Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pimltmnf2 Structured version   Visualization version   GIF version

Theorem pimltmnf2 44125
Description: Given a real-valued function, the preimage of an open interval, unbounded below, with upper bound -∞, is the empty set. (Contributed by Glauco Siliprandi, 26-Jun-2021.)
Hypotheses
Ref Expression
pimltmnf2.1 𝑥𝐹
pimltmnf2.2 (𝜑𝐹:𝐴⟶ℝ)
Assertion
Ref Expression
pimltmnf2 (𝜑 → {𝑥𝐴 ∣ (𝐹𝑥) < -∞} = ∅)
Distinct variable group:   𝑥,𝐴
Allowed substitution hints:   𝜑(𝑥)   𝐹(𝑥)

Proof of Theorem pimltmnf2
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 nfcv 2906 . . . 4 𝑥𝐴
2 nfcv 2906 . . . 4 𝑦𝐴
3 nfv 1918 . . . 4 𝑦(𝐹𝑥) < -∞
4 pimltmnf2.1 . . . . . 6 𝑥𝐹
5 nfcv 2906 . . . . . 6 𝑥𝑦
64, 5nffv 6766 . . . . 5 𝑥(𝐹𝑦)
7 nfcv 2906 . . . . 5 𝑥 <
8 nfcv 2906 . . . . 5 𝑥-∞
96, 7, 8nfbr 5117 . . . 4 𝑥(𝐹𝑦) < -∞
10 fveq2 6756 . . . . 5 (𝑥 = 𝑦 → (𝐹𝑥) = (𝐹𝑦))
1110breq1d 5080 . . . 4 (𝑥 = 𝑦 → ((𝐹𝑥) < -∞ ↔ (𝐹𝑦) < -∞))
121, 2, 3, 9, 11cbvrabw 3414 . . 3 {𝑥𝐴 ∣ (𝐹𝑥) < -∞} = {𝑦𝐴 ∣ (𝐹𝑦) < -∞}
1312a1i 11 . 2 (𝜑 → {𝑥𝐴 ∣ (𝐹𝑥) < -∞} = {𝑦𝐴 ∣ (𝐹𝑦) < -∞})
14 mnfxr 10963 . . . . . . 7 -∞ ∈ ℝ*
1514a1i 11 . . . . . 6 ((𝜑𝑦𝐴) → -∞ ∈ ℝ*)
16 pimltmnf2.2 . . . . . . . 8 (𝜑𝐹:𝐴⟶ℝ)
1716ffvelrnda 6943 . . . . . . 7 ((𝜑𝑦𝐴) → (𝐹𝑦) ∈ ℝ)
1817rexrd 10956 . . . . . 6 ((𝜑𝑦𝐴) → (𝐹𝑦) ∈ ℝ*)
1917mnfltd 12789 . . . . . 6 ((𝜑𝑦𝐴) → -∞ < (𝐹𝑦))
2015, 18, 19xrltled 12813 . . . . 5 ((𝜑𝑦𝐴) → -∞ ≤ (𝐹𝑦))
2115, 18xrlenltd 10972 . . . . 5 ((𝜑𝑦𝐴) → (-∞ ≤ (𝐹𝑦) ↔ ¬ (𝐹𝑦) < -∞))
2220, 21mpbid 231 . . . 4 ((𝜑𝑦𝐴) → ¬ (𝐹𝑦) < -∞)
2322ralrimiva 3107 . . 3 (𝜑 → ∀𝑦𝐴 ¬ (𝐹𝑦) < -∞)
24 rabeq0 4315 . . 3 ({𝑦𝐴 ∣ (𝐹𝑦) < -∞} = ∅ ↔ ∀𝑦𝐴 ¬ (𝐹𝑦) < -∞)
2523, 24sylibr 233 . 2 (𝜑 → {𝑦𝐴 ∣ (𝐹𝑦) < -∞} = ∅)
2613, 25eqtrd 2778 1 (𝜑 → {𝑥𝐴 ∣ (𝐹𝑥) < -∞} = ∅)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1539  wcel 2108  wnfc 2886  wral 3063  {crab 3067  c0 4253   class class class wbr 5070  wf 6414  cfv 6418  cr 10801  -∞cmnf 10938  *cxr 10939   < clt 10940  cle 10941
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-pre-lttri 10876  ax-pre-lttrn 10877
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-po 5494  df-so 5495  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-er 8456  df-en 8692  df-dom 8693  df-sdom 8694  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946
This theorem is referenced by:  smfpimltxr  44170
  Copyright terms: Public domain W3C validator