Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  posglbmo Structured version   Visualization version   GIF version

Theorem posglbmo 17757
 Description: Greatest lower bounds in a poset are unique if they exist. (Contributed by NM, 20-Sep-2018.)
Hypotheses
Ref Expression
poslubmo.l = (le‘𝐾)
poslubmo.b 𝐵 = (Base‘𝐾)
Assertion
Ref Expression
posglbmo ((𝐾 ∈ Poset ∧ 𝑆𝐵) → ∃*𝑥𝐵 (∀𝑦𝑆 𝑥 𝑦 ∧ ∀𝑧𝐵 (∀𝑦𝑆 𝑧 𝑦𝑧 𝑥)))
Distinct variable groups:   𝑥, ,𝑦,𝑧   𝑥,𝐵,𝑦,𝑧   𝑥,𝐾,𝑦,𝑧   𝑥,𝑆,𝑦,𝑧

Proof of Theorem posglbmo
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 simprrl 780 . . . . . 6 ((((𝐾 ∈ Poset ∧ 𝑆𝐵) ∧ (𝑥𝐵𝑤𝐵)) ∧ ((∀𝑦𝑆 𝑥 𝑦 ∧ ∀𝑧𝐵 (∀𝑦𝑆 𝑧 𝑦𝑧 𝑥)) ∧ (∀𝑦𝑆 𝑤 𝑦 ∧ ∀𝑧𝐵 (∀𝑦𝑆 𝑧 𝑦𝑧 𝑤)))) → ∀𝑦𝑆 𝑤 𝑦)
2 breq1 5055 . . . . . . . . 9 (𝑧 = 𝑤 → (𝑧 𝑦𝑤 𝑦))
32ralbidv 3192 . . . . . . . 8 (𝑧 = 𝑤 → (∀𝑦𝑆 𝑧 𝑦 ↔ ∀𝑦𝑆 𝑤 𝑦))
4 breq1 5055 . . . . . . . 8 (𝑧 = 𝑤 → (𝑧 𝑥𝑤 𝑥))
53, 4imbi12d 348 . . . . . . 7 (𝑧 = 𝑤 → ((∀𝑦𝑆 𝑧 𝑦𝑧 𝑥) ↔ (∀𝑦𝑆 𝑤 𝑦𝑤 𝑥)))
6 simprlr 779 . . . . . . 7 ((((𝐾 ∈ Poset ∧ 𝑆𝐵) ∧ (𝑥𝐵𝑤𝐵)) ∧ ((∀𝑦𝑆 𝑥 𝑦 ∧ ∀𝑧𝐵 (∀𝑦𝑆 𝑧 𝑦𝑧 𝑥)) ∧ (∀𝑦𝑆 𝑤 𝑦 ∧ ∀𝑧𝐵 (∀𝑦𝑆 𝑧 𝑦𝑧 𝑤)))) → ∀𝑧𝐵 (∀𝑦𝑆 𝑧 𝑦𝑧 𝑥))
7 simplrr 777 . . . . . . 7 ((((𝐾 ∈ Poset ∧ 𝑆𝐵) ∧ (𝑥𝐵𝑤𝐵)) ∧ ((∀𝑦𝑆 𝑥 𝑦 ∧ ∀𝑧𝐵 (∀𝑦𝑆 𝑧 𝑦𝑧 𝑥)) ∧ (∀𝑦𝑆 𝑤 𝑦 ∧ ∀𝑧𝐵 (∀𝑦𝑆 𝑧 𝑦𝑧 𝑤)))) → 𝑤𝐵)
85, 6, 7rspcdva 3611 . . . . . 6 ((((𝐾 ∈ Poset ∧ 𝑆𝐵) ∧ (𝑥𝐵𝑤𝐵)) ∧ ((∀𝑦𝑆 𝑥 𝑦 ∧ ∀𝑧𝐵 (∀𝑦𝑆 𝑧 𝑦𝑧 𝑥)) ∧ (∀𝑦𝑆 𝑤 𝑦 ∧ ∀𝑧𝐵 (∀𝑦𝑆 𝑧 𝑦𝑧 𝑤)))) → (∀𝑦𝑆 𝑤 𝑦𝑤 𝑥))
91, 8mpd 15 . . . . 5 ((((𝐾 ∈ Poset ∧ 𝑆𝐵) ∧ (𝑥𝐵𝑤𝐵)) ∧ ((∀𝑦𝑆 𝑥 𝑦 ∧ ∀𝑧𝐵 (∀𝑦𝑆 𝑧 𝑦𝑧 𝑥)) ∧ (∀𝑦𝑆 𝑤 𝑦 ∧ ∀𝑧𝐵 (∀𝑦𝑆 𝑧 𝑦𝑧 𝑤)))) → 𝑤 𝑥)
10 simprll 778 . . . . . 6 ((((𝐾 ∈ Poset ∧ 𝑆𝐵) ∧ (𝑥𝐵𝑤𝐵)) ∧ ((∀𝑦𝑆 𝑥 𝑦 ∧ ∀𝑧𝐵 (∀𝑦𝑆 𝑧 𝑦𝑧 𝑥)) ∧ (∀𝑦𝑆 𝑤 𝑦 ∧ ∀𝑧𝐵 (∀𝑦𝑆 𝑧 𝑦𝑧 𝑤)))) → ∀𝑦𝑆 𝑥 𝑦)
11 breq1 5055 . . . . . . . . 9 (𝑧 = 𝑥 → (𝑧 𝑦𝑥 𝑦))
1211ralbidv 3192 . . . . . . . 8 (𝑧 = 𝑥 → (∀𝑦𝑆 𝑧 𝑦 ↔ ∀𝑦𝑆 𝑥 𝑦))
13 breq1 5055 . . . . . . . 8 (𝑧 = 𝑥 → (𝑧 𝑤𝑥 𝑤))
1412, 13imbi12d 348 . . . . . . 7 (𝑧 = 𝑥 → ((∀𝑦𝑆 𝑧 𝑦𝑧 𝑤) ↔ (∀𝑦𝑆 𝑥 𝑦𝑥 𝑤)))
15 simprrr 781 . . . . . . 7 ((((𝐾 ∈ Poset ∧ 𝑆𝐵) ∧ (𝑥𝐵𝑤𝐵)) ∧ ((∀𝑦𝑆 𝑥 𝑦 ∧ ∀𝑧𝐵 (∀𝑦𝑆 𝑧 𝑦𝑧 𝑥)) ∧ (∀𝑦𝑆 𝑤 𝑦 ∧ ∀𝑧𝐵 (∀𝑦𝑆 𝑧 𝑦𝑧 𝑤)))) → ∀𝑧𝐵 (∀𝑦𝑆 𝑧 𝑦𝑧 𝑤))
16 simplrl 776 . . . . . . 7 ((((𝐾 ∈ Poset ∧ 𝑆𝐵) ∧ (𝑥𝐵𝑤𝐵)) ∧ ((∀𝑦𝑆 𝑥 𝑦 ∧ ∀𝑧𝐵 (∀𝑦𝑆 𝑧 𝑦𝑧 𝑥)) ∧ (∀𝑦𝑆 𝑤 𝑦 ∧ ∀𝑧𝐵 (∀𝑦𝑆 𝑧 𝑦𝑧 𝑤)))) → 𝑥𝐵)
1714, 15, 16rspcdva 3611 . . . . . 6 ((((𝐾 ∈ Poset ∧ 𝑆𝐵) ∧ (𝑥𝐵𝑤𝐵)) ∧ ((∀𝑦𝑆 𝑥 𝑦 ∧ ∀𝑧𝐵 (∀𝑦𝑆 𝑧 𝑦𝑧 𝑥)) ∧ (∀𝑦𝑆 𝑤 𝑦 ∧ ∀𝑧𝐵 (∀𝑦𝑆 𝑧 𝑦𝑧 𝑤)))) → (∀𝑦𝑆 𝑥 𝑦𝑥 𝑤))
1810, 17mpd 15 . . . . 5 ((((𝐾 ∈ Poset ∧ 𝑆𝐵) ∧ (𝑥𝐵𝑤𝐵)) ∧ ((∀𝑦𝑆 𝑥 𝑦 ∧ ∀𝑧𝐵 (∀𝑦𝑆 𝑧 𝑦𝑧 𝑥)) ∧ (∀𝑦𝑆 𝑤 𝑦 ∧ ∀𝑧𝐵 (∀𝑦𝑆 𝑧 𝑦𝑧 𝑤)))) → 𝑥 𝑤)
19 ancom 464 . . . . . . . 8 ((𝑤 𝑥𝑥 𝑤) ↔ (𝑥 𝑤𝑤 𝑥))
20 poslubmo.b . . . . . . . . 9 𝐵 = (Base‘𝐾)
21 poslubmo.l . . . . . . . . 9 = (le‘𝐾)
2220, 21posasymb 17562 . . . . . . . 8 ((𝐾 ∈ Poset ∧ 𝑥𝐵𝑤𝐵) → ((𝑥 𝑤𝑤 𝑥) ↔ 𝑥 = 𝑤))
2319, 22syl5bb 286 . . . . . . 7 ((𝐾 ∈ Poset ∧ 𝑥𝐵𝑤𝐵) → ((𝑤 𝑥𝑥 𝑤) ↔ 𝑥 = 𝑤))
24233expb 1117 . . . . . 6 ((𝐾 ∈ Poset ∧ (𝑥𝐵𝑤𝐵)) → ((𝑤 𝑥𝑥 𝑤) ↔ 𝑥 = 𝑤))
2524ad4ant13 750 . . . . 5 ((((𝐾 ∈ Poset ∧ 𝑆𝐵) ∧ (𝑥𝐵𝑤𝐵)) ∧ ((∀𝑦𝑆 𝑥 𝑦 ∧ ∀𝑧𝐵 (∀𝑦𝑆 𝑧 𝑦𝑧 𝑥)) ∧ (∀𝑦𝑆 𝑤 𝑦 ∧ ∀𝑧𝐵 (∀𝑦𝑆 𝑧 𝑦𝑧 𝑤)))) → ((𝑤 𝑥𝑥 𝑤) ↔ 𝑥 = 𝑤))
269, 18, 25mpbi2and 711 . . . 4 ((((𝐾 ∈ Poset ∧ 𝑆𝐵) ∧ (𝑥𝐵𝑤𝐵)) ∧ ((∀𝑦𝑆 𝑥 𝑦 ∧ ∀𝑧𝐵 (∀𝑦𝑆 𝑧 𝑦𝑧 𝑥)) ∧ (∀𝑦𝑆 𝑤 𝑦 ∧ ∀𝑧𝐵 (∀𝑦𝑆 𝑧 𝑦𝑧 𝑤)))) → 𝑥 = 𝑤)
2726ex 416 . . 3 (((𝐾 ∈ Poset ∧ 𝑆𝐵) ∧ (𝑥𝐵𝑤𝐵)) → (((∀𝑦𝑆 𝑥 𝑦 ∧ ∀𝑧𝐵 (∀𝑦𝑆 𝑧 𝑦𝑧 𝑥)) ∧ (∀𝑦𝑆 𝑤 𝑦 ∧ ∀𝑧𝐵 (∀𝑦𝑆 𝑧 𝑦𝑧 𝑤))) → 𝑥 = 𝑤))
2827ralrimivva 3186 . 2 ((𝐾 ∈ Poset ∧ 𝑆𝐵) → ∀𝑥𝐵𝑤𝐵 (((∀𝑦𝑆 𝑥 𝑦 ∧ ∀𝑧𝐵 (∀𝑦𝑆 𝑧 𝑦𝑧 𝑥)) ∧ (∀𝑦𝑆 𝑤 𝑦 ∧ ∀𝑧𝐵 (∀𝑦𝑆 𝑧 𝑦𝑧 𝑤))) → 𝑥 = 𝑤))
29 breq1 5055 . . . . 5 (𝑥 = 𝑤 → (𝑥 𝑦𝑤 𝑦))
3029ralbidv 3192 . . . 4 (𝑥 = 𝑤 → (∀𝑦𝑆 𝑥 𝑦 ↔ ∀𝑦𝑆 𝑤 𝑦))
31 breq2 5056 . . . . . 6 (𝑥 = 𝑤 → (𝑧 𝑥𝑧 𝑤))
3231imbi2d 344 . . . . 5 (𝑥 = 𝑤 → ((∀𝑦𝑆 𝑧 𝑦𝑧 𝑥) ↔ (∀𝑦𝑆 𝑧 𝑦𝑧 𝑤)))
3332ralbidv 3192 . . . 4 (𝑥 = 𝑤 → (∀𝑧𝐵 (∀𝑦𝑆 𝑧 𝑦𝑧 𝑥) ↔ ∀𝑧𝐵 (∀𝑦𝑆 𝑧 𝑦𝑧 𝑤)))
3430, 33anbi12d 633 . . 3 (𝑥 = 𝑤 → ((∀𝑦𝑆 𝑥 𝑦 ∧ ∀𝑧𝐵 (∀𝑦𝑆 𝑧 𝑦𝑧 𝑥)) ↔ (∀𝑦𝑆 𝑤 𝑦 ∧ ∀𝑧𝐵 (∀𝑦𝑆 𝑧 𝑦𝑧 𝑤))))
3534rmo4 3707 . 2 (∃*𝑥𝐵 (∀𝑦𝑆 𝑥 𝑦 ∧ ∀𝑧𝐵 (∀𝑦𝑆 𝑧 𝑦𝑧 𝑥)) ↔ ∀𝑥𝐵𝑤𝐵 (((∀𝑦𝑆 𝑥 𝑦 ∧ ∀𝑧𝐵 (∀𝑦𝑆 𝑧 𝑦𝑧 𝑥)) ∧ (∀𝑦𝑆 𝑤 𝑦 ∧ ∀𝑧𝐵 (∀𝑦𝑆 𝑧 𝑦𝑧 𝑤))) → 𝑥 = 𝑤))
3628, 35sylibr 237 1 ((𝐾 ∈ Poset ∧ 𝑆𝐵) → ∃*𝑥𝐵 (∀𝑦𝑆 𝑥 𝑦 ∧ ∀𝑧𝐵 (∀𝑦𝑆 𝑧 𝑦𝑧 𝑥)))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 209   ∧ wa 399   ∧ w3a 1084   = wceq 1538   ∈ wcel 2115  ∀wral 3133  ∃*wrmo 3136   ⊆ wss 3919   class class class wbr 5052  ‘cfv 6343  Basecbs 16483  lecple 16572  Posetcpo 17550 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2117  ax-9 2125  ax-10 2146  ax-11 2162  ax-12 2179  ax-ext 2796  ax-nul 5196 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2071  df-mo 2624  df-eu 2655  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2964  df-ral 3138  df-rex 3139  df-rmo 3141  df-v 3482  df-sbc 3759  df-dif 3922  df-un 3924  df-in 3926  df-ss 3936  df-nul 4277  df-sn 4551  df-pr 4553  df-op 4557  df-uni 4825  df-br 5053  df-iota 6302  df-fv 6351  df-proset 17538  df-poset 17556 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator