Step | Hyp | Ref
| Expression |
1 | | poslubd.b |
. . 3
β’ π΅ = (BaseβπΎ) |
2 | | poslubd.l |
. . 3
β’ β€ =
(leβπΎ) |
3 | | poslubd.u |
. . 3
β’ π = (lubβπΎ) |
4 | | biid 260 |
. . 3
β’
((βπ₯ β
π π₯ β€ π§ β§ βπ¦ β π΅ (βπ₯ β π π₯ β€ π¦ β π§ β€ π¦)) β (βπ₯ β π π₯ β€ π§ β§ βπ¦ β π΅ (βπ₯ β π π₯ β€ π¦ β π§ β€ π¦))) |
5 | | poslubd.k |
. . 3
β’ (π β πΎ β Poset) |
6 | | poslubd.s |
. . 3
β’ (π β π β π΅) |
7 | 1, 2, 3, 4, 5, 6 | lubval 18305 |
. 2
β’ (π β (πβπ) = (β©π§ β π΅ (βπ₯ β π π₯ β€ π§ β§ βπ¦ β π΅ (βπ₯ β π π₯ β€ π¦ β π§ β€ π¦)))) |
8 | | poslubd.ub |
. . . . 5
β’ ((π β§ π₯ β π) β π₯ β€ π) |
9 | 8 | ralrimiva 3146 |
. . . 4
β’ (π β βπ₯ β π π₯ β€ π) |
10 | | poslubd.le |
. . . . . 6
β’ ((π β§ π¦ β π΅ β§ βπ₯ β π π₯ β€ π¦) β π β€ π¦) |
11 | 10 | 3expia 1121 |
. . . . 5
β’ ((π β§ π¦ β π΅) β (βπ₯ β π π₯ β€ π¦ β π β€ π¦)) |
12 | 11 | ralrimiva 3146 |
. . . 4
β’ (π β βπ¦ β π΅ (βπ₯ β π π₯ β€ π¦ β π β€ π¦)) |
13 | 9, 12 | jca 512 |
. . 3
β’ (π β (βπ₯ β π π₯ β€ π β§ βπ¦ β π΅ (βπ₯ β π π₯ β€ π¦ β π β€ π¦))) |
14 | | poslubd.t |
. . . 4
β’ (π β π β π΅) |
15 | | breq2 5151 |
. . . . . . . . 9
β’ (π§ = π β (π₯ β€ π§ β π₯ β€ π)) |
16 | 15 | ralbidv 3177 |
. . . . . . . 8
β’ (π§ = π β (βπ₯ β π π₯ β€ π§ β βπ₯ β π π₯ β€ π)) |
17 | | breq1 5150 |
. . . . . . . . . 10
β’ (π§ = π β (π§ β€ π¦ β π β€ π¦)) |
18 | 17 | imbi2d 340 |
. . . . . . . . 9
β’ (π§ = π β ((βπ₯ β π π₯ β€ π¦ β π§ β€ π¦) β (βπ₯ β π π₯ β€ π¦ β π β€ π¦))) |
19 | 18 | ralbidv 3177 |
. . . . . . . 8
β’ (π§ = π β (βπ¦ β π΅ (βπ₯ β π π₯ β€ π¦ β π§ β€ π¦) β βπ¦ β π΅ (βπ₯ β π π₯ β€ π¦ β π β€ π¦))) |
20 | 16, 19 | anbi12d 631 |
. . . . . . 7
β’ (π§ = π β ((βπ₯ β π π₯ β€ π§ β§ βπ¦ β π΅ (βπ₯ β π π₯ β€ π¦ β π§ β€ π¦)) β (βπ₯ β π π₯ β€ π β§ βπ¦ β π΅ (βπ₯ β π π₯ β€ π¦ β π β€ π¦)))) |
21 | 20 | rspcev 3612 |
. . . . . 6
β’ ((π β π΅ β§ (βπ₯ β π π₯ β€ π β§ βπ¦ β π΅ (βπ₯ β π π₯ β€ π¦ β π β€ π¦))) β βπ§ β π΅ (βπ₯ β π π₯ β€ π§ β§ βπ¦ β π΅ (βπ₯ β π π₯ β€ π¦ β π§ β€ π¦))) |
22 | 14, 13, 21 | syl2anc 584 |
. . . . 5
β’ (π β βπ§ β π΅ (βπ₯ β π π₯ β€ π§ β§ βπ¦ β π΅ (βπ₯ β π π₯ β€ π¦ β π§ β€ π¦))) |
23 | 2, 1 | poslubmo 18360 |
. . . . . 6
β’ ((πΎ β Poset β§ π β π΅) β β*π§ β π΅ (βπ₯ β π π₯ β€ π§ β§ βπ¦ β π΅ (βπ₯ β π π₯ β€ π¦ β π§ β€ π¦))) |
24 | 5, 6, 23 | syl2anc 584 |
. . . . 5
β’ (π β β*π§ β π΅ (βπ₯ β π π₯ β€ π§ β§ βπ¦ β π΅ (βπ₯ β π π₯ β€ π¦ β π§ β€ π¦))) |
25 | | reu5 3378 |
. . . . 5
β’
(β!π§ β
π΅ (βπ₯ β π π₯ β€ π§ β§ βπ¦ β π΅ (βπ₯ β π π₯ β€ π¦ β π§ β€ π¦)) β (βπ§ β π΅ (βπ₯ β π π₯ β€ π§ β§ βπ¦ β π΅ (βπ₯ β π π₯ β€ π¦ β π§ β€ π¦)) β§ β*π§ β π΅ (βπ₯ β π π₯ β€ π§ β§ βπ¦ β π΅ (βπ₯ β π π₯ β€ π¦ β π§ β€ π¦)))) |
26 | 22, 24, 25 | sylanbrc 583 |
. . . 4
β’ (π β β!π§ β π΅ (βπ₯ β π π₯ β€ π§ β§ βπ¦ β π΅ (βπ₯ β π π₯ β€ π¦ β π§ β€ π¦))) |
27 | 20 | riota2 7387 |
. . . 4
β’ ((π β π΅ β§ β!π§ β π΅ (βπ₯ β π π₯ β€ π§ β§ βπ¦ β π΅ (βπ₯ β π π₯ β€ π¦ β π§ β€ π¦))) β ((βπ₯ β π π₯ β€ π β§ βπ¦ β π΅ (βπ₯ β π π₯ β€ π¦ β π β€ π¦)) β (β©π§ β π΅ (βπ₯ β π π₯ β€ π§ β§ βπ¦ β π΅ (βπ₯ β π π₯ β€ π¦ β π§ β€ π¦))) = π)) |
28 | 14, 26, 27 | syl2anc 584 |
. . 3
β’ (π β ((βπ₯ β π π₯ β€ π β§ βπ¦ β π΅ (βπ₯ β π π₯ β€ π¦ β π β€ π¦)) β (β©π§ β π΅ (βπ₯ β π π₯ β€ π§ β§ βπ¦ β π΅ (βπ₯ β π π₯ β€ π¦ β π§ β€ π¦))) = π)) |
29 | 13, 28 | mpbid 231 |
. 2
β’ (π β (β©π§ β π΅ (βπ₯ β π π₯ β€ π§ β§ βπ¦ β π΅ (βπ₯ β π π₯ β€ π¦ β π§ β€ π¦))) = π) |
30 | 7, 29 | eqtrd 2772 |
1
β’ (π β (πβπ) = π) |