MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  aaliou3lem9 Structured version   Visualization version   GIF version

Theorem aaliou3lem9 25510
Description: Example of a "Liouville number", a very simple definable transcendental real. (Contributed by Stefan O'Rear, 20-Nov-2014.)
Hypotheses
Ref Expression
aaliou3lem.c 𝐹 = (𝑎 ∈ ℕ ↦ (2↑-(!‘𝑎)))
aaliou3lem.d 𝐿 = Σ𝑏 ∈ ℕ (𝐹𝑏)
aaliou3lem.e 𝐻 = (𝑐 ∈ ℕ ↦ Σ𝑏 ∈ (1...𝑐)(𝐹𝑏))
Assertion
Ref Expression
aaliou3lem9 ¬ 𝐿 ∈ 𝔸
Distinct variable groups:   𝑎,𝑏,𝑐   𝐹,𝑏,𝑐   𝐿,𝑐,𝑎,𝑏
Allowed substitution hints:   𝐹(𝑎)   𝐻(𝑎,𝑏,𝑐)

Proof of Theorem aaliou3lem9
Dummy variables 𝑑 𝑒 𝑓 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 aaliou3lem8 25505 . . . . . 6 ((𝑎 ∈ ℕ ∧ 𝑏 ∈ ℝ+) → ∃𝑒 ∈ ℕ (2 · (2↑-(!‘(𝑒 + 1)))) ≤ (𝑏 / ((2↑(!‘𝑒))↑𝑎)))
2 aaliou3lem.c . . . . . . . . 9 𝐹 = (𝑎 ∈ ℕ ↦ (2↑-(!‘𝑎)))
3 aaliou3lem.d . . . . . . . . 9 𝐿 = Σ𝑏 ∈ ℕ (𝐹𝑏)
4 aaliou3lem.e . . . . . . . . 9 𝐻 = (𝑐 ∈ ℕ ↦ Σ𝑏 ∈ (1...𝑐)(𝐹𝑏))
52, 3, 4aaliou3lem6 25508 . . . . . . . 8 (𝑒 ∈ ℕ → ((𝐻𝑒) · (2↑(!‘𝑒))) ∈ ℤ)
65ad2antrl 725 . . . . . . 7 (((𝑎 ∈ ℕ ∧ 𝑏 ∈ ℝ+) ∧ (𝑒 ∈ ℕ ∧ (2 · (2↑-(!‘(𝑒 + 1)))) ≤ (𝑏 / ((2↑(!‘𝑒))↑𝑎)))) → ((𝐻𝑒) · (2↑(!‘𝑒))) ∈ ℤ)
7 2nn 12046 . . . . . . . 8 2 ∈ ℕ
8 nnnn0 12240 . . . . . . . . . 10 (𝑒 ∈ ℕ → 𝑒 ∈ ℕ0)
98ad2antrl 725 . . . . . . . . 9 (((𝑎 ∈ ℕ ∧ 𝑏 ∈ ℝ+) ∧ (𝑒 ∈ ℕ ∧ (2 · (2↑-(!‘(𝑒 + 1)))) ≤ (𝑏 / ((2↑(!‘𝑒))↑𝑎)))) → 𝑒 ∈ ℕ0)
10 faccl 13997 . . . . . . . . 9 (𝑒 ∈ ℕ0 → (!‘𝑒) ∈ ℕ)
11 nnnn0 12240 . . . . . . . . 9 ((!‘𝑒) ∈ ℕ → (!‘𝑒) ∈ ℕ0)
129, 10, 113syl 18 . . . . . . . 8 (((𝑎 ∈ ℕ ∧ 𝑏 ∈ ℝ+) ∧ (𝑒 ∈ ℕ ∧ (2 · (2↑-(!‘(𝑒 + 1)))) ≤ (𝑏 / ((2↑(!‘𝑒))↑𝑎)))) → (!‘𝑒) ∈ ℕ0)
13 nnexpcl 13795 . . . . . . . 8 ((2 ∈ ℕ ∧ (!‘𝑒) ∈ ℕ0) → (2↑(!‘𝑒)) ∈ ℕ)
147, 12, 13sylancr 587 . . . . . . 7 (((𝑎 ∈ ℕ ∧ 𝑏 ∈ ℝ+) ∧ (𝑒 ∈ ℕ ∧ (2 · (2↑-(!‘(𝑒 + 1)))) ≤ (𝑏 / ((2↑(!‘𝑒))↑𝑎)))) → (2↑(!‘𝑒)) ∈ ℕ)
152, 3, 4aaliou3lem5 25507 . . . . . . . . . . . . 13 (𝑒 ∈ ℕ → (𝐻𝑒) ∈ ℝ)
1615ad2antrl 725 . . . . . . . . . . . 12 (((𝑎 ∈ ℕ ∧ 𝑏 ∈ ℝ+) ∧ (𝑒 ∈ ℕ ∧ (2 · (2↑-(!‘(𝑒 + 1)))) ≤ (𝑏 / ((2↑(!‘𝑒))↑𝑎)))) → (𝐻𝑒) ∈ ℝ)
1716recnd 11003 . . . . . . . . . . 11 (((𝑎 ∈ ℕ ∧ 𝑏 ∈ ℝ+) ∧ (𝑒 ∈ ℕ ∧ (2 · (2↑-(!‘(𝑒 + 1)))) ≤ (𝑏 / ((2↑(!‘𝑒))↑𝑎)))) → (𝐻𝑒) ∈ ℂ)
1814nncnd 11989 . . . . . . . . . . 11 (((𝑎 ∈ ℕ ∧ 𝑏 ∈ ℝ+) ∧ (𝑒 ∈ ℕ ∧ (2 · (2↑-(!‘(𝑒 + 1)))) ≤ (𝑏 / ((2↑(!‘𝑒))↑𝑎)))) → (2↑(!‘𝑒)) ∈ ℂ)
1914nnne0d 12023 . . . . . . . . . . 11 (((𝑎 ∈ ℕ ∧ 𝑏 ∈ ℝ+) ∧ (𝑒 ∈ ℕ ∧ (2 · (2↑-(!‘(𝑒 + 1)))) ≤ (𝑏 / ((2↑(!‘𝑒))↑𝑎)))) → (2↑(!‘𝑒)) ≠ 0)
2017, 18, 19divcan4d 11757 . . . . . . . . . 10 (((𝑎 ∈ ℕ ∧ 𝑏 ∈ ℝ+) ∧ (𝑒 ∈ ℕ ∧ (2 · (2↑-(!‘(𝑒 + 1)))) ≤ (𝑏 / ((2↑(!‘𝑒))↑𝑎)))) → (((𝐻𝑒) · (2↑(!‘𝑒))) / (2↑(!‘𝑒))) = (𝐻𝑒))
212, 3, 4aaliou3lem7 25509 . . . . . . . . . . . 12 (𝑒 ∈ ℕ → ((𝐻𝑒) ≠ 𝐿 ∧ (abs‘(𝐿 − (𝐻𝑒))) ≤ (2 · (2↑-(!‘(𝑒 + 1))))))
2221simpld 495 . . . . . . . . . . 11 (𝑒 ∈ ℕ → (𝐻𝑒) ≠ 𝐿)
2322ad2antrl 725 . . . . . . . . . 10 (((𝑎 ∈ ℕ ∧ 𝑏 ∈ ℝ+) ∧ (𝑒 ∈ ℕ ∧ (2 · (2↑-(!‘(𝑒 + 1)))) ≤ (𝑏 / ((2↑(!‘𝑒))↑𝑎)))) → (𝐻𝑒) ≠ 𝐿)
2420, 23eqnetrd 3011 . . . . . . . . 9 (((𝑎 ∈ ℕ ∧ 𝑏 ∈ ℝ+) ∧ (𝑒 ∈ ℕ ∧ (2 · (2↑-(!‘(𝑒 + 1)))) ≤ (𝑏 / ((2↑(!‘𝑒))↑𝑎)))) → (((𝐻𝑒) · (2↑(!‘𝑒))) / (2↑(!‘𝑒))) ≠ 𝐿)
2524necomd 2999 . . . . . . . 8 (((𝑎 ∈ ℕ ∧ 𝑏 ∈ ℝ+) ∧ (𝑒 ∈ ℕ ∧ (2 · (2↑-(!‘(𝑒 + 1)))) ≤ (𝑏 / ((2↑(!‘𝑒))↑𝑎)))) → 𝐿 ≠ (((𝐻𝑒) · (2↑(!‘𝑒))) / (2↑(!‘𝑒))))
2625neneqd 2948 . . . . . . 7 (((𝑎 ∈ ℕ ∧ 𝑏 ∈ ℝ+) ∧ (𝑒 ∈ ℕ ∧ (2 · (2↑-(!‘(𝑒 + 1)))) ≤ (𝑏 / ((2↑(!‘𝑒))↑𝑎)))) → ¬ 𝐿 = (((𝐻𝑒) · (2↑(!‘𝑒))) / (2↑(!‘𝑒))))
272, 3, 4aaliou3lem4 25506 . . . . . . . . . . 11 𝐿 ∈ ℝ
2814nnred 11988 . . . . . . . . . . . . 13 (((𝑎 ∈ ℕ ∧ 𝑏 ∈ ℝ+) ∧ (𝑒 ∈ ℕ ∧ (2 · (2↑-(!‘(𝑒 + 1)))) ≤ (𝑏 / ((2↑(!‘𝑒))↑𝑎)))) → (2↑(!‘𝑒)) ∈ ℝ)
2916, 28remulcld 11005 . . . . . . . . . . . 12 (((𝑎 ∈ ℕ ∧ 𝑏 ∈ ℝ+) ∧ (𝑒 ∈ ℕ ∧ (2 · (2↑-(!‘(𝑒 + 1)))) ≤ (𝑏 / ((2↑(!‘𝑒))↑𝑎)))) → ((𝐻𝑒) · (2↑(!‘𝑒))) ∈ ℝ)
3029, 14nndivred 12027 . . . . . . . . . . 11 (((𝑎 ∈ ℕ ∧ 𝑏 ∈ ℝ+) ∧ (𝑒 ∈ ℕ ∧ (2 · (2↑-(!‘(𝑒 + 1)))) ≤ (𝑏 / ((2↑(!‘𝑒))↑𝑎)))) → (((𝐻𝑒) · (2↑(!‘𝑒))) / (2↑(!‘𝑒))) ∈ ℝ)
31 resubcl 11285 . . . . . . . . . . 11 ((𝐿 ∈ ℝ ∧ (((𝐻𝑒) · (2↑(!‘𝑒))) / (2↑(!‘𝑒))) ∈ ℝ) → (𝐿 − (((𝐻𝑒) · (2↑(!‘𝑒))) / (2↑(!‘𝑒)))) ∈ ℝ)
3227, 30, 31sylancr 587 . . . . . . . . . 10 (((𝑎 ∈ ℕ ∧ 𝑏 ∈ ℝ+) ∧ (𝑒 ∈ ℕ ∧ (2 · (2↑-(!‘(𝑒 + 1)))) ≤ (𝑏 / ((2↑(!‘𝑒))↑𝑎)))) → (𝐿 − (((𝐻𝑒) · (2↑(!‘𝑒))) / (2↑(!‘𝑒)))) ∈ ℝ)
3332recnd 11003 . . . . . . . . 9 (((𝑎 ∈ ℕ ∧ 𝑏 ∈ ℝ+) ∧ (𝑒 ∈ ℕ ∧ (2 · (2↑-(!‘(𝑒 + 1)))) ≤ (𝑏 / ((2↑(!‘𝑒))↑𝑎)))) → (𝐿 − (((𝐻𝑒) · (2↑(!‘𝑒))) / (2↑(!‘𝑒)))) ∈ ℂ)
3433abscld 15148 . . . . . . . 8 (((𝑎 ∈ ℕ ∧ 𝑏 ∈ ℝ+) ∧ (𝑒 ∈ ℕ ∧ (2 · (2↑-(!‘(𝑒 + 1)))) ≤ (𝑏 / ((2↑(!‘𝑒))↑𝑎)))) → (abs‘(𝐿 − (((𝐻𝑒) · (2↑(!‘𝑒))) / (2↑(!‘𝑒))))) ∈ ℝ)
35 simplr 766 . . . . . . . . . 10 (((𝑎 ∈ ℕ ∧ 𝑏 ∈ ℝ+) ∧ (𝑒 ∈ ℕ ∧ (2 · (2↑-(!‘(𝑒 + 1)))) ≤ (𝑏 / ((2↑(!‘𝑒))↑𝑎)))) → 𝑏 ∈ ℝ+)
36 nnnn0 12240 . . . . . . . . . . . . 13 (𝑎 ∈ ℕ → 𝑎 ∈ ℕ0)
3736ad2antrr 723 . . . . . . . . . . . 12 (((𝑎 ∈ ℕ ∧ 𝑏 ∈ ℝ+) ∧ (𝑒 ∈ ℕ ∧ (2 · (2↑-(!‘(𝑒 + 1)))) ≤ (𝑏 / ((2↑(!‘𝑒))↑𝑎)))) → 𝑎 ∈ ℕ0)
3814, 37nnexpcld 13960 . . . . . . . . . . 11 (((𝑎 ∈ ℕ ∧ 𝑏 ∈ ℝ+) ∧ (𝑒 ∈ ℕ ∧ (2 · (2↑-(!‘(𝑒 + 1)))) ≤ (𝑏 / ((2↑(!‘𝑒))↑𝑎)))) → ((2↑(!‘𝑒))↑𝑎) ∈ ℕ)
3938nnrpd 12770 . . . . . . . . . 10 (((𝑎 ∈ ℕ ∧ 𝑏 ∈ ℝ+) ∧ (𝑒 ∈ ℕ ∧ (2 · (2↑-(!‘(𝑒 + 1)))) ≤ (𝑏 / ((2↑(!‘𝑒))↑𝑎)))) → ((2↑(!‘𝑒))↑𝑎) ∈ ℝ+)
4035, 39rpdivcld 12789 . . . . . . . . 9 (((𝑎 ∈ ℕ ∧ 𝑏 ∈ ℝ+) ∧ (𝑒 ∈ ℕ ∧ (2 · (2↑-(!‘(𝑒 + 1)))) ≤ (𝑏 / ((2↑(!‘𝑒))↑𝑎)))) → (𝑏 / ((2↑(!‘𝑒))↑𝑎)) ∈ ℝ+)
4140rpred 12772 . . . . . . . 8 (((𝑎 ∈ ℕ ∧ 𝑏 ∈ ℝ+) ∧ (𝑒 ∈ ℕ ∧ (2 · (2↑-(!‘(𝑒 + 1)))) ≤ (𝑏 / ((2↑(!‘𝑒))↑𝑎)))) → (𝑏 / ((2↑(!‘𝑒))↑𝑎)) ∈ ℝ)
42 2rp 12735 . . . . . . . . . . 11 2 ∈ ℝ+
43 peano2nn0 12273 . . . . . . . . . . . . . 14 (𝑒 ∈ ℕ0 → (𝑒 + 1) ∈ ℕ0)
44 faccl 13997 . . . . . . . . . . . . . 14 ((𝑒 + 1) ∈ ℕ0 → (!‘(𝑒 + 1)) ∈ ℕ)
459, 43, 443syl 18 . . . . . . . . . . . . 13 (((𝑎 ∈ ℕ ∧ 𝑏 ∈ ℝ+) ∧ (𝑒 ∈ ℕ ∧ (2 · (2↑-(!‘(𝑒 + 1)))) ≤ (𝑏 / ((2↑(!‘𝑒))↑𝑎)))) → (!‘(𝑒 + 1)) ∈ ℕ)
46 nnz 12342 . . . . . . . . . . . . 13 ((!‘(𝑒 + 1)) ∈ ℕ → (!‘(𝑒 + 1)) ∈ ℤ)
47 znegcl 12355 . . . . . . . . . . . . 13 ((!‘(𝑒 + 1)) ∈ ℤ → -(!‘(𝑒 + 1)) ∈ ℤ)
4845, 46, 473syl 18 . . . . . . . . . . . 12 (((𝑎 ∈ ℕ ∧ 𝑏 ∈ ℝ+) ∧ (𝑒 ∈ ℕ ∧ (2 · (2↑-(!‘(𝑒 + 1)))) ≤ (𝑏 / ((2↑(!‘𝑒))↑𝑎)))) → -(!‘(𝑒 + 1)) ∈ ℤ)
49 rpexpcl 13801 . . . . . . . . . . . 12 ((2 ∈ ℝ+ ∧ -(!‘(𝑒 + 1)) ∈ ℤ) → (2↑-(!‘(𝑒 + 1))) ∈ ℝ+)
5042, 48, 49sylancr 587 . . . . . . . . . . 11 (((𝑎 ∈ ℕ ∧ 𝑏 ∈ ℝ+) ∧ (𝑒 ∈ ℕ ∧ (2 · (2↑-(!‘(𝑒 + 1)))) ≤ (𝑏 / ((2↑(!‘𝑒))↑𝑎)))) → (2↑-(!‘(𝑒 + 1))) ∈ ℝ+)
51 rpmulcl 12753 . . . . . . . . . . 11 ((2 ∈ ℝ+ ∧ (2↑-(!‘(𝑒 + 1))) ∈ ℝ+) → (2 · (2↑-(!‘(𝑒 + 1)))) ∈ ℝ+)
5242, 50, 51sylancr 587 . . . . . . . . . 10 (((𝑎 ∈ ℕ ∧ 𝑏 ∈ ℝ+) ∧ (𝑒 ∈ ℕ ∧ (2 · (2↑-(!‘(𝑒 + 1)))) ≤ (𝑏 / ((2↑(!‘𝑒))↑𝑎)))) → (2 · (2↑-(!‘(𝑒 + 1)))) ∈ ℝ+)
5352rpred 12772 . . . . . . . . 9 (((𝑎 ∈ ℕ ∧ 𝑏 ∈ ℝ+) ∧ (𝑒 ∈ ℕ ∧ (2 · (2↑-(!‘(𝑒 + 1)))) ≤ (𝑏 / ((2↑(!‘𝑒))↑𝑎)))) → (2 · (2↑-(!‘(𝑒 + 1)))) ∈ ℝ)
5420oveq2d 7291 . . . . . . . . . . 11 (((𝑎 ∈ ℕ ∧ 𝑏 ∈ ℝ+) ∧ (𝑒 ∈ ℕ ∧ (2 · (2↑-(!‘(𝑒 + 1)))) ≤ (𝑏 / ((2↑(!‘𝑒))↑𝑎)))) → (𝐿 − (((𝐻𝑒) · (2↑(!‘𝑒))) / (2↑(!‘𝑒)))) = (𝐿 − (𝐻𝑒)))
5554fveq2d 6778 . . . . . . . . . 10 (((𝑎 ∈ ℕ ∧ 𝑏 ∈ ℝ+) ∧ (𝑒 ∈ ℕ ∧ (2 · (2↑-(!‘(𝑒 + 1)))) ≤ (𝑏 / ((2↑(!‘𝑒))↑𝑎)))) → (abs‘(𝐿 − (((𝐻𝑒) · (2↑(!‘𝑒))) / (2↑(!‘𝑒))))) = (abs‘(𝐿 − (𝐻𝑒))))
5621simprd 496 . . . . . . . . . . 11 (𝑒 ∈ ℕ → (abs‘(𝐿 − (𝐻𝑒))) ≤ (2 · (2↑-(!‘(𝑒 + 1)))))
5756ad2antrl 725 . . . . . . . . . 10 (((𝑎 ∈ ℕ ∧ 𝑏 ∈ ℝ+) ∧ (𝑒 ∈ ℕ ∧ (2 · (2↑-(!‘(𝑒 + 1)))) ≤ (𝑏 / ((2↑(!‘𝑒))↑𝑎)))) → (abs‘(𝐿 − (𝐻𝑒))) ≤ (2 · (2↑-(!‘(𝑒 + 1)))))
5855, 57eqbrtrd 5096 . . . . . . . . 9 (((𝑎 ∈ ℕ ∧ 𝑏 ∈ ℝ+) ∧ (𝑒 ∈ ℕ ∧ (2 · (2↑-(!‘(𝑒 + 1)))) ≤ (𝑏 / ((2↑(!‘𝑒))↑𝑎)))) → (abs‘(𝐿 − (((𝐻𝑒) · (2↑(!‘𝑒))) / (2↑(!‘𝑒))))) ≤ (2 · (2↑-(!‘(𝑒 + 1)))))
59 simprr 770 . . . . . . . . 9 (((𝑎 ∈ ℕ ∧ 𝑏 ∈ ℝ+) ∧ (𝑒 ∈ ℕ ∧ (2 · (2↑-(!‘(𝑒 + 1)))) ≤ (𝑏 / ((2↑(!‘𝑒))↑𝑎)))) → (2 · (2↑-(!‘(𝑒 + 1)))) ≤ (𝑏 / ((2↑(!‘𝑒))↑𝑎)))
6034, 53, 41, 58, 59letrd 11132 . . . . . . . 8 (((𝑎 ∈ ℕ ∧ 𝑏 ∈ ℝ+) ∧ (𝑒 ∈ ℕ ∧ (2 · (2↑-(!‘(𝑒 + 1)))) ≤ (𝑏 / ((2↑(!‘𝑒))↑𝑎)))) → (abs‘(𝐿 − (((𝐻𝑒) · (2↑(!‘𝑒))) / (2↑(!‘𝑒))))) ≤ (𝑏 / ((2↑(!‘𝑒))↑𝑎)))
6134, 41, 60lensymd 11126 . . . . . . 7 (((𝑎 ∈ ℕ ∧ 𝑏 ∈ ℝ+) ∧ (𝑒 ∈ ℕ ∧ (2 · (2↑-(!‘(𝑒 + 1)))) ≤ (𝑏 / ((2↑(!‘𝑒))↑𝑎)))) → ¬ (𝑏 / ((2↑(!‘𝑒))↑𝑎)) < (abs‘(𝐿 − (((𝐻𝑒) · (2↑(!‘𝑒))) / (2↑(!‘𝑒))))))
62 oveq1 7282 . . . . . . . . . . 11 (𝑓 = ((𝐻𝑒) · (2↑(!‘𝑒))) → (𝑓 / 𝑑) = (((𝐻𝑒) · (2↑(!‘𝑒))) / 𝑑))
6362eqeq2d 2749 . . . . . . . . . 10 (𝑓 = ((𝐻𝑒) · (2↑(!‘𝑒))) → (𝐿 = (𝑓 / 𝑑) ↔ 𝐿 = (((𝐻𝑒) · (2↑(!‘𝑒))) / 𝑑)))
6463notbid 318 . . . . . . . . 9 (𝑓 = ((𝐻𝑒) · (2↑(!‘𝑒))) → (¬ 𝐿 = (𝑓 / 𝑑) ↔ ¬ 𝐿 = (((𝐻𝑒) · (2↑(!‘𝑒))) / 𝑑)))
6562oveq2d 7291 . . . . . . . . . . . 12 (𝑓 = ((𝐻𝑒) · (2↑(!‘𝑒))) → (𝐿 − (𝑓 / 𝑑)) = (𝐿 − (((𝐻𝑒) · (2↑(!‘𝑒))) / 𝑑)))
6665fveq2d 6778 . . . . . . . . . . 11 (𝑓 = ((𝐻𝑒) · (2↑(!‘𝑒))) → (abs‘(𝐿 − (𝑓 / 𝑑))) = (abs‘(𝐿 − (((𝐻𝑒) · (2↑(!‘𝑒))) / 𝑑))))
6766breq2d 5086 . . . . . . . . . 10 (𝑓 = ((𝐻𝑒) · (2↑(!‘𝑒))) → ((𝑏 / (𝑑𝑎)) < (abs‘(𝐿 − (𝑓 / 𝑑))) ↔ (𝑏 / (𝑑𝑎)) < (abs‘(𝐿 − (((𝐻𝑒) · (2↑(!‘𝑒))) / 𝑑)))))
6867notbid 318 . . . . . . . . 9 (𝑓 = ((𝐻𝑒) · (2↑(!‘𝑒))) → (¬ (𝑏 / (𝑑𝑎)) < (abs‘(𝐿 − (𝑓 / 𝑑))) ↔ ¬ (𝑏 / (𝑑𝑎)) < (abs‘(𝐿 − (((𝐻𝑒) · (2↑(!‘𝑒))) / 𝑑)))))
6964, 68anbi12d 631 . . . . . . . 8 (𝑓 = ((𝐻𝑒) · (2↑(!‘𝑒))) → ((¬ 𝐿 = (𝑓 / 𝑑) ∧ ¬ (𝑏 / (𝑑𝑎)) < (abs‘(𝐿 − (𝑓 / 𝑑)))) ↔ (¬ 𝐿 = (((𝐻𝑒) · (2↑(!‘𝑒))) / 𝑑) ∧ ¬ (𝑏 / (𝑑𝑎)) < (abs‘(𝐿 − (((𝐻𝑒) · (2↑(!‘𝑒))) / 𝑑))))))
70 oveq2 7283 . . . . . . . . . . 11 (𝑑 = (2↑(!‘𝑒)) → (((𝐻𝑒) · (2↑(!‘𝑒))) / 𝑑) = (((𝐻𝑒) · (2↑(!‘𝑒))) / (2↑(!‘𝑒))))
7170eqeq2d 2749 . . . . . . . . . 10 (𝑑 = (2↑(!‘𝑒)) → (𝐿 = (((𝐻𝑒) · (2↑(!‘𝑒))) / 𝑑) ↔ 𝐿 = (((𝐻𝑒) · (2↑(!‘𝑒))) / (2↑(!‘𝑒)))))
7271notbid 318 . . . . . . . . 9 (𝑑 = (2↑(!‘𝑒)) → (¬ 𝐿 = (((𝐻𝑒) · (2↑(!‘𝑒))) / 𝑑) ↔ ¬ 𝐿 = (((𝐻𝑒) · (2↑(!‘𝑒))) / (2↑(!‘𝑒)))))
73 oveq1 7282 . . . . . . . . . . . 12 (𝑑 = (2↑(!‘𝑒)) → (𝑑𝑎) = ((2↑(!‘𝑒))↑𝑎))
7473oveq2d 7291 . . . . . . . . . . 11 (𝑑 = (2↑(!‘𝑒)) → (𝑏 / (𝑑𝑎)) = (𝑏 / ((2↑(!‘𝑒))↑𝑎)))
7570oveq2d 7291 . . . . . . . . . . . 12 (𝑑 = (2↑(!‘𝑒)) → (𝐿 − (((𝐻𝑒) · (2↑(!‘𝑒))) / 𝑑)) = (𝐿 − (((𝐻𝑒) · (2↑(!‘𝑒))) / (2↑(!‘𝑒)))))
7675fveq2d 6778 . . . . . . . . . . 11 (𝑑 = (2↑(!‘𝑒)) → (abs‘(𝐿 − (((𝐻𝑒) · (2↑(!‘𝑒))) / 𝑑))) = (abs‘(𝐿 − (((𝐻𝑒) · (2↑(!‘𝑒))) / (2↑(!‘𝑒))))))
7774, 76breq12d 5087 . . . . . . . . . 10 (𝑑 = (2↑(!‘𝑒)) → ((𝑏 / (𝑑𝑎)) < (abs‘(𝐿 − (((𝐻𝑒) · (2↑(!‘𝑒))) / 𝑑))) ↔ (𝑏 / ((2↑(!‘𝑒))↑𝑎)) < (abs‘(𝐿 − (((𝐻𝑒) · (2↑(!‘𝑒))) / (2↑(!‘𝑒)))))))
7877notbid 318 . . . . . . . . 9 (𝑑 = (2↑(!‘𝑒)) → (¬ (𝑏 / (𝑑𝑎)) < (abs‘(𝐿 − (((𝐻𝑒) · (2↑(!‘𝑒))) / 𝑑))) ↔ ¬ (𝑏 / ((2↑(!‘𝑒))↑𝑎)) < (abs‘(𝐿 − (((𝐻𝑒) · (2↑(!‘𝑒))) / (2↑(!‘𝑒)))))))
7972, 78anbi12d 631 . . . . . . . 8 (𝑑 = (2↑(!‘𝑒)) → ((¬ 𝐿 = (((𝐻𝑒) · (2↑(!‘𝑒))) / 𝑑) ∧ ¬ (𝑏 / (𝑑𝑎)) < (abs‘(𝐿 − (((𝐻𝑒) · (2↑(!‘𝑒))) / 𝑑)))) ↔ (¬ 𝐿 = (((𝐻𝑒) · (2↑(!‘𝑒))) / (2↑(!‘𝑒))) ∧ ¬ (𝑏 / ((2↑(!‘𝑒))↑𝑎)) < (abs‘(𝐿 − (((𝐻𝑒) · (2↑(!‘𝑒))) / (2↑(!‘𝑒))))))))
8069, 79rspc2ev 3572 . . . . . . 7 ((((𝐻𝑒) · (2↑(!‘𝑒))) ∈ ℤ ∧ (2↑(!‘𝑒)) ∈ ℕ ∧ (¬ 𝐿 = (((𝐻𝑒) · (2↑(!‘𝑒))) / (2↑(!‘𝑒))) ∧ ¬ (𝑏 / ((2↑(!‘𝑒))↑𝑎)) < (abs‘(𝐿 − (((𝐻𝑒) · (2↑(!‘𝑒))) / (2↑(!‘𝑒))))))) → ∃𝑓 ∈ ℤ ∃𝑑 ∈ ℕ (¬ 𝐿 = (𝑓 / 𝑑) ∧ ¬ (𝑏 / (𝑑𝑎)) < (abs‘(𝐿 − (𝑓 / 𝑑)))))
816, 14, 26, 61, 80syl112anc 1373 . . . . . 6 (((𝑎 ∈ ℕ ∧ 𝑏 ∈ ℝ+) ∧ (𝑒 ∈ ℕ ∧ (2 · (2↑-(!‘(𝑒 + 1)))) ≤ (𝑏 / ((2↑(!‘𝑒))↑𝑎)))) → ∃𝑓 ∈ ℤ ∃𝑑 ∈ ℕ (¬ 𝐿 = (𝑓 / 𝑑) ∧ ¬ (𝑏 / (𝑑𝑎)) < (abs‘(𝐿 − (𝑓 / 𝑑)))))
821, 81rexlimddv 3220 . . . . 5 ((𝑎 ∈ ℕ ∧ 𝑏 ∈ ℝ+) → ∃𝑓 ∈ ℤ ∃𝑑 ∈ ℕ (¬ 𝐿 = (𝑓 / 𝑑) ∧ ¬ (𝑏 / (𝑑𝑎)) < (abs‘(𝐿 − (𝑓 / 𝑑)))))
83 pm4.56 986 . . . . . . . . 9 ((¬ 𝐿 = (𝑓 / 𝑑) ∧ ¬ (𝑏 / (𝑑𝑎)) < (abs‘(𝐿 − (𝑓 / 𝑑)))) ↔ ¬ (𝐿 = (𝑓 / 𝑑) ∨ (𝑏 / (𝑑𝑎)) < (abs‘(𝐿 − (𝑓 / 𝑑)))))
8483rexbii 3181 . . . . . . . 8 (∃𝑑 ∈ ℕ (¬ 𝐿 = (𝑓 / 𝑑) ∧ ¬ (𝑏 / (𝑑𝑎)) < (abs‘(𝐿 − (𝑓 / 𝑑)))) ↔ ∃𝑑 ∈ ℕ ¬ (𝐿 = (𝑓 / 𝑑) ∨ (𝑏 / (𝑑𝑎)) < (abs‘(𝐿 − (𝑓 / 𝑑)))))
85 rexnal 3169 . . . . . . . 8 (∃𝑑 ∈ ℕ ¬ (𝐿 = (𝑓 / 𝑑) ∨ (𝑏 / (𝑑𝑎)) < (abs‘(𝐿 − (𝑓 / 𝑑)))) ↔ ¬ ∀𝑑 ∈ ℕ (𝐿 = (𝑓 / 𝑑) ∨ (𝑏 / (𝑑𝑎)) < (abs‘(𝐿 − (𝑓 / 𝑑)))))
8684, 85bitri 274 . . . . . . 7 (∃𝑑 ∈ ℕ (¬ 𝐿 = (𝑓 / 𝑑) ∧ ¬ (𝑏 / (𝑑𝑎)) < (abs‘(𝐿 − (𝑓 / 𝑑)))) ↔ ¬ ∀𝑑 ∈ ℕ (𝐿 = (𝑓 / 𝑑) ∨ (𝑏 / (𝑑𝑎)) < (abs‘(𝐿 − (𝑓 / 𝑑)))))
8786rexbii 3181 . . . . . 6 (∃𝑓 ∈ ℤ ∃𝑑 ∈ ℕ (¬ 𝐿 = (𝑓 / 𝑑) ∧ ¬ (𝑏 / (𝑑𝑎)) < (abs‘(𝐿 − (𝑓 / 𝑑)))) ↔ ∃𝑓 ∈ ℤ ¬ ∀𝑑 ∈ ℕ (𝐿 = (𝑓 / 𝑑) ∨ (𝑏 / (𝑑𝑎)) < (abs‘(𝐿 − (𝑓 / 𝑑)))))
88 rexnal 3169 . . . . . 6 (∃𝑓 ∈ ℤ ¬ ∀𝑑 ∈ ℕ (𝐿 = (𝑓 / 𝑑) ∨ (𝑏 / (𝑑𝑎)) < (abs‘(𝐿 − (𝑓 / 𝑑)))) ↔ ¬ ∀𝑓 ∈ ℤ ∀𝑑 ∈ ℕ (𝐿 = (𝑓 / 𝑑) ∨ (𝑏 / (𝑑𝑎)) < (abs‘(𝐿 − (𝑓 / 𝑑)))))
8987, 88bitri 274 . . . . 5 (∃𝑓 ∈ ℤ ∃𝑑 ∈ ℕ (¬ 𝐿 = (𝑓 / 𝑑) ∧ ¬ (𝑏 / (𝑑𝑎)) < (abs‘(𝐿 − (𝑓 / 𝑑)))) ↔ ¬ ∀𝑓 ∈ ℤ ∀𝑑 ∈ ℕ (𝐿 = (𝑓 / 𝑑) ∨ (𝑏 / (𝑑𝑎)) < (abs‘(𝐿 − (𝑓 / 𝑑)))))
9082, 89sylib 217 . . . 4 ((𝑎 ∈ ℕ ∧ 𝑏 ∈ ℝ+) → ¬ ∀𝑓 ∈ ℤ ∀𝑑 ∈ ℕ (𝐿 = (𝑓 / 𝑑) ∨ (𝑏 / (𝑑𝑎)) < (abs‘(𝐿 − (𝑓 / 𝑑)))))
9190nrexdv 3198 . . 3 (𝑎 ∈ ℕ → ¬ ∃𝑏 ∈ ℝ+𝑓 ∈ ℤ ∀𝑑 ∈ ℕ (𝐿 = (𝑓 / 𝑑) ∨ (𝑏 / (𝑑𝑎)) < (abs‘(𝐿 − (𝑓 / 𝑑)))))
9291nrex 3197 . 2 ¬ ∃𝑎 ∈ ℕ ∃𝑏 ∈ ℝ+𝑓 ∈ ℤ ∀𝑑 ∈ ℕ (𝐿 = (𝑓 / 𝑑) ∨ (𝑏 / (𝑑𝑎)) < (abs‘(𝐿 − (𝑓 / 𝑑))))
93 aaliou2b 25501 . 2 (𝐿 ∈ 𝔸 → ∃𝑎 ∈ ℕ ∃𝑏 ∈ ℝ+𝑓 ∈ ℤ ∀𝑑 ∈ ℕ (𝐿 = (𝑓 / 𝑑) ∨ (𝑏 / (𝑑𝑎)) < (abs‘(𝐿 − (𝑓 / 𝑑)))))
9492, 93mto 196 1 ¬ 𝐿 ∈ 𝔸
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wa 396  wo 844   = wceq 1539  wcel 2106  wne 2943  wral 3064  wrex 3065   class class class wbr 5074  cmpt 5157  cfv 6433  (class class class)co 7275  cr 10870  1c1 10872   + caddc 10874   · cmul 10876   < clt 11009  cle 11010  cmin 11205  -cneg 11206   / cdiv 11632  cn 11973  2c2 12028  0cn0 12233  cz 12319  +crp 12730  ...cfz 13239  cexp 13782  !cfa 13987  abscabs 14945  Σcsu 15397  𝔸caa 25474
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-inf2 9399  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948  ax-pre-sup 10949  ax-addf 10950  ax-mulf 10951
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-tp 4566  df-op 4568  df-uni 4840  df-int 4880  df-iun 4926  df-iin 4927  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-se 5545  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-isom 6442  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-of 7533  df-om 7713  df-1st 7831  df-2nd 7832  df-supp 7978  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-1o 8297  df-2o 8298  df-oadd 8301  df-er 8498  df-map 8617  df-pm 8618  df-ixp 8686  df-en 8734  df-dom 8735  df-sdom 8736  df-fin 8737  df-fsupp 9129  df-fi 9170  df-sup 9201  df-inf 9202  df-oi 9269  df-dju 9659  df-card 9697  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-div 11633  df-nn 11974  df-2 12036  df-3 12037  df-4 12038  df-5 12039  df-6 12040  df-7 12041  df-8 12042  df-9 12043  df-n0 12234  df-xnn0 12306  df-z 12320  df-dec 12438  df-uz 12583  df-q 12689  df-rp 12731  df-xneg 12848  df-xadd 12849  df-xmul 12850  df-ioo 13083  df-ioc 13084  df-ico 13085  df-icc 13086  df-fz 13240  df-fzo 13383  df-fl 13512  df-seq 13722  df-exp 13783  df-fac 13988  df-hash 14045  df-shft 14778  df-cj 14810  df-re 14811  df-im 14812  df-sqrt 14946  df-abs 14947  df-limsup 15180  df-clim 15197  df-rlim 15198  df-sum 15398  df-struct 16848  df-sets 16865  df-slot 16883  df-ndx 16895  df-base 16913  df-ress 16942  df-plusg 16975  df-mulr 16976  df-starv 16977  df-sca 16978  df-vsca 16979  df-ip 16980  df-tset 16981  df-ple 16982  df-ds 16984  df-unif 16985  df-hom 16986  df-cco 16987  df-rest 17133  df-topn 17134  df-0g 17152  df-gsum 17153  df-topgen 17154  df-pt 17155  df-prds 17158  df-xrs 17213  df-qtop 17218  df-imas 17219  df-xps 17221  df-mre 17295  df-mrc 17296  df-acs 17298  df-mgm 18326  df-sgrp 18375  df-mnd 18386  df-submnd 18431  df-grp 18580  df-minusg 18581  df-mulg 18701  df-subg 18752  df-cntz 18923  df-cmn 19388  df-mgp 19721  df-ur 19738  df-ring 19785  df-cring 19786  df-subrg 20022  df-psmet 20589  df-xmet 20590  df-met 20591  df-bl 20592  df-mopn 20593  df-fbas 20594  df-fg 20595  df-cnfld 20598  df-top 22043  df-topon 22060  df-topsp 22082  df-bases 22096  df-cld 22170  df-ntr 22171  df-cls 22172  df-nei 22249  df-lp 22287  df-perf 22288  df-cn 22378  df-cnp 22379  df-haus 22466  df-cmp 22538  df-tx 22713  df-hmeo 22906  df-fil 22997  df-fm 23089  df-flim 23090  df-flf 23091  df-xms 23473  df-ms 23474  df-tms 23475  df-cncf 24041  df-0p 24834  df-limc 25030  df-dv 25031  df-dvn 25032  df-cpn 25033  df-ply 25349  df-idp 25350  df-coe 25351  df-dgr 25352  df-quot 25451  df-aa 25475
This theorem is referenced by:  aaliou3  25511
  Copyright terms: Public domain W3C validator