![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > prodeq1i | Structured version Visualization version GIF version |
Description: Equality inference for product. (Contributed by Scott Fenton, 4-Dec-2017.) |
Ref | Expression |
---|---|
prodeq1i.1 | ⊢ 𝐴 = 𝐵 |
Ref | Expression |
---|---|
prodeq1i | ⊢ ∏𝑘 ∈ 𝐴 𝐶 = ∏𝑘 ∈ 𝐵 𝐶 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | prodeq1i.1 | . 2 ⊢ 𝐴 = 𝐵 | |
2 | prodeq1 15858 | . 2 ⊢ (𝐴 = 𝐵 → ∏𝑘 ∈ 𝐴 𝐶 = ∏𝑘 ∈ 𝐵 𝐶) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ ∏𝑘 ∈ 𝐴 𝐶 = ∏𝑘 ∈ 𝐵 𝐶 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1540 ∏cprod 15854 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2702 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ral 3061 df-rex 3070 df-rab 3432 df-v 3475 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-br 5149 df-opab 5211 df-mpt 5232 df-xp 5682 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-pred 6300 df-iota 6495 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-ov 7415 df-oprab 7416 df-mpo 7417 df-frecs 8270 df-wrecs 8301 df-recs 8375 df-rdg 8414 df-seq 13972 df-prod 15855 |
This theorem is referenced by: prodeq12i 15869 fprodxp 15931 risefac0 15976 fallfacfwd 15985 prmo0 16974 breprexp 33944 etransclem31 45280 etransclem35 45284 hoidmv1le 45609 fmtnorec2 46510 |
Copyright terms: Public domain | W3C validator |