MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  posglbmo Structured version   Visualization version   GIF version

Theorem posglbmo 18369
Description: Greatest lower bounds in a poset are unique if they exist. (Contributed by NM, 20-Sep-2018.)
Hypotheses
Ref Expression
poslubmo.l ≀ = (leβ€˜πΎ)
poslubmo.b 𝐡 = (Baseβ€˜πΎ)
Assertion
Ref Expression
posglbmo ((𝐾 ∈ Poset ∧ 𝑆 βŠ† 𝐡) β†’ βˆƒ*π‘₯ ∈ 𝐡 (βˆ€π‘¦ ∈ 𝑆 π‘₯ ≀ 𝑦 ∧ βˆ€π‘§ ∈ 𝐡 (βˆ€π‘¦ ∈ 𝑆 𝑧 ≀ 𝑦 β†’ 𝑧 ≀ π‘₯)))
Distinct variable groups:   π‘₯, ≀ ,𝑦,𝑧   π‘₯,𝐡,𝑦,𝑧   π‘₯,𝐾,𝑦,𝑧   π‘₯,𝑆,𝑦,𝑧

Proof of Theorem posglbmo
Dummy variable 𝑀 is distinct from all other variables.
StepHypRef Expression
1 simprrl 777 . . . . . 6 ((((𝐾 ∈ Poset ∧ 𝑆 βŠ† 𝐡) ∧ (π‘₯ ∈ 𝐡 ∧ 𝑀 ∈ 𝐡)) ∧ ((βˆ€π‘¦ ∈ 𝑆 π‘₯ ≀ 𝑦 ∧ βˆ€π‘§ ∈ 𝐡 (βˆ€π‘¦ ∈ 𝑆 𝑧 ≀ 𝑦 β†’ 𝑧 ≀ π‘₯)) ∧ (βˆ€π‘¦ ∈ 𝑆 𝑀 ≀ 𝑦 ∧ βˆ€π‘§ ∈ 𝐡 (βˆ€π‘¦ ∈ 𝑆 𝑧 ≀ 𝑦 β†’ 𝑧 ≀ 𝑀)))) β†’ βˆ€π‘¦ ∈ 𝑆 𝑀 ≀ 𝑦)
2 breq1 5150 . . . . . . . . 9 (𝑧 = 𝑀 β†’ (𝑧 ≀ 𝑦 ↔ 𝑀 ≀ 𝑦))
32ralbidv 3175 . . . . . . . 8 (𝑧 = 𝑀 β†’ (βˆ€π‘¦ ∈ 𝑆 𝑧 ≀ 𝑦 ↔ βˆ€π‘¦ ∈ 𝑆 𝑀 ≀ 𝑦))
4 breq1 5150 . . . . . . . 8 (𝑧 = 𝑀 β†’ (𝑧 ≀ π‘₯ ↔ 𝑀 ≀ π‘₯))
53, 4imbi12d 343 . . . . . . 7 (𝑧 = 𝑀 β†’ ((βˆ€π‘¦ ∈ 𝑆 𝑧 ≀ 𝑦 β†’ 𝑧 ≀ π‘₯) ↔ (βˆ€π‘¦ ∈ 𝑆 𝑀 ≀ 𝑦 β†’ 𝑀 ≀ π‘₯)))
6 simprlr 776 . . . . . . 7 ((((𝐾 ∈ Poset ∧ 𝑆 βŠ† 𝐡) ∧ (π‘₯ ∈ 𝐡 ∧ 𝑀 ∈ 𝐡)) ∧ ((βˆ€π‘¦ ∈ 𝑆 π‘₯ ≀ 𝑦 ∧ βˆ€π‘§ ∈ 𝐡 (βˆ€π‘¦ ∈ 𝑆 𝑧 ≀ 𝑦 β†’ 𝑧 ≀ π‘₯)) ∧ (βˆ€π‘¦ ∈ 𝑆 𝑀 ≀ 𝑦 ∧ βˆ€π‘§ ∈ 𝐡 (βˆ€π‘¦ ∈ 𝑆 𝑧 ≀ 𝑦 β†’ 𝑧 ≀ 𝑀)))) β†’ βˆ€π‘§ ∈ 𝐡 (βˆ€π‘¦ ∈ 𝑆 𝑧 ≀ 𝑦 β†’ 𝑧 ≀ π‘₯))
7 simplrr 774 . . . . . . 7 ((((𝐾 ∈ Poset ∧ 𝑆 βŠ† 𝐡) ∧ (π‘₯ ∈ 𝐡 ∧ 𝑀 ∈ 𝐡)) ∧ ((βˆ€π‘¦ ∈ 𝑆 π‘₯ ≀ 𝑦 ∧ βˆ€π‘§ ∈ 𝐡 (βˆ€π‘¦ ∈ 𝑆 𝑧 ≀ 𝑦 β†’ 𝑧 ≀ π‘₯)) ∧ (βˆ€π‘¦ ∈ 𝑆 𝑀 ≀ 𝑦 ∧ βˆ€π‘§ ∈ 𝐡 (βˆ€π‘¦ ∈ 𝑆 𝑧 ≀ 𝑦 β†’ 𝑧 ≀ 𝑀)))) β†’ 𝑀 ∈ 𝐡)
85, 6, 7rspcdva 3612 . . . . . 6 ((((𝐾 ∈ Poset ∧ 𝑆 βŠ† 𝐡) ∧ (π‘₯ ∈ 𝐡 ∧ 𝑀 ∈ 𝐡)) ∧ ((βˆ€π‘¦ ∈ 𝑆 π‘₯ ≀ 𝑦 ∧ βˆ€π‘§ ∈ 𝐡 (βˆ€π‘¦ ∈ 𝑆 𝑧 ≀ 𝑦 β†’ 𝑧 ≀ π‘₯)) ∧ (βˆ€π‘¦ ∈ 𝑆 𝑀 ≀ 𝑦 ∧ βˆ€π‘§ ∈ 𝐡 (βˆ€π‘¦ ∈ 𝑆 𝑧 ≀ 𝑦 β†’ 𝑧 ≀ 𝑀)))) β†’ (βˆ€π‘¦ ∈ 𝑆 𝑀 ≀ 𝑦 β†’ 𝑀 ≀ π‘₯))
91, 8mpd 15 . . . . 5 ((((𝐾 ∈ Poset ∧ 𝑆 βŠ† 𝐡) ∧ (π‘₯ ∈ 𝐡 ∧ 𝑀 ∈ 𝐡)) ∧ ((βˆ€π‘¦ ∈ 𝑆 π‘₯ ≀ 𝑦 ∧ βˆ€π‘§ ∈ 𝐡 (βˆ€π‘¦ ∈ 𝑆 𝑧 ≀ 𝑦 β†’ 𝑧 ≀ π‘₯)) ∧ (βˆ€π‘¦ ∈ 𝑆 𝑀 ≀ 𝑦 ∧ βˆ€π‘§ ∈ 𝐡 (βˆ€π‘¦ ∈ 𝑆 𝑧 ≀ 𝑦 β†’ 𝑧 ≀ 𝑀)))) β†’ 𝑀 ≀ π‘₯)
10 simprll 775 . . . . . 6 ((((𝐾 ∈ Poset ∧ 𝑆 βŠ† 𝐡) ∧ (π‘₯ ∈ 𝐡 ∧ 𝑀 ∈ 𝐡)) ∧ ((βˆ€π‘¦ ∈ 𝑆 π‘₯ ≀ 𝑦 ∧ βˆ€π‘§ ∈ 𝐡 (βˆ€π‘¦ ∈ 𝑆 𝑧 ≀ 𝑦 β†’ 𝑧 ≀ π‘₯)) ∧ (βˆ€π‘¦ ∈ 𝑆 𝑀 ≀ 𝑦 ∧ βˆ€π‘§ ∈ 𝐡 (βˆ€π‘¦ ∈ 𝑆 𝑧 ≀ 𝑦 β†’ 𝑧 ≀ 𝑀)))) β†’ βˆ€π‘¦ ∈ 𝑆 π‘₯ ≀ 𝑦)
11 breq1 5150 . . . . . . . . 9 (𝑧 = π‘₯ β†’ (𝑧 ≀ 𝑦 ↔ π‘₯ ≀ 𝑦))
1211ralbidv 3175 . . . . . . . 8 (𝑧 = π‘₯ β†’ (βˆ€π‘¦ ∈ 𝑆 𝑧 ≀ 𝑦 ↔ βˆ€π‘¦ ∈ 𝑆 π‘₯ ≀ 𝑦))
13 breq1 5150 . . . . . . . 8 (𝑧 = π‘₯ β†’ (𝑧 ≀ 𝑀 ↔ π‘₯ ≀ 𝑀))
1412, 13imbi12d 343 . . . . . . 7 (𝑧 = π‘₯ β†’ ((βˆ€π‘¦ ∈ 𝑆 𝑧 ≀ 𝑦 β†’ 𝑧 ≀ 𝑀) ↔ (βˆ€π‘¦ ∈ 𝑆 π‘₯ ≀ 𝑦 β†’ π‘₯ ≀ 𝑀)))
15 simprrr 778 . . . . . . 7 ((((𝐾 ∈ Poset ∧ 𝑆 βŠ† 𝐡) ∧ (π‘₯ ∈ 𝐡 ∧ 𝑀 ∈ 𝐡)) ∧ ((βˆ€π‘¦ ∈ 𝑆 π‘₯ ≀ 𝑦 ∧ βˆ€π‘§ ∈ 𝐡 (βˆ€π‘¦ ∈ 𝑆 𝑧 ≀ 𝑦 β†’ 𝑧 ≀ π‘₯)) ∧ (βˆ€π‘¦ ∈ 𝑆 𝑀 ≀ 𝑦 ∧ βˆ€π‘§ ∈ 𝐡 (βˆ€π‘¦ ∈ 𝑆 𝑧 ≀ 𝑦 β†’ 𝑧 ≀ 𝑀)))) β†’ βˆ€π‘§ ∈ 𝐡 (βˆ€π‘¦ ∈ 𝑆 𝑧 ≀ 𝑦 β†’ 𝑧 ≀ 𝑀))
16 simplrl 773 . . . . . . 7 ((((𝐾 ∈ Poset ∧ 𝑆 βŠ† 𝐡) ∧ (π‘₯ ∈ 𝐡 ∧ 𝑀 ∈ 𝐡)) ∧ ((βˆ€π‘¦ ∈ 𝑆 π‘₯ ≀ 𝑦 ∧ βˆ€π‘§ ∈ 𝐡 (βˆ€π‘¦ ∈ 𝑆 𝑧 ≀ 𝑦 β†’ 𝑧 ≀ π‘₯)) ∧ (βˆ€π‘¦ ∈ 𝑆 𝑀 ≀ 𝑦 ∧ βˆ€π‘§ ∈ 𝐡 (βˆ€π‘¦ ∈ 𝑆 𝑧 ≀ 𝑦 β†’ 𝑧 ≀ 𝑀)))) β†’ π‘₯ ∈ 𝐡)
1714, 15, 16rspcdva 3612 . . . . . 6 ((((𝐾 ∈ Poset ∧ 𝑆 βŠ† 𝐡) ∧ (π‘₯ ∈ 𝐡 ∧ 𝑀 ∈ 𝐡)) ∧ ((βˆ€π‘¦ ∈ 𝑆 π‘₯ ≀ 𝑦 ∧ βˆ€π‘§ ∈ 𝐡 (βˆ€π‘¦ ∈ 𝑆 𝑧 ≀ 𝑦 β†’ 𝑧 ≀ π‘₯)) ∧ (βˆ€π‘¦ ∈ 𝑆 𝑀 ≀ 𝑦 ∧ βˆ€π‘§ ∈ 𝐡 (βˆ€π‘¦ ∈ 𝑆 𝑧 ≀ 𝑦 β†’ 𝑧 ≀ 𝑀)))) β†’ (βˆ€π‘¦ ∈ 𝑆 π‘₯ ≀ 𝑦 β†’ π‘₯ ≀ 𝑀))
1810, 17mpd 15 . . . . 5 ((((𝐾 ∈ Poset ∧ 𝑆 βŠ† 𝐡) ∧ (π‘₯ ∈ 𝐡 ∧ 𝑀 ∈ 𝐡)) ∧ ((βˆ€π‘¦ ∈ 𝑆 π‘₯ ≀ 𝑦 ∧ βˆ€π‘§ ∈ 𝐡 (βˆ€π‘¦ ∈ 𝑆 𝑧 ≀ 𝑦 β†’ 𝑧 ≀ π‘₯)) ∧ (βˆ€π‘¦ ∈ 𝑆 𝑀 ≀ 𝑦 ∧ βˆ€π‘§ ∈ 𝐡 (βˆ€π‘¦ ∈ 𝑆 𝑧 ≀ 𝑦 β†’ 𝑧 ≀ 𝑀)))) β†’ π‘₯ ≀ 𝑀)
19 ancom 459 . . . . . . . 8 ((𝑀 ≀ π‘₯ ∧ π‘₯ ≀ 𝑀) ↔ (π‘₯ ≀ 𝑀 ∧ 𝑀 ≀ π‘₯))
20 poslubmo.b . . . . . . . . 9 𝐡 = (Baseβ€˜πΎ)
21 poslubmo.l . . . . . . . . 9 ≀ = (leβ€˜πΎ)
2220, 21posasymb 18276 . . . . . . . 8 ((𝐾 ∈ Poset ∧ π‘₯ ∈ 𝐡 ∧ 𝑀 ∈ 𝐡) β†’ ((π‘₯ ≀ 𝑀 ∧ 𝑀 ≀ π‘₯) ↔ π‘₯ = 𝑀))
2319, 22bitrid 282 . . . . . . 7 ((𝐾 ∈ Poset ∧ π‘₯ ∈ 𝐡 ∧ 𝑀 ∈ 𝐡) β†’ ((𝑀 ≀ π‘₯ ∧ π‘₯ ≀ 𝑀) ↔ π‘₯ = 𝑀))
24233expb 1118 . . . . . 6 ((𝐾 ∈ Poset ∧ (π‘₯ ∈ 𝐡 ∧ 𝑀 ∈ 𝐡)) β†’ ((𝑀 ≀ π‘₯ ∧ π‘₯ ≀ 𝑀) ↔ π‘₯ = 𝑀))
2524ad4ant13 747 . . . . 5 ((((𝐾 ∈ Poset ∧ 𝑆 βŠ† 𝐡) ∧ (π‘₯ ∈ 𝐡 ∧ 𝑀 ∈ 𝐡)) ∧ ((βˆ€π‘¦ ∈ 𝑆 π‘₯ ≀ 𝑦 ∧ βˆ€π‘§ ∈ 𝐡 (βˆ€π‘¦ ∈ 𝑆 𝑧 ≀ 𝑦 β†’ 𝑧 ≀ π‘₯)) ∧ (βˆ€π‘¦ ∈ 𝑆 𝑀 ≀ 𝑦 ∧ βˆ€π‘§ ∈ 𝐡 (βˆ€π‘¦ ∈ 𝑆 𝑧 ≀ 𝑦 β†’ 𝑧 ≀ 𝑀)))) β†’ ((𝑀 ≀ π‘₯ ∧ π‘₯ ≀ 𝑀) ↔ π‘₯ = 𝑀))
269, 18, 25mpbi2and 708 . . . 4 ((((𝐾 ∈ Poset ∧ 𝑆 βŠ† 𝐡) ∧ (π‘₯ ∈ 𝐡 ∧ 𝑀 ∈ 𝐡)) ∧ ((βˆ€π‘¦ ∈ 𝑆 π‘₯ ≀ 𝑦 ∧ βˆ€π‘§ ∈ 𝐡 (βˆ€π‘¦ ∈ 𝑆 𝑧 ≀ 𝑦 β†’ 𝑧 ≀ π‘₯)) ∧ (βˆ€π‘¦ ∈ 𝑆 𝑀 ≀ 𝑦 ∧ βˆ€π‘§ ∈ 𝐡 (βˆ€π‘¦ ∈ 𝑆 𝑧 ≀ 𝑦 β†’ 𝑧 ≀ 𝑀)))) β†’ π‘₯ = 𝑀)
2726ex 411 . . 3 (((𝐾 ∈ Poset ∧ 𝑆 βŠ† 𝐡) ∧ (π‘₯ ∈ 𝐡 ∧ 𝑀 ∈ 𝐡)) β†’ (((βˆ€π‘¦ ∈ 𝑆 π‘₯ ≀ 𝑦 ∧ βˆ€π‘§ ∈ 𝐡 (βˆ€π‘¦ ∈ 𝑆 𝑧 ≀ 𝑦 β†’ 𝑧 ≀ π‘₯)) ∧ (βˆ€π‘¦ ∈ 𝑆 𝑀 ≀ 𝑦 ∧ βˆ€π‘§ ∈ 𝐡 (βˆ€π‘¦ ∈ 𝑆 𝑧 ≀ 𝑦 β†’ 𝑧 ≀ 𝑀))) β†’ π‘₯ = 𝑀))
2827ralrimivva 3198 . 2 ((𝐾 ∈ Poset ∧ 𝑆 βŠ† 𝐡) β†’ βˆ€π‘₯ ∈ 𝐡 βˆ€π‘€ ∈ 𝐡 (((βˆ€π‘¦ ∈ 𝑆 π‘₯ ≀ 𝑦 ∧ βˆ€π‘§ ∈ 𝐡 (βˆ€π‘¦ ∈ 𝑆 𝑧 ≀ 𝑦 β†’ 𝑧 ≀ π‘₯)) ∧ (βˆ€π‘¦ ∈ 𝑆 𝑀 ≀ 𝑦 ∧ βˆ€π‘§ ∈ 𝐡 (βˆ€π‘¦ ∈ 𝑆 𝑧 ≀ 𝑦 β†’ 𝑧 ≀ 𝑀))) β†’ π‘₯ = 𝑀))
29 breq1 5150 . . . . 5 (π‘₯ = 𝑀 β†’ (π‘₯ ≀ 𝑦 ↔ 𝑀 ≀ 𝑦))
3029ralbidv 3175 . . . 4 (π‘₯ = 𝑀 β†’ (βˆ€π‘¦ ∈ 𝑆 π‘₯ ≀ 𝑦 ↔ βˆ€π‘¦ ∈ 𝑆 𝑀 ≀ 𝑦))
31 breq2 5151 . . . . . 6 (π‘₯ = 𝑀 β†’ (𝑧 ≀ π‘₯ ↔ 𝑧 ≀ 𝑀))
3231imbi2d 339 . . . . 5 (π‘₯ = 𝑀 β†’ ((βˆ€π‘¦ ∈ 𝑆 𝑧 ≀ 𝑦 β†’ 𝑧 ≀ π‘₯) ↔ (βˆ€π‘¦ ∈ 𝑆 𝑧 ≀ 𝑦 β†’ 𝑧 ≀ 𝑀)))
3332ralbidv 3175 . . . 4 (π‘₯ = 𝑀 β†’ (βˆ€π‘§ ∈ 𝐡 (βˆ€π‘¦ ∈ 𝑆 𝑧 ≀ 𝑦 β†’ 𝑧 ≀ π‘₯) ↔ βˆ€π‘§ ∈ 𝐡 (βˆ€π‘¦ ∈ 𝑆 𝑧 ≀ 𝑦 β†’ 𝑧 ≀ 𝑀)))
3430, 33anbi12d 629 . . 3 (π‘₯ = 𝑀 β†’ ((βˆ€π‘¦ ∈ 𝑆 π‘₯ ≀ 𝑦 ∧ βˆ€π‘§ ∈ 𝐡 (βˆ€π‘¦ ∈ 𝑆 𝑧 ≀ 𝑦 β†’ 𝑧 ≀ π‘₯)) ↔ (βˆ€π‘¦ ∈ 𝑆 𝑀 ≀ 𝑦 ∧ βˆ€π‘§ ∈ 𝐡 (βˆ€π‘¦ ∈ 𝑆 𝑧 ≀ 𝑦 β†’ 𝑧 ≀ 𝑀))))
3534rmo4 3725 . 2 (βˆƒ*π‘₯ ∈ 𝐡 (βˆ€π‘¦ ∈ 𝑆 π‘₯ ≀ 𝑦 ∧ βˆ€π‘§ ∈ 𝐡 (βˆ€π‘¦ ∈ 𝑆 𝑧 ≀ 𝑦 β†’ 𝑧 ≀ π‘₯)) ↔ βˆ€π‘₯ ∈ 𝐡 βˆ€π‘€ ∈ 𝐡 (((βˆ€π‘¦ ∈ 𝑆 π‘₯ ≀ 𝑦 ∧ βˆ€π‘§ ∈ 𝐡 (βˆ€π‘¦ ∈ 𝑆 𝑧 ≀ 𝑦 β†’ 𝑧 ≀ π‘₯)) ∧ (βˆ€π‘¦ ∈ 𝑆 𝑀 ≀ 𝑦 ∧ βˆ€π‘§ ∈ 𝐡 (βˆ€π‘¦ ∈ 𝑆 𝑧 ≀ 𝑦 β†’ 𝑧 ≀ 𝑀))) β†’ π‘₯ = 𝑀))
3628, 35sylibr 233 1 ((𝐾 ∈ Poset ∧ 𝑆 βŠ† 𝐡) β†’ βˆƒ*π‘₯ ∈ 𝐡 (βˆ€π‘¦ ∈ 𝑆 π‘₯ ≀ 𝑦 ∧ βˆ€π‘§ ∈ 𝐡 (βˆ€π‘¦ ∈ 𝑆 𝑧 ≀ 𝑦 β†’ 𝑧 ≀ π‘₯)))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ↔ wb 205   ∧ wa 394   ∧ w3a 1085   = wceq 1539   ∈ wcel 2104  βˆ€wral 3059  βˆƒ*wrmo 3373   βŠ† wss 3947   class class class wbr 5147  β€˜cfv 6542  Basecbs 17148  lecple 17208  Posetcpo 18264
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-ext 2701  ax-nul 5305
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1780  df-sb 2066  df-mo 2532  df-clab 2708  df-cleq 2722  df-clel 2808  df-ne 2939  df-ral 3060  df-rex 3069  df-rmo 3374  df-rab 3431  df-v 3474  df-sbc 3777  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4322  df-if 4528  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-br 5148  df-iota 6494  df-fv 6550  df-proset 18252  df-poset 18270
This theorem is referenced by:  glbeldm2  47677
  Copyright terms: Public domain W3C validator