MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  prodeq1iOLD Structured version   Visualization version   GIF version

Theorem prodeq1iOLD 15842
Description: Obsolete version of prodeq1i 15841 as of 1-Sep-2025. (Contributed by Scott Fenton, 4-Dec-2017.) (Proof modification is discouraged.) (New usage is discouraged.)
Hypothesis
Ref Expression
prodeq1iOLD.1 𝐴 = 𝐵
Assertion
Ref Expression
prodeq1iOLD 𝑘𝐴 𝐶 = ∏𝑘𝐵 𝐶
Distinct variable groups:   𝐴,𝑘   𝐵,𝑘
Allowed substitution hint:   𝐶(𝑘)

Proof of Theorem prodeq1iOLD
StepHypRef Expression
1 prodeq1iOLD.1 . 2 𝐴 = 𝐵
2 prodeq1 15832 . 2 (𝐴 = 𝐵 → ∏𝑘𝐴 𝐶 = ∏𝑘𝐵 𝐶)
31, 2ax-mp 5 1 𝑘𝐴 𝐶 = ∏𝑘𝐵 𝐶
Colors of variables: wff setvar class
Syntax hints:   = wceq 1540  cprod 15828
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-ral 3045  df-rex 3054  df-rab 3397  df-v 3440  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-nul 4287  df-if 4479  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-br 5096  df-opab 5158  df-mpt 5177  df-xp 5629  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-pred 6253  df-iota 6442  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-ov 7356  df-oprab 7357  df-mpo 7358  df-frecs 8221  df-wrecs 8252  df-recs 8301  df-rdg 8339  df-seq 13927  df-prod 15829
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator