![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > prodeq1iOLD | Structured version Visualization version GIF version |
Description: Obsolete version of prodeq1i 15964 as of 1-Sep-2025. (Contributed by Scott Fenton, 4-Dec-2017.) (Proof modification is discouraged.) (New usage is discouraged.) |
Ref | Expression |
---|---|
prodeq1iOLD.1 | ⊢ 𝐴 = 𝐵 |
Ref | Expression |
---|---|
prodeq1iOLD | ⊢ ∏𝑘 ∈ 𝐴 𝐶 = ∏𝑘 ∈ 𝐵 𝐶 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | prodeq1iOLD.1 | . 2 ⊢ 𝐴 = 𝐵 | |
2 | prodeq1 15955 | . 2 ⊢ (𝐴 = 𝐵 → ∏𝑘 ∈ 𝐴 𝐶 = ∏𝑘 ∈ 𝐵 𝐶) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ ∏𝑘 ∈ 𝐴 𝐶 = ∏𝑘 ∈ 𝐵 𝐶 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1537 ∏cprod 15951 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-opab 5229 df-mpt 5250 df-xp 5706 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-pred 6332 df-iota 6525 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-ov 7451 df-oprab 7452 df-mpo 7453 df-frecs 8322 df-wrecs 8353 df-recs 8427 df-rdg 8466 df-seq 14053 df-prod 15952 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |