . . . . . . . . . . 11 (𝑑 = (2↑(!‘𝑒)) → (((𝐻𝑒) · (2↑(!‘𝑒))) / 𝑑) = (((𝐻𝑒) · (2↑(!‘𝑒))) / (2↑(!‘𝑒))))
7170eqeq2d 2746 . . . . . . . . . 10 (𝑑 = (2↑(!‘𝑒)) → (𝐿 = (((𝐻𝑒) · (2↑(!‘𝑒))) / 𝑑) ↔ 𝐿 = (((𝐻𝑒) · (2↑(!‘𝑒))) / (2↑(!‘𝑒)))))
7271notbid 318 . . . . . . . . 9 (𝑑 = (2↑(!‘𝑒)) → (¬ 𝐿 = (((𝐻𝑒) · (2↑(!‘𝑒))) / 𝑑) ↔ ¬ 𝐿 = (((𝐻𝑒) · (2↑(!‘𝑒))) / (2↑(!‘𝑒)))))
73 oveq1 7438 . . . . . . . . . . . 12 (𝑑 = (2↑(!‘𝑒)) → (𝑑𝑎) = ((2↑(!‘𝑒))↑𝑎))
7473oveq2d 7447 . . . . . . . . . . 11 (𝑑 = (2↑(!‘𝑒)) → (𝑏 / (𝑑𝑎)) = (𝑏 / ((2↑(!‘𝑒))↑𝑎)))
7570oveq2d 7447 . . . . . . . . . . . 12 (𝑑 = (2↑(!‘𝑒)) → (𝐿 − (((𝐻𝑒) · (2↑(!‘𝑒))) / 𝑑)) = (𝐿 − (((𝐻𝑒) · (2↑(!‘𝑒))) / (2↑(!‘𝑒)))))
7675fveq2d 6911 . . . . . . . . . . 11 (𝑑 = (2↑(!‘𝑒)) → (abs‘(𝐿 − (((𝐻𝑒) · (2↑(!‘𝑒))) / 𝑑))) = (abs‘(𝐿 − (((𝐻𝑒) · (2↑(!‘𝑒))) / (2↑(!‘𝑒))))))
7774, 76breq12d 5161 . . . . . . . . . 10 (𝑑 = (2↑(!‘𝑒)) → ((𝑏 / (𝑑𝑎)) < (abs‘(𝐿 − (((𝐻𝑒) · (2↑(!‘𝑒))) / 𝑑))) ↔ (𝑏 / ((2↑(!‘𝑒))↑𝑎)) < (abs‘(𝐿 − (((𝐻𝑒) · (2↑(!‘𝑒))) / (2↑(!‘𝑒)))))))
7877notbid 318 . . . . . . . . 9 (𝑑 = (2↑(!‘𝑒)) → (¬ (𝑏 / (𝑑𝑎)) < (abs‘(𝐿 − (((𝐻𝑒) · (2↑(!‘𝑒))) / 𝑑))) ↔ ¬ (𝑏 / ((2↑(!‘𝑒))↑𝑎)) < (abs‘(𝐿 − (((𝐻𝑒) · (2↑(!‘𝑒))) / (2↑(!‘𝑒)))))))
7972, 78anbi12d 632 . . . . . . . 8 (𝑑 = (2↑(!‘𝑒)) → ((¬ 𝐿 = (((𝐻𝑒) · (2↑(!‘𝑒))) / 𝑑) ∧ ¬ (𝑏 / (𝑑𝑎)) < (abs‘(𝐿 − (((𝐻𝑒) · (2↑(!‘𝑒))) / 𝑑)))) ↔ (¬ 𝐿 = (((𝐻𝑒) · (2↑(!‘𝑒))) / (2↑(!‘𝑒))) ∧ ¬ (𝑏 / ((2↑(!‘𝑒))↑𝑎)) < (abs‘(𝐿 − (((𝐻𝑒) · (2↑(!‘𝑒))) / (2↑(!‘𝑒))))))))
8069, 79rspc2ev 3635 . . . . . . 7 ((((𝐻𝑒) · (2↑(!‘𝑒))) ∈ ℤ ∧ (2↑(!‘𝑒)) ∈ ℕ ∧ (¬ 𝐿 = (((𝐻𝑒) · (2↑(!‘𝑒))) / (2↑(!‘𝑒))) ∧ ¬ (𝑏 / ((2↑(!‘𝑒))↑𝑎)) < (abs‘(𝐿 − (((𝐻𝑒) · (2↑(!‘𝑒))) / (2↑(!‘𝑒))))))) → ∃𝑓 ∈ ℤ ∃𝑑 ∈ ℕ (¬ 𝐿 = (𝑓 / 𝑑) ∧ ¬ (𝑏 / (𝑑𝑎)) < (abs‘(𝐿 − (𝑓 / 𝑑)))))
816, 14, 26, 61, 80syl112anc 1373 . . . . . 6 (((𝑎 ∈ ℕ ∧ 𝑏 ∈ ℝ+) ∧ (𝑒 ∈ ℕ ∧ (2 · (2↑-(!‘(𝑒 + 1)))) ≤ (𝑏 / ((2↑(!‘𝑒))↑𝑎)))) → ∃𝑓 ∈ ℤ ∃𝑑 ∈ ℕ (¬ 𝐿 = (𝑓 / 𝑑) ∧ ¬ (𝑏 / (𝑑𝑎)) < (abs‘(𝐿 − (𝑓 / 𝑑)))))
821, 81rexlimddv 3159 . . . . 5 ((𝑎 ∈ ℕ ∧ 𝑏 ∈ ℝ+) → ∃𝑓 ∈ ℤ ∃𝑑 ∈ ℕ (¬ 𝐿 = (𝑓 / 𝑑) ∧ ¬ (𝑏 / (𝑑𝑎)) < (abs‘(𝐿 − (𝑓 / 𝑑)))))
83 pm4.56 990 . . . . . . . . 9 ((¬ 𝐿 = (𝑓 / 𝑑) ∧ ¬ (𝑏 / (𝑑𝑎)) < (abs‘(𝐿 − (𝑓 / 𝑑)))) ↔ ¬ (𝐿 = (𝑓 / 𝑑) ∨ (𝑏 / (𝑑𝑎)) < (abs‘(𝐿 − (𝑓 / 𝑑)))))
8483rexbii 3092 . . . . . . . 8 (∃𝑑 ∈ ℕ (¬ 𝐿 = (𝑓 / 𝑑) ∧ ¬ (𝑏 / (𝑑𝑎)) < (abs‘(𝐿 − (𝑓 / 𝑑)))) ↔ ∃𝑑 ∈ ℕ ¬ (𝐿 = (𝑓 / 𝑑) ∨ (𝑏 / (𝑑𝑎)) < (abs‘(𝐿 − (𝑓 / 𝑑)))))
85 rexnal 3098 . . . . . . . 8 (∃𝑑 ∈ ℕ ¬ (𝐿 = (𝑓 / 𝑑) ∨ (𝑏 / (𝑑𝑎)) < (abs‘(𝐿 − (𝑓 / 𝑑)))) ↔ ¬ ∀𝑑 ∈ ℕ (𝐿 = (𝑓 / 𝑑) ∨ (𝑏 / (𝑑𝑎)) < (abs‘(𝐿 − (𝑓 / 𝑑)))))
8684, 85bitri 275 . . . . . . 7 (∃𝑑 ∈ ℕ (¬ 𝐿 = (𝑓 / 𝑑) ∧ ¬ (𝑏 / (𝑑𝑎)) < (abs‘(𝐿 − (𝑓 / 𝑑)))) ↔ ¬ ∀𝑑 ∈ ℕ (𝐿 = (𝑓 / 𝑑) ∨ (𝑏 / (𝑑𝑎)) < (abs‘(𝐿 − (𝑓 / 𝑑)))))
8786rexbii 3092 . . . . . 6 (∃𝑓 ∈ ℤ ∃𝑑 ∈ ℕ (¬ 𝐿 = (𝑓 / 𝑑) ∧ ¬ (𝑏 / (𝑑𝑎)) < (abs‘(𝐿 − (𝑓 / 𝑑)))) ↔ ∃𝑓 ∈ ℤ ¬ ∀𝑑 ∈ ℕ (𝐿 = (𝑓 / 𝑑) ∨ (𝑏 / (𝑑𝑎)) < (abs‘(𝐿 − (𝑓 / 𝑑)))))
88 rexnal 3098 . . . . . 6 (∃𝑓 ∈ ℤ ¬ ∀𝑑 ∈ ℕ (𝐿 = (𝑓 / 𝑑) ∨ (𝑏 / (𝑑𝑎)) < (abs‘(𝐿 − (𝑓 / 𝑑)))) ↔ ¬ ∀𝑓 ∈ ℤ ∀𝑑 ∈ ℕ (𝐿 = (𝑓 / 𝑑) ∨ (𝑏 / (𝑑𝑎)) < (abs‘(𝐿 − (𝑓 / 𝑑)))))
8987, 88bitri 275 . . . . 5 (∃𝑓 ∈ ℤ ∃𝑑 ∈ ℕ (¬ 𝐿 = (𝑓 / 𝑑) ∧ ¬ (𝑏 / (𝑑𝑎)) < (abs‘(𝐿 − (𝑓 / 𝑑)))) ↔ ¬ ∀𝑓 ∈ ℤ ∀𝑑 ∈ ℕ (𝐿 = (𝑓 / 𝑑) ∨ (𝑏 / (𝑑𝑎)) < (abs‘(𝐿 − (𝑓 / 𝑑)))))
9082, 89sylib 218 . . . 4 ((𝑎 ∈ ℕ ∧ 𝑏 ∈ ℝ+) → ¬ ∀𝑓 ∈ ℤ ∀𝑑 ∈ ℕ (𝐿 = (𝑓 / 𝑑) ∨ (𝑏 / (𝑑𝑎)) < (abs‘(𝐿 − (𝑓 / 𝑑)))))
9190nrexdv 3147 . . 3 (𝑎 ∈ ℕ → ¬ ∃𝑏 ∈ ℝ+𝑓 ∈ ℤ ∀𝑑 ∈ ℕ (𝐿 = (𝑓 / 𝑑) ∨ (𝑏 / (𝑑𝑎)) < (abs‘(𝐿 − (𝑓 / 𝑑)))))
9291nrex 3072 . 2 ¬ ∃𝑎 ∈ ℕ ∃𝑏 ∈ ℝ+𝑓 ∈ ℤ ∀𝑑 ∈ ℕ (𝐿 = (𝑓 / 𝑑) ∨ (𝑏 / (𝑑𝑎)) < (abs‘(𝐿 − (𝑓 / 𝑑))))
93 aaliou2b 26398 . 2 (𝐿 ∈ 𝔸 → ∃𝑎 ∈ ℕ ∃𝑏 ∈ ℝ+𝑓 ∈ ℤ ∀𝑑 ∈ ℕ (𝐿 = (𝑓 / 𝑑) ∨ (𝑏 / (𝑑𝑎)) < (abs‘(𝐿 − (𝑓 / 𝑑)))))
9492, 93mto 197 1 ¬ 𝐿 ∈ 𝔸
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wa 395  wo 847   = wceq 1537  wcel 2106  wne 2938  wral 3059  wrex 3068   class class class wbr 5148  cmpt 5231  cfv 6563  (class class class)co 7431  cr 11152  1c1 11154   + caddc 11156   · cmul 11158   < clt 11293  cle 11294  cmin 11490  -cneg 11491   / cdiv 11918  cn 12264  2c2 12319  0cn0 12524  cz 12611  +crp 13032  ...cfz 13544  cexp 14099  !cfa 14309  abscabs 15270  Σcsu 15719  𝔸caa 26371
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-rep 5285  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-inf2 9679  ax-cnex 11209  ax-resscn 11210  ax-1cn 11211  ax-icn 11212  ax-addcl 11213  ax-addrcl 11214  ax-mulcl 11215  ax-mulrcl 11216  ax-mulcom 11217  ax-addass 11218  ax-mulass 11219  ax-distr 11220  ax-i2m1 11221  ax-1ne0 11222  ax-1rid 11223  ax-rnegex 11224  ax-rrecex 11225  ax-cnre 11226  ax-pre-lttri 11227  ax-pre-lttrn 11228  ax-pre-ltadd 11229  ax-pre-mulgt0 11230  ax-pre-sup 11231  ax-addf 11232
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-rmo 3378  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-tp 4636  df-op 4638  df-uni 4913  df-int 4952  df-iun 4998  df-iin 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-se 5642  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-isom 6572  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-of 7697  df-om 7888  df-1st 8013  df-2nd 8014  df-supp 8185  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-rdg 8449  df-1o 8505  df-2o 8506  df-oadd 8509  df-er 8744  df-map 8867  df-pm 8868  df-ixp 8937  df-en 8985  df-dom 8986  df-sdom 8987  df-fin 8988  df-fsupp 9400  df-fi 9449  df-sup 9480  df-inf 9481  df-oi 9548  df-dju 9939  df-card 9977  df-pnf 11295  df-mnf 11296  df-xr 11297  df-ltxr 11298  df-le 11299  df-sub 11492  df-neg 11493  df-div 11919  df-nn 12265  df-2 12327  df-3 12328  df-4 12329  df-5 12330  df-6 12331  df-7 12332  df-8 12333  df-9 12334  df-n0 12525  df-xnn0 12598  df-z 12612  df-dec 12732  df-uz 12877  df-q 12989  df-rp 13033  df-xneg 13152  df-xadd 13153  df-xmul 13154  df-ioo 13388  df-ioc 13389  df-ico 13390  df-icc 13391  df-fz 13545  df-fzo 13692  df-fl 13829  df-seq 14040  df-exp 14100  df-fac 14310  df-hash 14367  df-shft 15103  df-cj 15135  df-re 15136  df-im 15137  df-sqrt 15271  df-abs 15272  df-limsup 15504  df-clim 15521  df-rlim 15522  df-sum 15720  df-struct 17181  df-sets 17198  df-slot 17216  df-ndx 17228  df-base 17246  df-ress 17275  df-plusg 17311  df-mulr 17312  df-starv 17313  df-sca 17314  df-vsca 17315  df-ip 17316  df-tset 17317  df-ple 17318  df-ds 17320  df-unif 17321  df-hom 17322  df-cco 17323  df-rest 17469  df-topn 17470  df-0g 17488  df-gsum 17489  df-topgen 17490  df-pt 17491  df-prds 17494  df-xrs 17549  df-qtop 17554  df-imas 17555  df-xps 17557  df-mre 17631  df-mrc 17632  df-acs 17634  df-mgm 18666  df-sgrp 18745  df-mnd 18761  df-submnd 18810  df-grp 18967  df-minusg 18968  df-mulg 19099  df-subg 19154  df-cntz 19348  df-cmn 19815  df-abl 19816  df-mgp 20153  df-rng 20171  df-ur 20200  df-ring 20253  df-cring 20254  df-subrng 20563  df-subrg 20587  df-psmet 21374  df-xmet 21375  df-met 21376  df-bl 21377  df-mopn 21378  df-fbas 21379  df-fg 21380  df-cnfld 21383  df-top 22916  df-topon 22933  df-topsp 22955  df-bases 22969  df-cld 23043  df-ntr 23044  df-cls 23045  df-nei 23122  df-lp 23160  df-perf 23161  df-cn 23251  df-cnp 23252  df-haus 23339  df-cmp 23411  df-tx 23586  df-hmeo 23779  df-fil 23870  df-fm 23962  df-flim 23963  df-flf 23964  df-xms 24346  df-ms 24347  df-tms 24348  df-cncf 24918  df-0p 25719  df-limc 25916  df-dv 25917  df-dvn 25918  df-cpn 25919  df-ply 26242  df-idp 26243  df-coe 26244  df-dgr 26245  df-quot 26348  df-aa 26372
This theorem is referenced by:  aaliou3  26408
  Copyright terms: Public domain W3C validator