Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  poslubmo Structured version   Visualization version   GIF version

Theorem poslubmo 17754
 Description: Least upper bounds in a poset are unique if they exist. (Contributed by Stefan O'Rear, 31-Jan-2015.) (Revised by NM, 16-Jun-2017.)
Hypotheses
Ref Expression
poslubmo.l = (le‘𝐾)
poslubmo.b 𝐵 = (Base‘𝐾)
Assertion
Ref Expression
poslubmo ((𝐾 ∈ Poset ∧ 𝑆𝐵) → ∃*𝑥𝐵 (∀𝑦𝑆 𝑦 𝑥 ∧ ∀𝑧𝐵 (∀𝑦𝑆 𝑦 𝑧𝑥 𝑧)))
Distinct variable groups:   𝑥, ,𝑦,𝑧   𝑥,𝐵,𝑦,𝑧   𝑥,𝐾,𝑦,𝑧   𝑥,𝑆,𝑦,𝑧

Proof of Theorem poslubmo
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 simprrl 780 . . . . . 6 ((((𝐾 ∈ Poset ∧ 𝑆𝐵) ∧ (𝑥𝐵𝑤𝐵)) ∧ ((∀𝑦𝑆 𝑦 𝑥 ∧ ∀𝑧𝐵 (∀𝑦𝑆 𝑦 𝑧𝑥 𝑧)) ∧ (∀𝑦𝑆 𝑦 𝑤 ∧ ∀𝑧𝐵 (∀𝑦𝑆 𝑦 𝑧𝑤 𝑧)))) → ∀𝑦𝑆 𝑦 𝑤)
2 breq2 5057 . . . . . . . . 9 (𝑧 = 𝑤 → (𝑦 𝑧𝑦 𝑤))
32ralbidv 3192 . . . . . . . 8 (𝑧 = 𝑤 → (∀𝑦𝑆 𝑦 𝑧 ↔ ∀𝑦𝑆 𝑦 𝑤))
4 breq2 5057 . . . . . . . 8 (𝑧 = 𝑤 → (𝑥 𝑧𝑥 𝑤))
53, 4imbi12d 348 . . . . . . 7 (𝑧 = 𝑤 → ((∀𝑦𝑆 𝑦 𝑧𝑥 𝑧) ↔ (∀𝑦𝑆 𝑦 𝑤𝑥 𝑤)))
6 simprlr 779 . . . . . . 7 ((((𝐾 ∈ Poset ∧ 𝑆𝐵) ∧ (𝑥𝐵𝑤𝐵)) ∧ ((∀𝑦𝑆 𝑦 𝑥 ∧ ∀𝑧𝐵 (∀𝑦𝑆 𝑦 𝑧𝑥 𝑧)) ∧ (∀𝑦𝑆 𝑦 𝑤 ∧ ∀𝑧𝐵 (∀𝑦𝑆 𝑦 𝑧𝑤 𝑧)))) → ∀𝑧𝐵 (∀𝑦𝑆 𝑦 𝑧𝑥 𝑧))
7 simplrr 777 . . . . . . 7 ((((𝐾 ∈ Poset ∧ 𝑆𝐵) ∧ (𝑥𝐵𝑤𝐵)) ∧ ((∀𝑦𝑆 𝑦 𝑥 ∧ ∀𝑧𝐵 (∀𝑦𝑆 𝑦 𝑧𝑥 𝑧)) ∧ (∀𝑦𝑆 𝑦 𝑤 ∧ ∀𝑧𝐵 (∀𝑦𝑆 𝑦 𝑧𝑤 𝑧)))) → 𝑤𝐵)
85, 6, 7rspcdva 3611 . . . . . 6 ((((𝐾 ∈ Poset ∧ 𝑆𝐵) ∧ (𝑥𝐵𝑤𝐵)) ∧ ((∀𝑦𝑆 𝑦 𝑥 ∧ ∀𝑧𝐵 (∀𝑦𝑆 𝑦 𝑧𝑥 𝑧)) ∧ (∀𝑦𝑆 𝑦 𝑤 ∧ ∀𝑧𝐵 (∀𝑦𝑆 𝑦 𝑧𝑤 𝑧)))) → (∀𝑦𝑆 𝑦 𝑤𝑥 𝑤))
91, 8mpd 15 . . . . 5 ((((𝐾 ∈ Poset ∧ 𝑆𝐵) ∧ (𝑥𝐵𝑤𝐵)) ∧ ((∀𝑦𝑆 𝑦 𝑥 ∧ ∀𝑧𝐵 (∀𝑦𝑆 𝑦 𝑧𝑥 𝑧)) ∧ (∀𝑦𝑆 𝑦 𝑤 ∧ ∀𝑧𝐵 (∀𝑦𝑆 𝑦 𝑧𝑤 𝑧)))) → 𝑥 𝑤)
10 simprll 778 . . . . . 6 ((((𝐾 ∈ Poset ∧ 𝑆𝐵) ∧ (𝑥𝐵𝑤𝐵)) ∧ ((∀𝑦𝑆 𝑦 𝑥 ∧ ∀𝑧𝐵 (∀𝑦𝑆 𝑦 𝑧𝑥 𝑧)) ∧ (∀𝑦𝑆 𝑦 𝑤 ∧ ∀𝑧𝐵 (∀𝑦𝑆 𝑦 𝑧𝑤 𝑧)))) → ∀𝑦𝑆 𝑦 𝑥)
11 breq2 5057 . . . . . . . . 9 (𝑧 = 𝑥 → (𝑦 𝑧𝑦 𝑥))
1211ralbidv 3192 . . . . . . . 8 (𝑧 = 𝑥 → (∀𝑦𝑆 𝑦 𝑧 ↔ ∀𝑦𝑆 𝑦 𝑥))
13 breq2 5057 . . . . . . . 8 (𝑧 = 𝑥 → (𝑤 𝑧𝑤 𝑥))
1412, 13imbi12d 348 . . . . . . 7 (𝑧 = 𝑥 → ((∀𝑦𝑆 𝑦 𝑧𝑤 𝑧) ↔ (∀𝑦𝑆 𝑦 𝑥𝑤 𝑥)))
15 simprrr 781 . . . . . . 7 ((((𝐾 ∈ Poset ∧ 𝑆𝐵) ∧ (𝑥𝐵𝑤𝐵)) ∧ ((∀𝑦𝑆 𝑦 𝑥 ∧ ∀𝑧𝐵 (∀𝑦𝑆 𝑦 𝑧𝑥 𝑧)) ∧ (∀𝑦𝑆 𝑦 𝑤 ∧ ∀𝑧𝐵 (∀𝑦𝑆 𝑦 𝑧𝑤 𝑧)))) → ∀𝑧𝐵 (∀𝑦𝑆 𝑦 𝑧𝑤 𝑧))
16 simplrl 776 . . . . . . 7 ((((𝐾 ∈ Poset ∧ 𝑆𝐵) ∧ (𝑥𝐵𝑤𝐵)) ∧ ((∀𝑦𝑆 𝑦 𝑥 ∧ ∀𝑧𝐵 (∀𝑦𝑆 𝑦 𝑧𝑥 𝑧)) ∧ (∀𝑦𝑆 𝑦 𝑤 ∧ ∀𝑧𝐵 (∀𝑦𝑆 𝑦 𝑧𝑤 𝑧)))) → 𝑥𝐵)
1714, 15, 16rspcdva 3611 . . . . . 6 ((((𝐾 ∈ Poset ∧ 𝑆𝐵) ∧ (𝑥𝐵𝑤𝐵)) ∧ ((∀𝑦𝑆 𝑦 𝑥 ∧ ∀𝑧𝐵 (∀𝑦𝑆 𝑦 𝑧𝑥 𝑧)) ∧ (∀𝑦𝑆 𝑦 𝑤 ∧ ∀𝑧𝐵 (∀𝑦𝑆 𝑦 𝑧𝑤 𝑧)))) → (∀𝑦𝑆 𝑦 𝑥𝑤 𝑥))
1810, 17mpd 15 . . . . 5 ((((𝐾 ∈ Poset ∧ 𝑆𝐵) ∧ (𝑥𝐵𝑤𝐵)) ∧ ((∀𝑦𝑆 𝑦 𝑥 ∧ ∀𝑧𝐵 (∀𝑦𝑆 𝑦 𝑧𝑥 𝑧)) ∧ (∀𝑦𝑆 𝑦 𝑤 ∧ ∀𝑧𝐵 (∀𝑦𝑆 𝑦 𝑧𝑤 𝑧)))) → 𝑤 𝑥)
19 poslubmo.b . . . . . . . 8 𝐵 = (Base‘𝐾)
20 poslubmo.l . . . . . . . 8 = (le‘𝐾)
2119, 20posasymb 17560 . . . . . . 7 ((𝐾 ∈ Poset ∧ 𝑥𝐵𝑤𝐵) → ((𝑥 𝑤𝑤 𝑥) ↔ 𝑥 = 𝑤))
22213expb 1117 . . . . . 6 ((𝐾 ∈ Poset ∧ (𝑥𝐵𝑤𝐵)) → ((𝑥 𝑤𝑤 𝑥) ↔ 𝑥 = 𝑤))
2322ad4ant13 750 . . . . 5 ((((𝐾 ∈ Poset ∧ 𝑆𝐵) ∧ (𝑥𝐵𝑤𝐵)) ∧ ((∀𝑦𝑆 𝑦 𝑥 ∧ ∀𝑧𝐵 (∀𝑦𝑆 𝑦 𝑧𝑥 𝑧)) ∧ (∀𝑦𝑆 𝑦 𝑤 ∧ ∀𝑧𝐵 (∀𝑦𝑆 𝑦 𝑧𝑤 𝑧)))) → ((𝑥 𝑤𝑤 𝑥) ↔ 𝑥 = 𝑤))
249, 18, 23mpbi2and 711 . . . 4 ((((𝐾 ∈ Poset ∧ 𝑆𝐵) ∧ (𝑥𝐵𝑤𝐵)) ∧ ((∀𝑦𝑆 𝑦 𝑥 ∧ ∀𝑧𝐵 (∀𝑦𝑆 𝑦 𝑧𝑥 𝑧)) ∧ (∀𝑦𝑆 𝑦 𝑤 ∧ ∀𝑧𝐵 (∀𝑦𝑆 𝑦 𝑧𝑤 𝑧)))) → 𝑥 = 𝑤)
2524ex 416 . . 3 (((𝐾 ∈ Poset ∧ 𝑆𝐵) ∧ (𝑥𝐵𝑤𝐵)) → (((∀𝑦𝑆 𝑦 𝑥 ∧ ∀𝑧𝐵 (∀𝑦𝑆 𝑦 𝑧𝑥 𝑧)) ∧ (∀𝑦𝑆 𝑦 𝑤 ∧ ∀𝑧𝐵 (∀𝑦𝑆 𝑦 𝑧𝑤 𝑧))) → 𝑥 = 𝑤))
2625ralrimivva 3186 . 2 ((𝐾 ∈ Poset ∧ 𝑆𝐵) → ∀𝑥𝐵𝑤𝐵 (((∀𝑦𝑆 𝑦 𝑥 ∧ ∀𝑧𝐵 (∀𝑦𝑆 𝑦 𝑧𝑥 𝑧)) ∧ (∀𝑦𝑆 𝑦 𝑤 ∧ ∀𝑧𝐵 (∀𝑦𝑆 𝑦 𝑧𝑤 𝑧))) → 𝑥 = 𝑤))
27 breq2 5057 . . . . 5 (𝑥 = 𝑤 → (𝑦 𝑥𝑦 𝑤))
2827ralbidv 3192 . . . 4 (𝑥 = 𝑤 → (∀𝑦𝑆 𝑦 𝑥 ↔ ∀𝑦𝑆 𝑦 𝑤))
29 breq1 5056 . . . . . 6 (𝑥 = 𝑤 → (𝑥 𝑧𝑤 𝑧))
3029imbi2d 344 . . . . 5 (𝑥 = 𝑤 → ((∀𝑦𝑆 𝑦 𝑧𝑥 𝑧) ↔ (∀𝑦𝑆 𝑦 𝑧𝑤 𝑧)))
3130ralbidv 3192 . . . 4 (𝑥 = 𝑤 → (∀𝑧𝐵 (∀𝑦𝑆 𝑦 𝑧𝑥 𝑧) ↔ ∀𝑧𝐵 (∀𝑦𝑆 𝑦 𝑧𝑤 𝑧)))
3228, 31anbi12d 633 . . 3 (𝑥 = 𝑤 → ((∀𝑦𝑆 𝑦 𝑥 ∧ ∀𝑧𝐵 (∀𝑦𝑆 𝑦 𝑧𝑥 𝑧)) ↔ (∀𝑦𝑆 𝑦 𝑤 ∧ ∀𝑧𝐵 (∀𝑦𝑆 𝑦 𝑧𝑤 𝑧))))
3332rmo4 3707 . 2 (∃*𝑥𝐵 (∀𝑦𝑆 𝑦 𝑥 ∧ ∀𝑧𝐵 (∀𝑦𝑆 𝑦 𝑧𝑥 𝑧)) ↔ ∀𝑥𝐵𝑤𝐵 (((∀𝑦𝑆 𝑦 𝑥 ∧ ∀𝑧𝐵 (∀𝑦𝑆 𝑦 𝑧𝑥 𝑧)) ∧ (∀𝑦𝑆 𝑦 𝑤 ∧ ∀𝑧𝐵 (∀𝑦𝑆 𝑦 𝑧𝑤 𝑧))) → 𝑥 = 𝑤))
3426, 33sylibr 237 1 ((𝐾 ∈ Poset ∧ 𝑆𝐵) → ∃*𝑥𝐵 (∀𝑦𝑆 𝑦 𝑥 ∧ ∀𝑧𝐵 (∀𝑦𝑆 𝑦 𝑧𝑥 𝑧)))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 209   ∧ wa 399   = wceq 1538   ∈ wcel 2115  ∀wral 3133  ∃*wrmo 3136   ⊆ wss 3919   class class class wbr 5053  ‘cfv 6344  Basecbs 16481  lecple 16570  Posetcpo 17548 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2117  ax-9 2125  ax-10 2146  ax-11 2162  ax-12 2179  ax-ext 2796  ax-nul 5197 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2071  df-mo 2624  df-eu 2655  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2964  df-ral 3138  df-rex 3139  df-rmo 3141  df-v 3482  df-sbc 3759  df-dif 3922  df-un 3924  df-in 3926  df-ss 3936  df-nul 4277  df-sn 4551  df-pr 4553  df-op 4557  df-uni 4826  df-br 5054  df-iota 6303  df-fv 6352  df-proset 17536  df-poset 17554 This theorem is referenced by:  poslubd  17756
 Copyright terms: Public domain W3C validator