MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  prodeq1i Structured version   Visualization version   GIF version

Theorem prodeq1i 15820
Description: Equality inference for product. (Contributed by Scott Fenton, 4-Dec-2017.) Remove DV conditions. (Revised by GG, 1-Sep-2025.)
Hypothesis
Ref Expression
prodeq1i.1 𝐴 = 𝐵
Assertion
Ref Expression
prodeq1i 𝑘𝐴 𝐶 = ∏𝑘𝐵 𝐶

Proof of Theorem prodeq1i
Dummy variables 𝑥 𝑦 𝑚 𝑛 𝑓 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 prodeq1i.1 . . . . . . 7 𝐴 = 𝐵
21sseq1i 3963 . . . . . 6 (𝐴 ⊆ (ℤ𝑚) ↔ 𝐵 ⊆ (ℤ𝑚))
31eleq2i 2823 . . . . . . . . . . . . 13 (𝑘𝐴𝑘𝐵)
4 ifbi 4498 . . . . . . . . . . . . 13 ((𝑘𝐴𝑘𝐵) → if(𝑘𝐴, 𝐶, 1) = if(𝑘𝐵, 𝐶, 1))
53, 4ax-mp 5 . . . . . . . . . . . 12 if(𝑘𝐴, 𝐶, 1) = if(𝑘𝐵, 𝐶, 1)
65mpteq2i 5187 . . . . . . . . . . 11 (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐶, 1)) = (𝑘 ∈ ℤ ↦ if(𝑘𝐵, 𝐶, 1))
7 seqeq3 13910 . . . . . . . . . . 11 ((𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐶, 1)) = (𝑘 ∈ ℤ ↦ if(𝑘𝐵, 𝐶, 1)) → seq𝑛( · , (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐶, 1))) = seq𝑛( · , (𝑘 ∈ ℤ ↦ if(𝑘𝐵, 𝐶, 1))))
86, 7ax-mp 5 . . . . . . . . . 10 seq𝑛( · , (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐶, 1))) = seq𝑛( · , (𝑘 ∈ ℤ ↦ if(𝑘𝐵, 𝐶, 1)))
98breq1i 5098 . . . . . . . . 9 (seq𝑛( · , (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐶, 1))) ⇝ 𝑦 ↔ seq𝑛( · , (𝑘 ∈ ℤ ↦ if(𝑘𝐵, 𝐶, 1))) ⇝ 𝑦)
109anbi2i 623 . . . . . . . 8 ((𝑦 ≠ 0 ∧ seq𝑛( · , (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐶, 1))) ⇝ 𝑦) ↔ (𝑦 ≠ 0 ∧ seq𝑛( · , (𝑘 ∈ ℤ ↦ if(𝑘𝐵, 𝐶, 1))) ⇝ 𝑦))
1110exbii 1849 . . . . . . 7 (∃𝑦(𝑦 ≠ 0 ∧ seq𝑛( · , (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐶, 1))) ⇝ 𝑦) ↔ ∃𝑦(𝑦 ≠ 0 ∧ seq𝑛( · , (𝑘 ∈ ℤ ↦ if(𝑘𝐵, 𝐶, 1))) ⇝ 𝑦))
1211rexbii 3079 . . . . . 6 (∃𝑛 ∈ (ℤ𝑚)∃𝑦(𝑦 ≠ 0 ∧ seq𝑛( · , (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐶, 1))) ⇝ 𝑦) ↔ ∃𝑛 ∈ (ℤ𝑚)∃𝑦(𝑦 ≠ 0 ∧ seq𝑛( · , (𝑘 ∈ ℤ ↦ if(𝑘𝐵, 𝐶, 1))) ⇝ 𝑦))
13 seqeq3 13910 . . . . . . . 8 ((𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐶, 1)) = (𝑘 ∈ ℤ ↦ if(𝑘𝐵, 𝐶, 1)) → seq𝑚( · , (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐶, 1))) = seq𝑚( · , (𝑘 ∈ ℤ ↦ if(𝑘𝐵, 𝐶, 1))))
146, 13ax-mp 5 . . . . . . 7 seq𝑚( · , (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐶, 1))) = seq𝑚( · , (𝑘 ∈ ℤ ↦ if(𝑘𝐵, 𝐶, 1)))
1514breq1i 5098 . . . . . 6 (seq𝑚( · , (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐶, 1))) ⇝ 𝑥 ↔ seq𝑚( · , (𝑘 ∈ ℤ ↦ if(𝑘𝐵, 𝐶, 1))) ⇝ 𝑥)
162, 12, 153anbi123i 1155 . . . . 5 ((𝐴 ⊆ (ℤ𝑚) ∧ ∃𝑛 ∈ (ℤ𝑚)∃𝑦(𝑦 ≠ 0 ∧ seq𝑛( · , (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐶, 1))) ⇝ 𝑦) ∧ seq𝑚( · , (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐶, 1))) ⇝ 𝑥) ↔ (𝐵 ⊆ (ℤ𝑚) ∧ ∃𝑛 ∈ (ℤ𝑚)∃𝑦(𝑦 ≠ 0 ∧ seq𝑛( · , (𝑘 ∈ ℤ ↦ if(𝑘𝐵, 𝐶, 1))) ⇝ 𝑦) ∧ seq𝑚( · , (𝑘 ∈ ℤ ↦ if(𝑘𝐵, 𝐶, 1))) ⇝ 𝑥))
1716rexbii 3079 . . . 4 (∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ𝑚) ∧ ∃𝑛 ∈ (ℤ𝑚)∃𝑦(𝑦 ≠ 0 ∧ seq𝑛( · , (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐶, 1))) ⇝ 𝑦) ∧ seq𝑚( · , (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐶, 1))) ⇝ 𝑥) ↔ ∃𝑚 ∈ ℤ (𝐵 ⊆ (ℤ𝑚) ∧ ∃𝑛 ∈ (ℤ𝑚)∃𝑦(𝑦 ≠ 0 ∧ seq𝑛( · , (𝑘 ∈ ℤ ↦ if(𝑘𝐵, 𝐶, 1))) ⇝ 𝑦) ∧ seq𝑚( · , (𝑘 ∈ ℤ ↦ if(𝑘𝐵, 𝐶, 1))) ⇝ 𝑥))
18 f1oeq3 6753 . . . . . . . 8 (𝐴 = 𝐵 → (𝑓:(1...𝑚)–1-1-onto𝐴𝑓:(1...𝑚)–1-1-onto𝐵))
191, 18ax-mp 5 . . . . . . 7 (𝑓:(1...𝑚)–1-1-onto𝐴𝑓:(1...𝑚)–1-1-onto𝐵)
2019anbi1i 624 . . . . . 6 ((𝑓:(1...𝑚)–1-1-onto𝐴𝑥 = (seq1( · , (𝑛 ∈ ℕ ↦ (𝑓𝑛) / 𝑘𝐶))‘𝑚)) ↔ (𝑓:(1...𝑚)–1-1-onto𝐵𝑥 = (seq1( · , (𝑛 ∈ ℕ ↦ (𝑓𝑛) / 𝑘𝐶))‘𝑚)))
2120exbii 1849 . . . . 5 (∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑥 = (seq1( · , (𝑛 ∈ ℕ ↦ (𝑓𝑛) / 𝑘𝐶))‘𝑚)) ↔ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐵𝑥 = (seq1( · , (𝑛 ∈ ℕ ↦ (𝑓𝑛) / 𝑘𝐶))‘𝑚)))
2221rexbii 3079 . . . 4 (∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑥 = (seq1( · , (𝑛 ∈ ℕ ↦ (𝑓𝑛) / 𝑘𝐶))‘𝑚)) ↔ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐵𝑥 = (seq1( · , (𝑛 ∈ ℕ ↦ (𝑓𝑛) / 𝑘𝐶))‘𝑚)))
2317, 22orbi12i 914 . . 3 ((∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ𝑚) ∧ ∃𝑛 ∈ (ℤ𝑚)∃𝑦(𝑦 ≠ 0 ∧ seq𝑛( · , (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐶, 1))) ⇝ 𝑦) ∧ seq𝑚( · , (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐶, 1))) ⇝ 𝑥) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑥 = (seq1( · , (𝑛 ∈ ℕ ↦ (𝑓𝑛) / 𝑘𝐶))‘𝑚))) ↔ (∃𝑚 ∈ ℤ (𝐵 ⊆ (ℤ𝑚) ∧ ∃𝑛 ∈ (ℤ𝑚)∃𝑦(𝑦 ≠ 0 ∧ seq𝑛( · , (𝑘 ∈ ℤ ↦ if(𝑘𝐵, 𝐶, 1))) ⇝ 𝑦) ∧ seq𝑚( · , (𝑘 ∈ ℤ ↦ if(𝑘𝐵, 𝐶, 1))) ⇝ 𝑥) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐵𝑥 = (seq1( · , (𝑛 ∈ ℕ ↦ (𝑓𝑛) / 𝑘𝐶))‘𝑚))))
2423iotabii 6466 . 2 (℩𝑥(∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ𝑚) ∧ ∃𝑛 ∈ (ℤ𝑚)∃𝑦(𝑦 ≠ 0 ∧ seq𝑛( · , (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐶, 1))) ⇝ 𝑦) ∧ seq𝑚( · , (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐶, 1))) ⇝ 𝑥) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑥 = (seq1( · , (𝑛 ∈ ℕ ↦ (𝑓𝑛) / 𝑘𝐶))‘𝑚)))) = (℩𝑥(∃𝑚 ∈ ℤ (𝐵 ⊆ (ℤ𝑚) ∧ ∃𝑛 ∈ (ℤ𝑚)∃𝑦(𝑦 ≠ 0 ∧ seq𝑛( · , (𝑘 ∈ ℤ ↦ if(𝑘𝐵, 𝐶, 1))) ⇝ 𝑦) ∧ seq𝑚( · , (𝑘 ∈ ℤ ↦ if(𝑘𝐵, 𝐶, 1))) ⇝ 𝑥) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐵𝑥 = (seq1( · , (𝑛 ∈ ℕ ↦ (𝑓𝑛) / 𝑘𝐶))‘𝑚))))
25 df-prod 15808 . 2 𝑘𝐴 𝐶 = (℩𝑥(∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ𝑚) ∧ ∃𝑛 ∈ (ℤ𝑚)∃𝑦(𝑦 ≠ 0 ∧ seq𝑛( · , (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐶, 1))) ⇝ 𝑦) ∧ seq𝑚( · , (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐶, 1))) ⇝ 𝑥) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑥 = (seq1( · , (𝑛 ∈ ℕ ↦ (𝑓𝑛) / 𝑘𝐶))‘𝑚))))
26 df-prod 15808 . 2 𝑘𝐵 𝐶 = (℩𝑥(∃𝑚 ∈ ℤ (𝐵 ⊆ (ℤ𝑚) ∧ ∃𝑛 ∈ (ℤ𝑚)∃𝑦(𝑦 ≠ 0 ∧ seq𝑛( · , (𝑘 ∈ ℤ ↦ if(𝑘𝐵, 𝐶, 1))) ⇝ 𝑦) ∧ seq𝑚( · , (𝑘 ∈ ℤ ↦ if(𝑘𝐵, 𝐶, 1))) ⇝ 𝑥) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐵𝑥 = (seq1( · , (𝑛 ∈ ℕ ↦ (𝑓𝑛) / 𝑘𝐶))‘𝑚))))
2724, 25, 263eqtr4i 2764 1 𝑘𝐴 𝐶 = ∏𝑘𝐵 𝐶
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395  wo 847  w3a 1086   = wceq 1541  wex 1780  wcel 2111  wne 2928  wrex 3056  csb 3850  wss 3902  ifcif 4475   class class class wbr 5091  cmpt 5172  cio 6435  1-1-ontowf1o 6480  cfv 6481  (class class class)co 7346  0cc0 11003  1c1 11004   · cmul 11008  cn 12122  cz 12465  cuz 12729  ...cfz 13404  seqcseq 13905  cli 15388  cprod 15807
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-ext 2703
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-nul 4284  df-if 4476  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-br 5092  df-opab 5154  df-mpt 5173  df-xp 5622  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-pred 6248  df-iota 6437  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-ov 7349  df-oprab 7350  df-mpo 7351  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-seq 13906  df-prod 15808
This theorem is referenced by:  prodeq12i  15823  fprodxp  15886  risefac0  15931  fallfacfwd  15940  prmo0  16945  breprexp  34641  prodeq12si  36238  etransclem31  46302  etransclem35  46306  hoidmv1le  46631  fmtnorec2  47573
  Copyright terms: Public domain W3C validator