MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  posglbmo Structured version   Visualization version   GIF version

Theorem posglbmo 18457
Description: Greatest lower bounds in a poset are unique if they exist. (Contributed by NM, 20-Sep-2018.)
Hypotheses
Ref Expression
poslubmo.l = (le‘𝐾)
poslubmo.b 𝐵 = (Base‘𝐾)
Assertion
Ref Expression
posglbmo ((𝐾 ∈ Poset ∧ 𝑆𝐵) → ∃*𝑥𝐵 (∀𝑦𝑆 𝑥 𝑦 ∧ ∀𝑧𝐵 (∀𝑦𝑆 𝑧 𝑦𝑧 𝑥)))
Distinct variable groups:   𝑥, ,𝑦,𝑧   𝑥,𝐵,𝑦,𝑧   𝑥,𝐾,𝑦,𝑧   𝑥,𝑆,𝑦,𝑧

Proof of Theorem posglbmo
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 simprrl 781 . . . . . 6 ((((𝐾 ∈ Poset ∧ 𝑆𝐵) ∧ (𝑥𝐵𝑤𝐵)) ∧ ((∀𝑦𝑆 𝑥 𝑦 ∧ ∀𝑧𝐵 (∀𝑦𝑆 𝑧 𝑦𝑧 𝑥)) ∧ (∀𝑦𝑆 𝑤 𝑦 ∧ ∀𝑧𝐵 (∀𝑦𝑆 𝑧 𝑦𝑧 𝑤)))) → ∀𝑦𝑆 𝑤 𝑦)
2 breq1 5146 . . . . . . . . 9 (𝑧 = 𝑤 → (𝑧 𝑦𝑤 𝑦))
32ralbidv 3178 . . . . . . . 8 (𝑧 = 𝑤 → (∀𝑦𝑆 𝑧 𝑦 ↔ ∀𝑦𝑆 𝑤 𝑦))
4 breq1 5146 . . . . . . . 8 (𝑧 = 𝑤 → (𝑧 𝑥𝑤 𝑥))
53, 4imbi12d 344 . . . . . . 7 (𝑧 = 𝑤 → ((∀𝑦𝑆 𝑧 𝑦𝑧 𝑥) ↔ (∀𝑦𝑆 𝑤 𝑦𝑤 𝑥)))
6 simprlr 780 . . . . . . 7 ((((𝐾 ∈ Poset ∧ 𝑆𝐵) ∧ (𝑥𝐵𝑤𝐵)) ∧ ((∀𝑦𝑆 𝑥 𝑦 ∧ ∀𝑧𝐵 (∀𝑦𝑆 𝑧 𝑦𝑧 𝑥)) ∧ (∀𝑦𝑆 𝑤 𝑦 ∧ ∀𝑧𝐵 (∀𝑦𝑆 𝑧 𝑦𝑧 𝑤)))) → ∀𝑧𝐵 (∀𝑦𝑆 𝑧 𝑦𝑧 𝑥))
7 simplrr 778 . . . . . . 7 ((((𝐾 ∈ Poset ∧ 𝑆𝐵) ∧ (𝑥𝐵𝑤𝐵)) ∧ ((∀𝑦𝑆 𝑥 𝑦 ∧ ∀𝑧𝐵 (∀𝑦𝑆 𝑧 𝑦𝑧 𝑥)) ∧ (∀𝑦𝑆 𝑤 𝑦 ∧ ∀𝑧𝐵 (∀𝑦𝑆 𝑧 𝑦𝑧 𝑤)))) → 𝑤𝐵)
85, 6, 7rspcdva 3623 . . . . . 6 ((((𝐾 ∈ Poset ∧ 𝑆𝐵) ∧ (𝑥𝐵𝑤𝐵)) ∧ ((∀𝑦𝑆 𝑥 𝑦 ∧ ∀𝑧𝐵 (∀𝑦𝑆 𝑧 𝑦𝑧 𝑥)) ∧ (∀𝑦𝑆 𝑤 𝑦 ∧ ∀𝑧𝐵 (∀𝑦𝑆 𝑧 𝑦𝑧 𝑤)))) → (∀𝑦𝑆 𝑤 𝑦𝑤 𝑥))
91, 8mpd 15 . . . . 5 ((((𝐾 ∈ Poset ∧ 𝑆𝐵) ∧ (𝑥𝐵𝑤𝐵)) ∧ ((∀𝑦𝑆 𝑥 𝑦 ∧ ∀𝑧𝐵 (∀𝑦𝑆 𝑧 𝑦𝑧 𝑥)) ∧ (∀𝑦𝑆 𝑤 𝑦 ∧ ∀𝑧𝐵 (∀𝑦𝑆 𝑧 𝑦𝑧 𝑤)))) → 𝑤 𝑥)
10 simprll 779 . . . . . 6 ((((𝐾 ∈ Poset ∧ 𝑆𝐵) ∧ (𝑥𝐵𝑤𝐵)) ∧ ((∀𝑦𝑆 𝑥 𝑦 ∧ ∀𝑧𝐵 (∀𝑦𝑆 𝑧 𝑦𝑧 𝑥)) ∧ (∀𝑦𝑆 𝑤 𝑦 ∧ ∀𝑧𝐵 (∀𝑦𝑆 𝑧 𝑦𝑧 𝑤)))) → ∀𝑦𝑆 𝑥 𝑦)
11 breq1 5146 . . . . . . . . 9 (𝑧 = 𝑥 → (𝑧 𝑦𝑥 𝑦))
1211ralbidv 3178 . . . . . . . 8 (𝑧 = 𝑥 → (∀𝑦𝑆 𝑧 𝑦 ↔ ∀𝑦𝑆 𝑥 𝑦))
13 breq1 5146 . . . . . . . 8 (𝑧 = 𝑥 → (𝑧 𝑤𝑥 𝑤))
1412, 13imbi12d 344 . . . . . . 7 (𝑧 = 𝑥 → ((∀𝑦𝑆 𝑧 𝑦𝑧 𝑤) ↔ (∀𝑦𝑆 𝑥 𝑦𝑥 𝑤)))
15 simprrr 782 . . . . . . 7 ((((𝐾 ∈ Poset ∧ 𝑆𝐵) ∧ (𝑥𝐵𝑤𝐵)) ∧ ((∀𝑦𝑆 𝑥 𝑦 ∧ ∀𝑧𝐵 (∀𝑦𝑆 𝑧 𝑦𝑧 𝑥)) ∧ (∀𝑦𝑆 𝑤 𝑦 ∧ ∀𝑧𝐵 (∀𝑦𝑆 𝑧 𝑦𝑧 𝑤)))) → ∀𝑧𝐵 (∀𝑦𝑆 𝑧 𝑦𝑧 𝑤))
16 simplrl 777 . . . . . . 7 ((((𝐾 ∈ Poset ∧ 𝑆𝐵) ∧ (𝑥𝐵𝑤𝐵)) ∧ ((∀𝑦𝑆 𝑥 𝑦 ∧ ∀𝑧𝐵 (∀𝑦𝑆 𝑧 𝑦𝑧 𝑥)) ∧ (∀𝑦𝑆 𝑤 𝑦 ∧ ∀𝑧𝐵 (∀𝑦𝑆 𝑧 𝑦𝑧 𝑤)))) → 𝑥𝐵)
1714, 15, 16rspcdva 3623 . . . . . 6 ((((𝐾 ∈ Poset ∧ 𝑆𝐵) ∧ (𝑥𝐵𝑤𝐵)) ∧ ((∀𝑦𝑆 𝑥 𝑦 ∧ ∀𝑧𝐵 (∀𝑦𝑆 𝑧 𝑦𝑧 𝑥)) ∧ (∀𝑦𝑆 𝑤 𝑦 ∧ ∀𝑧𝐵 (∀𝑦𝑆 𝑧 𝑦𝑧 𝑤)))) → (∀𝑦𝑆 𝑥 𝑦𝑥 𝑤))
1810, 17mpd 15 . . . . 5 ((((𝐾 ∈ Poset ∧ 𝑆𝐵) ∧ (𝑥𝐵𝑤𝐵)) ∧ ((∀𝑦𝑆 𝑥 𝑦 ∧ ∀𝑧𝐵 (∀𝑦𝑆 𝑧 𝑦𝑧 𝑥)) ∧ (∀𝑦𝑆 𝑤 𝑦 ∧ ∀𝑧𝐵 (∀𝑦𝑆 𝑧 𝑦𝑧 𝑤)))) → 𝑥 𝑤)
19 ancom 460 . . . . . . . 8 ((𝑤 𝑥𝑥 𝑤) ↔ (𝑥 𝑤𝑤 𝑥))
20 poslubmo.b . . . . . . . . 9 𝐵 = (Base‘𝐾)
21 poslubmo.l . . . . . . . . 9 = (le‘𝐾)
2220, 21posasymb 18365 . . . . . . . 8 ((𝐾 ∈ Poset ∧ 𝑥𝐵𝑤𝐵) → ((𝑥 𝑤𝑤 𝑥) ↔ 𝑥 = 𝑤))
2319, 22bitrid 283 . . . . . . 7 ((𝐾 ∈ Poset ∧ 𝑥𝐵𝑤𝐵) → ((𝑤 𝑥𝑥 𝑤) ↔ 𝑥 = 𝑤))
24233expb 1121 . . . . . 6 ((𝐾 ∈ Poset ∧ (𝑥𝐵𝑤𝐵)) → ((𝑤 𝑥𝑥 𝑤) ↔ 𝑥 = 𝑤))
2524ad4ant13 751 . . . . 5 ((((𝐾 ∈ Poset ∧ 𝑆𝐵) ∧ (𝑥𝐵𝑤𝐵)) ∧ ((∀𝑦𝑆 𝑥 𝑦 ∧ ∀𝑧𝐵 (∀𝑦𝑆 𝑧 𝑦𝑧 𝑥)) ∧ (∀𝑦𝑆 𝑤 𝑦 ∧ ∀𝑧𝐵 (∀𝑦𝑆 𝑧 𝑦𝑧 𝑤)))) → ((𝑤 𝑥𝑥 𝑤) ↔ 𝑥 = 𝑤))
269, 18, 25mpbi2and 712 . . . 4 ((((𝐾 ∈ Poset ∧ 𝑆𝐵) ∧ (𝑥𝐵𝑤𝐵)) ∧ ((∀𝑦𝑆 𝑥 𝑦 ∧ ∀𝑧𝐵 (∀𝑦𝑆 𝑧 𝑦𝑧 𝑥)) ∧ (∀𝑦𝑆 𝑤 𝑦 ∧ ∀𝑧𝐵 (∀𝑦𝑆 𝑧 𝑦𝑧 𝑤)))) → 𝑥 = 𝑤)
2726ex 412 . . 3 (((𝐾 ∈ Poset ∧ 𝑆𝐵) ∧ (𝑥𝐵𝑤𝐵)) → (((∀𝑦𝑆 𝑥 𝑦 ∧ ∀𝑧𝐵 (∀𝑦𝑆 𝑧 𝑦𝑧 𝑥)) ∧ (∀𝑦𝑆 𝑤 𝑦 ∧ ∀𝑧𝐵 (∀𝑦𝑆 𝑧 𝑦𝑧 𝑤))) → 𝑥 = 𝑤))
2827ralrimivva 3202 . 2 ((𝐾 ∈ Poset ∧ 𝑆𝐵) → ∀𝑥𝐵𝑤𝐵 (((∀𝑦𝑆 𝑥 𝑦 ∧ ∀𝑧𝐵 (∀𝑦𝑆 𝑧 𝑦𝑧 𝑥)) ∧ (∀𝑦𝑆 𝑤 𝑦 ∧ ∀𝑧𝐵 (∀𝑦𝑆 𝑧 𝑦𝑧 𝑤))) → 𝑥 = 𝑤))
29 breq1 5146 . . . . 5 (𝑥 = 𝑤 → (𝑥 𝑦𝑤 𝑦))
3029ralbidv 3178 . . . 4 (𝑥 = 𝑤 → (∀𝑦𝑆 𝑥 𝑦 ↔ ∀𝑦𝑆 𝑤 𝑦))
31 breq2 5147 . . . . . 6 (𝑥 = 𝑤 → (𝑧 𝑥𝑧 𝑤))
3231imbi2d 340 . . . . 5 (𝑥 = 𝑤 → ((∀𝑦𝑆 𝑧 𝑦𝑧 𝑥) ↔ (∀𝑦𝑆 𝑧 𝑦𝑧 𝑤)))
3332ralbidv 3178 . . . 4 (𝑥 = 𝑤 → (∀𝑧𝐵 (∀𝑦𝑆 𝑧 𝑦𝑧 𝑥) ↔ ∀𝑧𝐵 (∀𝑦𝑆 𝑧 𝑦𝑧 𝑤)))
3430, 33anbi12d 632 . . 3 (𝑥 = 𝑤 → ((∀𝑦𝑆 𝑥 𝑦 ∧ ∀𝑧𝐵 (∀𝑦𝑆 𝑧 𝑦𝑧 𝑥)) ↔ (∀𝑦𝑆 𝑤 𝑦 ∧ ∀𝑧𝐵 (∀𝑦𝑆 𝑧 𝑦𝑧 𝑤))))
3534rmo4 3736 . 2 (∃*𝑥𝐵 (∀𝑦𝑆 𝑥 𝑦 ∧ ∀𝑧𝐵 (∀𝑦𝑆 𝑧 𝑦𝑧 𝑥)) ↔ ∀𝑥𝐵𝑤𝐵 (((∀𝑦𝑆 𝑥 𝑦 ∧ ∀𝑧𝐵 (∀𝑦𝑆 𝑧 𝑦𝑧 𝑥)) ∧ (∀𝑦𝑆 𝑤 𝑦 ∧ ∀𝑧𝐵 (∀𝑦𝑆 𝑧 𝑦𝑧 𝑤))) → 𝑥 = 𝑤))
3628, 35sylibr 234 1 ((𝐾 ∈ Poset ∧ 𝑆𝐵) → ∃*𝑥𝐵 (∀𝑦𝑆 𝑥 𝑦 ∧ ∀𝑧𝐵 (∀𝑦𝑆 𝑧 𝑦𝑧 𝑥)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1087   = wceq 1540  wcel 2108  wral 3061  ∃*wrmo 3379  wss 3951   class class class wbr 5143  cfv 6561  Basecbs 17247  lecple 17304  Posetcpo 18353
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2708  ax-nul 5306
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2065  df-mo 2540  df-clab 2715  df-cleq 2729  df-clel 2816  df-ne 2941  df-ral 3062  df-rex 3071  df-rmo 3380  df-rab 3437  df-v 3482  df-sbc 3789  df-dif 3954  df-un 3956  df-ss 3968  df-nul 4334  df-if 4526  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-br 5144  df-iota 6514  df-fv 6569  df-proset 18340  df-poset 18359
This theorem is referenced by:  glbeldm2  48854
  Copyright terms: Public domain W3C validator