Step | Hyp | Ref
| Expression |
1 | | poslubd.b |
. . 3
⊢ 𝐵 = (Base‘𝐾) |
2 | | poslubd.l |
. . 3
⊢ ≤ =
(le‘𝐾) |
3 | | poslubd.u |
. . 3
⊢ 𝑈 = (lub‘𝐾) |
4 | | biid 260 |
. . 3
⊢
((∀𝑥 ∈
𝑆 𝑥 ≤ 𝑧 ∧ ∀𝑦 ∈ 𝐵 (∀𝑥 ∈ 𝑆 𝑥 ≤ 𝑦 → 𝑧 ≤ 𝑦)) ↔ (∀𝑥 ∈ 𝑆 𝑥 ≤ 𝑧 ∧ ∀𝑦 ∈ 𝐵 (∀𝑥 ∈ 𝑆 𝑥 ≤ 𝑦 → 𝑧 ≤ 𝑦))) |
5 | | poslubd.k |
. . 3
⊢ (𝜑 → 𝐾 ∈ Poset) |
6 | | poslubd.s |
. . 3
⊢ (𝜑 → 𝑆 ⊆ 𝐵) |
7 | 1, 2, 3, 4, 5, 6 | lubval 17989 |
. 2
⊢ (𝜑 → (𝑈‘𝑆) = (℩𝑧 ∈ 𝐵 (∀𝑥 ∈ 𝑆 𝑥 ≤ 𝑧 ∧ ∀𝑦 ∈ 𝐵 (∀𝑥 ∈ 𝑆 𝑥 ≤ 𝑦 → 𝑧 ≤ 𝑦)))) |
8 | | poslubd.ub |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑆) → 𝑥 ≤ 𝑇) |
9 | 8 | ralrimiva 3107 |
. . . 4
⊢ (𝜑 → ∀𝑥 ∈ 𝑆 𝑥 ≤ 𝑇) |
10 | | poslubd.le |
. . . . . 6
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐵 ∧ ∀𝑥 ∈ 𝑆 𝑥 ≤ 𝑦) → 𝑇 ≤ 𝑦) |
11 | 10 | 3expia 1119 |
. . . . 5
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐵) → (∀𝑥 ∈ 𝑆 𝑥 ≤ 𝑦 → 𝑇 ≤ 𝑦)) |
12 | 11 | ralrimiva 3107 |
. . . 4
⊢ (𝜑 → ∀𝑦 ∈ 𝐵 (∀𝑥 ∈ 𝑆 𝑥 ≤ 𝑦 → 𝑇 ≤ 𝑦)) |
13 | 9, 12 | jca 511 |
. . 3
⊢ (𝜑 → (∀𝑥 ∈ 𝑆 𝑥 ≤ 𝑇 ∧ ∀𝑦 ∈ 𝐵 (∀𝑥 ∈ 𝑆 𝑥 ≤ 𝑦 → 𝑇 ≤ 𝑦))) |
14 | | poslubd.t |
. . . 4
⊢ (𝜑 → 𝑇 ∈ 𝐵) |
15 | | breq2 5074 |
. . . . . . . . 9
⊢ (𝑧 = 𝑇 → (𝑥 ≤ 𝑧 ↔ 𝑥 ≤ 𝑇)) |
16 | 15 | ralbidv 3120 |
. . . . . . . 8
⊢ (𝑧 = 𝑇 → (∀𝑥 ∈ 𝑆 𝑥 ≤ 𝑧 ↔ ∀𝑥 ∈ 𝑆 𝑥 ≤ 𝑇)) |
17 | | breq1 5073 |
. . . . . . . . . 10
⊢ (𝑧 = 𝑇 → (𝑧 ≤ 𝑦 ↔ 𝑇 ≤ 𝑦)) |
18 | 17 | imbi2d 340 |
. . . . . . . . 9
⊢ (𝑧 = 𝑇 → ((∀𝑥 ∈ 𝑆 𝑥 ≤ 𝑦 → 𝑧 ≤ 𝑦) ↔ (∀𝑥 ∈ 𝑆 𝑥 ≤ 𝑦 → 𝑇 ≤ 𝑦))) |
19 | 18 | ralbidv 3120 |
. . . . . . . 8
⊢ (𝑧 = 𝑇 → (∀𝑦 ∈ 𝐵 (∀𝑥 ∈ 𝑆 𝑥 ≤ 𝑦 → 𝑧 ≤ 𝑦) ↔ ∀𝑦 ∈ 𝐵 (∀𝑥 ∈ 𝑆 𝑥 ≤ 𝑦 → 𝑇 ≤ 𝑦))) |
20 | 16, 19 | anbi12d 630 |
. . . . . . 7
⊢ (𝑧 = 𝑇 → ((∀𝑥 ∈ 𝑆 𝑥 ≤ 𝑧 ∧ ∀𝑦 ∈ 𝐵 (∀𝑥 ∈ 𝑆 𝑥 ≤ 𝑦 → 𝑧 ≤ 𝑦)) ↔ (∀𝑥 ∈ 𝑆 𝑥 ≤ 𝑇 ∧ ∀𝑦 ∈ 𝐵 (∀𝑥 ∈ 𝑆 𝑥 ≤ 𝑦 → 𝑇 ≤ 𝑦)))) |
21 | 20 | rspcev 3552 |
. . . . . 6
⊢ ((𝑇 ∈ 𝐵 ∧ (∀𝑥 ∈ 𝑆 𝑥 ≤ 𝑇 ∧ ∀𝑦 ∈ 𝐵 (∀𝑥 ∈ 𝑆 𝑥 ≤ 𝑦 → 𝑇 ≤ 𝑦))) → ∃𝑧 ∈ 𝐵 (∀𝑥 ∈ 𝑆 𝑥 ≤ 𝑧 ∧ ∀𝑦 ∈ 𝐵 (∀𝑥 ∈ 𝑆 𝑥 ≤ 𝑦 → 𝑧 ≤ 𝑦))) |
22 | 14, 13, 21 | syl2anc 583 |
. . . . 5
⊢ (𝜑 → ∃𝑧 ∈ 𝐵 (∀𝑥 ∈ 𝑆 𝑥 ≤ 𝑧 ∧ ∀𝑦 ∈ 𝐵 (∀𝑥 ∈ 𝑆 𝑥 ≤ 𝑦 → 𝑧 ≤ 𝑦))) |
23 | 2, 1 | poslubmo 18044 |
. . . . . 6
⊢ ((𝐾 ∈ Poset ∧ 𝑆 ⊆ 𝐵) → ∃*𝑧 ∈ 𝐵 (∀𝑥 ∈ 𝑆 𝑥 ≤ 𝑧 ∧ ∀𝑦 ∈ 𝐵 (∀𝑥 ∈ 𝑆 𝑥 ≤ 𝑦 → 𝑧 ≤ 𝑦))) |
24 | 5, 6, 23 | syl2anc 583 |
. . . . 5
⊢ (𝜑 → ∃*𝑧 ∈ 𝐵 (∀𝑥 ∈ 𝑆 𝑥 ≤ 𝑧 ∧ ∀𝑦 ∈ 𝐵 (∀𝑥 ∈ 𝑆 𝑥 ≤ 𝑦 → 𝑧 ≤ 𝑦))) |
25 | | reu5 3351 |
. . . . 5
⊢
(∃!𝑧 ∈
𝐵 (∀𝑥 ∈ 𝑆 𝑥 ≤ 𝑧 ∧ ∀𝑦 ∈ 𝐵 (∀𝑥 ∈ 𝑆 𝑥 ≤ 𝑦 → 𝑧 ≤ 𝑦)) ↔ (∃𝑧 ∈ 𝐵 (∀𝑥 ∈ 𝑆 𝑥 ≤ 𝑧 ∧ ∀𝑦 ∈ 𝐵 (∀𝑥 ∈ 𝑆 𝑥 ≤ 𝑦 → 𝑧 ≤ 𝑦)) ∧ ∃*𝑧 ∈ 𝐵 (∀𝑥 ∈ 𝑆 𝑥 ≤ 𝑧 ∧ ∀𝑦 ∈ 𝐵 (∀𝑥 ∈ 𝑆 𝑥 ≤ 𝑦 → 𝑧 ≤ 𝑦)))) |
26 | 22, 24, 25 | sylanbrc 582 |
. . . 4
⊢ (𝜑 → ∃!𝑧 ∈ 𝐵 (∀𝑥 ∈ 𝑆 𝑥 ≤ 𝑧 ∧ ∀𝑦 ∈ 𝐵 (∀𝑥 ∈ 𝑆 𝑥 ≤ 𝑦 → 𝑧 ≤ 𝑦))) |
27 | 20 | riota2 7238 |
. . . 4
⊢ ((𝑇 ∈ 𝐵 ∧ ∃!𝑧 ∈ 𝐵 (∀𝑥 ∈ 𝑆 𝑥 ≤ 𝑧 ∧ ∀𝑦 ∈ 𝐵 (∀𝑥 ∈ 𝑆 𝑥 ≤ 𝑦 → 𝑧 ≤ 𝑦))) → ((∀𝑥 ∈ 𝑆 𝑥 ≤ 𝑇 ∧ ∀𝑦 ∈ 𝐵 (∀𝑥 ∈ 𝑆 𝑥 ≤ 𝑦 → 𝑇 ≤ 𝑦)) ↔ (℩𝑧 ∈ 𝐵 (∀𝑥 ∈ 𝑆 𝑥 ≤ 𝑧 ∧ ∀𝑦 ∈ 𝐵 (∀𝑥 ∈ 𝑆 𝑥 ≤ 𝑦 → 𝑧 ≤ 𝑦))) = 𝑇)) |
28 | 14, 26, 27 | syl2anc 583 |
. . 3
⊢ (𝜑 → ((∀𝑥 ∈ 𝑆 𝑥 ≤ 𝑇 ∧ ∀𝑦 ∈ 𝐵 (∀𝑥 ∈ 𝑆 𝑥 ≤ 𝑦 → 𝑇 ≤ 𝑦)) ↔ (℩𝑧 ∈ 𝐵 (∀𝑥 ∈ 𝑆 𝑥 ≤ 𝑧 ∧ ∀𝑦 ∈ 𝐵 (∀𝑥 ∈ 𝑆 𝑥 ≤ 𝑦 → 𝑧 ≤ 𝑦))) = 𝑇)) |
29 | 13, 28 | mpbid 231 |
. 2
⊢ (𝜑 → (℩𝑧 ∈ 𝐵 (∀𝑥 ∈ 𝑆 𝑥 ≤ 𝑧 ∧ ∀𝑦 ∈ 𝐵 (∀𝑥 ∈ 𝑆 𝑥 ≤ 𝑦 → 𝑧 ≤ 𝑦))) = 𝑇) |
30 | 7, 29 | eqtrd 2778 |
1
⊢ (𝜑 → (𝑈‘𝑆) = 𝑇) |