MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  poslubd Structured version   Visualization version   GIF version

Theorem poslubd 17750
Description: Properties which determine the least upper bound in a poset. (Contributed by Stefan O'Rear, 31-Jan-2015.)
Hypotheses
Ref Expression
poslubd.l = (le‘𝐾)
poslubd.b 𝐵 = (Base‘𝐾)
poslubd.u 𝑈 = (lub‘𝐾)
poslubd.k (𝜑𝐾 ∈ Poset)
poslubd.s (𝜑𝑆𝐵)
poslubd.t (𝜑𝑇𝐵)
poslubd.ub ((𝜑𝑥𝑆) → 𝑥 𝑇)
poslubd.le ((𝜑𝑦𝐵 ∧ ∀𝑥𝑆 𝑥 𝑦) → 𝑇 𝑦)
Assertion
Ref Expression
poslubd (𝜑 → (𝑈𝑆) = 𝑇)
Distinct variable groups:   𝑥, ,𝑦   𝑥,𝐵,𝑦   𝑥,𝐾,𝑦   𝑥,𝑆,𝑦   𝑥,𝑈,𝑦   𝑥,𝑇,𝑦   𝜑,𝑥,𝑦

Proof of Theorem poslubd
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 poslubd.b . . 3 𝐵 = (Base‘𝐾)
2 poslubd.l . . 3 = (le‘𝐾)
3 poslubd.u . . 3 𝑈 = (lub‘𝐾)
4 biid 264 . . 3 ((∀𝑥𝑆 𝑥 𝑧 ∧ ∀𝑦𝐵 (∀𝑥𝑆 𝑥 𝑦𝑧 𝑦)) ↔ (∀𝑥𝑆 𝑥 𝑧 ∧ ∀𝑦𝐵 (∀𝑥𝑆 𝑥 𝑦𝑧 𝑦)))
5 poslubd.k . . 3 (𝜑𝐾 ∈ Poset)
6 poslubd.s . . 3 (𝜑𝑆𝐵)
71, 2, 3, 4, 5, 6lubval 17586 . 2 (𝜑 → (𝑈𝑆) = (𝑧𝐵 (∀𝑥𝑆 𝑥 𝑧 ∧ ∀𝑦𝐵 (∀𝑥𝑆 𝑥 𝑦𝑧 𝑦))))
8 poslubd.ub . . . . 5 ((𝜑𝑥𝑆) → 𝑥 𝑇)
98ralrimiva 3149 . . . 4 (𝜑 → ∀𝑥𝑆 𝑥 𝑇)
10 poslubd.le . . . . . 6 ((𝜑𝑦𝐵 ∧ ∀𝑥𝑆 𝑥 𝑦) → 𝑇 𝑦)
11103expia 1118 . . . . 5 ((𝜑𝑦𝐵) → (∀𝑥𝑆 𝑥 𝑦𝑇 𝑦))
1211ralrimiva 3149 . . . 4 (𝜑 → ∀𝑦𝐵 (∀𝑥𝑆 𝑥 𝑦𝑇 𝑦))
139, 12jca 515 . . 3 (𝜑 → (∀𝑥𝑆 𝑥 𝑇 ∧ ∀𝑦𝐵 (∀𝑥𝑆 𝑥 𝑦𝑇 𝑦)))
14 poslubd.t . . . 4 (𝜑𝑇𝐵)
15 breq2 5034 . . . . . . . . 9 (𝑧 = 𝑇 → (𝑥 𝑧𝑥 𝑇))
1615ralbidv 3162 . . . . . . . 8 (𝑧 = 𝑇 → (∀𝑥𝑆 𝑥 𝑧 ↔ ∀𝑥𝑆 𝑥 𝑇))
17 breq1 5033 . . . . . . . . . 10 (𝑧 = 𝑇 → (𝑧 𝑦𝑇 𝑦))
1817imbi2d 344 . . . . . . . . 9 (𝑧 = 𝑇 → ((∀𝑥𝑆 𝑥 𝑦𝑧 𝑦) ↔ (∀𝑥𝑆 𝑥 𝑦𝑇 𝑦)))
1918ralbidv 3162 . . . . . . . 8 (𝑧 = 𝑇 → (∀𝑦𝐵 (∀𝑥𝑆 𝑥 𝑦𝑧 𝑦) ↔ ∀𝑦𝐵 (∀𝑥𝑆 𝑥 𝑦𝑇 𝑦)))
2016, 19anbi12d 633 . . . . . . 7 (𝑧 = 𝑇 → ((∀𝑥𝑆 𝑥 𝑧 ∧ ∀𝑦𝐵 (∀𝑥𝑆 𝑥 𝑦𝑧 𝑦)) ↔ (∀𝑥𝑆 𝑥 𝑇 ∧ ∀𝑦𝐵 (∀𝑥𝑆 𝑥 𝑦𝑇 𝑦))))
2120rspcev 3571 . . . . . 6 ((𝑇𝐵 ∧ (∀𝑥𝑆 𝑥 𝑇 ∧ ∀𝑦𝐵 (∀𝑥𝑆 𝑥 𝑦𝑇 𝑦))) → ∃𝑧𝐵 (∀𝑥𝑆 𝑥 𝑧 ∧ ∀𝑦𝐵 (∀𝑥𝑆 𝑥 𝑦𝑧 𝑦)))
2214, 13, 21syl2anc 587 . . . . 5 (𝜑 → ∃𝑧𝐵 (∀𝑥𝑆 𝑥 𝑧 ∧ ∀𝑦𝐵 (∀𝑥𝑆 𝑥 𝑦𝑧 𝑦)))
232, 1poslubmo 17748 . . . . . 6 ((𝐾 ∈ Poset ∧ 𝑆𝐵) → ∃*𝑧𝐵 (∀𝑥𝑆 𝑥 𝑧 ∧ ∀𝑦𝐵 (∀𝑥𝑆 𝑥 𝑦𝑧 𝑦)))
245, 6, 23syl2anc 587 . . . . 5 (𝜑 → ∃*𝑧𝐵 (∀𝑥𝑆 𝑥 𝑧 ∧ ∀𝑦𝐵 (∀𝑥𝑆 𝑥 𝑦𝑧 𝑦)))
25 reu5 3375 . . . . 5 (∃!𝑧𝐵 (∀𝑥𝑆 𝑥 𝑧 ∧ ∀𝑦𝐵 (∀𝑥𝑆 𝑥 𝑦𝑧 𝑦)) ↔ (∃𝑧𝐵 (∀𝑥𝑆 𝑥 𝑧 ∧ ∀𝑦𝐵 (∀𝑥𝑆 𝑥 𝑦𝑧 𝑦)) ∧ ∃*𝑧𝐵 (∀𝑥𝑆 𝑥 𝑧 ∧ ∀𝑦𝐵 (∀𝑥𝑆 𝑥 𝑦𝑧 𝑦))))
2622, 24, 25sylanbrc 586 . . . 4 (𝜑 → ∃!𝑧𝐵 (∀𝑥𝑆 𝑥 𝑧 ∧ ∀𝑦𝐵 (∀𝑥𝑆 𝑥 𝑦𝑧 𝑦)))
2720riota2 7118 . . . 4 ((𝑇𝐵 ∧ ∃!𝑧𝐵 (∀𝑥𝑆 𝑥 𝑧 ∧ ∀𝑦𝐵 (∀𝑥𝑆 𝑥 𝑦𝑧 𝑦))) → ((∀𝑥𝑆 𝑥 𝑇 ∧ ∀𝑦𝐵 (∀𝑥𝑆 𝑥 𝑦𝑇 𝑦)) ↔ (𝑧𝐵 (∀𝑥𝑆 𝑥 𝑧 ∧ ∀𝑦𝐵 (∀𝑥𝑆 𝑥 𝑦𝑧 𝑦))) = 𝑇))
2814, 26, 27syl2anc 587 . . 3 (𝜑 → ((∀𝑥𝑆 𝑥 𝑇 ∧ ∀𝑦𝐵 (∀𝑥𝑆 𝑥 𝑦𝑇 𝑦)) ↔ (𝑧𝐵 (∀𝑥𝑆 𝑥 𝑧 ∧ ∀𝑦𝐵 (∀𝑥𝑆 𝑥 𝑦𝑧 𝑦))) = 𝑇))
2913, 28mpbid 235 . 2 (𝜑 → (𝑧𝐵 (∀𝑥𝑆 𝑥 𝑧 ∧ ∀𝑦𝐵 (∀𝑥𝑆 𝑥 𝑦𝑧 𝑦))) = 𝑇)
307, 29eqtrd 2833 1 (𝜑 → (𝑈𝑆) = 𝑇)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399  w3a 1084   = wceq 1538  wcel 2111  wral 3106  wrex 3107  ∃!wreu 3108  ∃*wrmo 3109  wss 3881   class class class wbr 5030  cfv 6324  crio 7092  Basecbs 16475  lecple 16564  Posetcpo 17542  lubclub 17544
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-ral 3111  df-rex 3112  df-reu 3113  df-rmo 3114  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-op 4532  df-uni 4801  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-id 5425  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-riota 7093  df-proset 17530  df-poset 17548  df-lub 17576
This theorem is referenced by:  poslubdg  17751
  Copyright terms: Public domain W3C validator