Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > prodeq1i | Structured version Visualization version GIF version |
Description: Equality inference for product. (Contributed by Scott Fenton, 4-Dec-2017.) |
Ref | Expression |
---|---|
prodeq1i.1 | ⊢ 𝐴 = 𝐵 |
Ref | Expression |
---|---|
prodeq1i | ⊢ ∏𝑘 ∈ 𝐴 𝐶 = ∏𝑘 ∈ 𝐵 𝐶 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | prodeq1i.1 | . 2 ⊢ 𝐴 = 𝐵 | |
2 | prodeq1 15600 | . 2 ⊢ (𝐴 = 𝐵 → ∏𝑘 ∈ 𝐴 𝐶 = ∏𝑘 ∈ 𝐵 𝐶) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ ∏𝑘 ∈ 𝐴 𝐶 = ∏𝑘 ∈ 𝐵 𝐶 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1541 ∏cprod 15596 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1801 ax-4 1815 ax-5 1916 ax-6 1974 ax-7 2014 ax-8 2111 ax-9 2119 ax-10 2140 ax-11 2157 ax-12 2174 ax-ext 2710 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1544 df-fal 1554 df-ex 1786 df-nf 1790 df-sb 2071 df-clab 2717 df-cleq 2731 df-clel 2817 df-nfc 2890 df-ral 3070 df-rex 3071 df-rab 3074 df-v 3432 df-dif 3894 df-un 3896 df-in 3898 df-ss 3908 df-nul 4262 df-if 4465 df-sn 4567 df-pr 4569 df-op 4573 df-uni 4845 df-br 5079 df-opab 5141 df-mpt 5162 df-xp 5594 df-cnv 5596 df-co 5597 df-dm 5598 df-rn 5599 df-res 5600 df-ima 5601 df-pred 6199 df-iota 6388 df-f 6434 df-f1 6435 df-fo 6436 df-f1o 6437 df-fv 6438 df-ov 7271 df-oprab 7272 df-mpo 7273 df-frecs 8081 df-wrecs 8112 df-recs 8186 df-rdg 8225 df-seq 13703 df-prod 15597 |
This theorem is referenced by: prodeq12i 15611 fprodxp 15673 risefac0 15718 fallfacfwd 15727 prmo0 16718 breprexp 32592 etransclem31 43760 etransclem35 43764 hoidmv1le 44086 fmtnorec2 44947 |
Copyright terms: Public domain | W3C validator |