MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  poslubd Structured version   Visualization version   GIF version

Theorem poslubd 18483
Description: Properties which determine the least upper bound in a poset. (Contributed by Stefan O'Rear, 31-Jan-2015.)
Hypotheses
Ref Expression
poslubd.l = (le‘𝐾)
poslubd.b 𝐵 = (Base‘𝐾)
poslubd.u 𝑈 = (lub‘𝐾)
poslubd.k (𝜑𝐾 ∈ Poset)
poslubd.s (𝜑𝑆𝐵)
poslubd.t (𝜑𝑇𝐵)
poslubd.ub ((𝜑𝑥𝑆) → 𝑥 𝑇)
poslubd.le ((𝜑𝑦𝐵 ∧ ∀𝑥𝑆 𝑥 𝑦) → 𝑇 𝑦)
Assertion
Ref Expression
poslubd (𝜑 → (𝑈𝑆) = 𝑇)
Distinct variable groups:   𝑥, ,𝑦   𝑥,𝐵,𝑦   𝑥,𝐾,𝑦   𝑥,𝑆,𝑦   𝑥,𝑈,𝑦   𝑥,𝑇,𝑦   𝜑,𝑥,𝑦

Proof of Theorem poslubd
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 poslubd.b . . 3 𝐵 = (Base‘𝐾)
2 poslubd.l . . 3 = (le‘𝐾)
3 poslubd.u . . 3 𝑈 = (lub‘𝐾)
4 biid 261 . . 3 ((∀𝑥𝑆 𝑥 𝑧 ∧ ∀𝑦𝐵 (∀𝑥𝑆 𝑥 𝑦𝑧 𝑦)) ↔ (∀𝑥𝑆 𝑥 𝑧 ∧ ∀𝑦𝐵 (∀𝑥𝑆 𝑥 𝑦𝑧 𝑦)))
5 poslubd.k . . 3 (𝜑𝐾 ∈ Poset)
6 poslubd.s . . 3 (𝜑𝑆𝐵)
71, 2, 3, 4, 5, 6lubval 18426 . 2 (𝜑 → (𝑈𝑆) = (𝑧𝐵 (∀𝑥𝑆 𝑥 𝑧 ∧ ∀𝑦𝐵 (∀𝑥𝑆 𝑥 𝑦𝑧 𝑦))))
8 poslubd.ub . . . . 5 ((𝜑𝑥𝑆) → 𝑥 𝑇)
98ralrimiva 3152 . . . 4 (𝜑 → ∀𝑥𝑆 𝑥 𝑇)
10 poslubd.le . . . . . 6 ((𝜑𝑦𝐵 ∧ ∀𝑥𝑆 𝑥 𝑦) → 𝑇 𝑦)
11103expia 1121 . . . . 5 ((𝜑𝑦𝐵) → (∀𝑥𝑆 𝑥 𝑦𝑇 𝑦))
1211ralrimiva 3152 . . . 4 (𝜑 → ∀𝑦𝐵 (∀𝑥𝑆 𝑥 𝑦𝑇 𝑦))
139, 12jca 511 . . 3 (𝜑 → (∀𝑥𝑆 𝑥 𝑇 ∧ ∀𝑦𝐵 (∀𝑥𝑆 𝑥 𝑦𝑇 𝑦)))
14 poslubd.t . . . 4 (𝜑𝑇𝐵)
15 breq2 5170 . . . . . . . . 9 (𝑧 = 𝑇 → (𝑥 𝑧𝑥 𝑇))
1615ralbidv 3184 . . . . . . . 8 (𝑧 = 𝑇 → (∀𝑥𝑆 𝑥 𝑧 ↔ ∀𝑥𝑆 𝑥 𝑇))
17 breq1 5169 . . . . . . . . . 10 (𝑧 = 𝑇 → (𝑧 𝑦𝑇 𝑦))
1817imbi2d 340 . . . . . . . . 9 (𝑧 = 𝑇 → ((∀𝑥𝑆 𝑥 𝑦𝑧 𝑦) ↔ (∀𝑥𝑆 𝑥 𝑦𝑇 𝑦)))
1918ralbidv 3184 . . . . . . . 8 (𝑧 = 𝑇 → (∀𝑦𝐵 (∀𝑥𝑆 𝑥 𝑦𝑧 𝑦) ↔ ∀𝑦𝐵 (∀𝑥𝑆 𝑥 𝑦𝑇 𝑦)))
2016, 19anbi12d 631 . . . . . . 7 (𝑧 = 𝑇 → ((∀𝑥𝑆 𝑥 𝑧 ∧ ∀𝑦𝐵 (∀𝑥𝑆 𝑥 𝑦𝑧 𝑦)) ↔ (∀𝑥𝑆 𝑥 𝑇 ∧ ∀𝑦𝐵 (∀𝑥𝑆 𝑥 𝑦𝑇 𝑦))))
2120rspcev 3635 . . . . . 6 ((𝑇𝐵 ∧ (∀𝑥𝑆 𝑥 𝑇 ∧ ∀𝑦𝐵 (∀𝑥𝑆 𝑥 𝑦𝑇 𝑦))) → ∃𝑧𝐵 (∀𝑥𝑆 𝑥 𝑧 ∧ ∀𝑦𝐵 (∀𝑥𝑆 𝑥 𝑦𝑧 𝑦)))
2214, 13, 21syl2anc 583 . . . . 5 (𝜑 → ∃𝑧𝐵 (∀𝑥𝑆 𝑥 𝑧 ∧ ∀𝑦𝐵 (∀𝑥𝑆 𝑥 𝑦𝑧 𝑦)))
232, 1poslubmo 18481 . . . . . 6 ((𝐾 ∈ Poset ∧ 𝑆𝐵) → ∃*𝑧𝐵 (∀𝑥𝑆 𝑥 𝑧 ∧ ∀𝑦𝐵 (∀𝑥𝑆 𝑥 𝑦𝑧 𝑦)))
245, 6, 23syl2anc 583 . . . . 5 (𝜑 → ∃*𝑧𝐵 (∀𝑥𝑆 𝑥 𝑧 ∧ ∀𝑦𝐵 (∀𝑥𝑆 𝑥 𝑦𝑧 𝑦)))
25 reu5 3390 . . . . 5 (∃!𝑧𝐵 (∀𝑥𝑆 𝑥 𝑧 ∧ ∀𝑦𝐵 (∀𝑥𝑆 𝑥 𝑦𝑧 𝑦)) ↔ (∃𝑧𝐵 (∀𝑥𝑆 𝑥 𝑧 ∧ ∀𝑦𝐵 (∀𝑥𝑆 𝑥 𝑦𝑧 𝑦)) ∧ ∃*𝑧𝐵 (∀𝑥𝑆 𝑥 𝑧 ∧ ∀𝑦𝐵 (∀𝑥𝑆 𝑥 𝑦𝑧 𝑦))))
2622, 24, 25sylanbrc 582 . . . 4 (𝜑 → ∃!𝑧𝐵 (∀𝑥𝑆 𝑥 𝑧 ∧ ∀𝑦𝐵 (∀𝑥𝑆 𝑥 𝑦𝑧 𝑦)))
2720riota2 7430 . . . 4 ((𝑇𝐵 ∧ ∃!𝑧𝐵 (∀𝑥𝑆 𝑥 𝑧 ∧ ∀𝑦𝐵 (∀𝑥𝑆 𝑥 𝑦𝑧 𝑦))) → ((∀𝑥𝑆 𝑥 𝑇 ∧ ∀𝑦𝐵 (∀𝑥𝑆 𝑥 𝑦𝑇 𝑦)) ↔ (𝑧𝐵 (∀𝑥𝑆 𝑥 𝑧 ∧ ∀𝑦𝐵 (∀𝑥𝑆 𝑥 𝑦𝑧 𝑦))) = 𝑇))
2814, 26, 27syl2anc 583 . . 3 (𝜑 → ((∀𝑥𝑆 𝑥 𝑇 ∧ ∀𝑦𝐵 (∀𝑥𝑆 𝑥 𝑦𝑇 𝑦)) ↔ (𝑧𝐵 (∀𝑥𝑆 𝑥 𝑧 ∧ ∀𝑦𝐵 (∀𝑥𝑆 𝑥 𝑦𝑧 𝑦))) = 𝑇))
2913, 28mpbid 232 . 2 (𝜑 → (𝑧𝐵 (∀𝑥𝑆 𝑥 𝑧 ∧ ∀𝑦𝐵 (∀𝑥𝑆 𝑥 𝑦𝑧 𝑦))) = 𝑇)
307, 29eqtrd 2780 1 (𝜑 → (𝑈𝑆) = 𝑇)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1087   = wceq 1537  wcel 2108  wral 3067  wrex 3076  ∃!wreu 3386  ∃*wrmo 3387  wss 3976   class class class wbr 5166  cfv 6573  crio 7403  Basecbs 17258  lecple 17318  Posetcpo 18377  lubclub 18379
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-proset 18365  df-poset 18383  df-lub 18416
This theorem is referenced by:  poslubdg  18484  lubsscl  48640
  Copyright terms: Public domain W3C validator