MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  prodeq1iOLD Structured version   Visualization version   GIF version

Theorem prodeq1iOLD 15965
Description: Obsolete version of prodeq1i 15964 as of 1-Sep-2025. (Contributed by Scott Fenton, 4-Dec-2017.) (Proof modification is discouraged.) (New usage is discouraged.)
Hypothesis
Ref Expression
prodeq1iOLD.1 𝐴 = 𝐵
Assertion
Ref Expression
prodeq1iOLD 𝑘𝐴 𝐶 = ∏𝑘𝐵 𝐶
Distinct variable groups:   𝐴,𝑘   𝐵,𝑘
Allowed substitution hint:   𝐶(𝑘)

Proof of Theorem prodeq1iOLD
StepHypRef Expression
1 prodeq1iOLD.1 . 2 𝐴 = 𝐵
2 prodeq1 15955 . 2 (𝐴 = 𝐵 → ∏𝑘𝐴 𝐶 = ∏𝑘𝐵 𝐶)
31, 2ax-mp 5 1 𝑘𝐴 𝐶 = ∏𝑘𝐵 𝐶
Colors of variables: wff setvar class
Syntax hints:   = wceq 1537  cprod 15951
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-opab 5229  df-mpt 5250  df-xp 5706  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-iota 6525  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-ov 7451  df-oprab 7452  df-mpo 7453  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-seq 14053  df-prod 15952
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator