MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  prodeq1i Structured version   Visualization version   GIF version

Theorem prodeq1i 15882
Description: Equality inference for product. (Contributed by Scott Fenton, 4-Dec-2017.) Remove DV conditions. (Revised by GG, 1-Sep-2025.)
Hypothesis
Ref Expression
prodeq1i.1 𝐴 = 𝐵
Assertion
Ref Expression
prodeq1i 𝑘𝐴 𝐶 = ∏𝑘𝐵 𝐶

Proof of Theorem prodeq1i
Dummy variables 𝑥 𝑦 𝑚 𝑛 𝑓 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 prodeq1i.1 . . . . . . 7 𝐴 = 𝐵
21sseq1i 3975 . . . . . 6 (𝐴 ⊆ (ℤ𝑚) ↔ 𝐵 ⊆ (ℤ𝑚))
31eleq2i 2820 . . . . . . . . . . . . 13 (𝑘𝐴𝑘𝐵)
4 ifbi 4511 . . . . . . . . . . . . 13 ((𝑘𝐴𝑘𝐵) → if(𝑘𝐴, 𝐶, 1) = if(𝑘𝐵, 𝐶, 1))
53, 4ax-mp 5 . . . . . . . . . . . 12 if(𝑘𝐴, 𝐶, 1) = if(𝑘𝐵, 𝐶, 1)
65mpteq2i 5203 . . . . . . . . . . 11 (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐶, 1)) = (𝑘 ∈ ℤ ↦ if(𝑘𝐵, 𝐶, 1))
7 seqeq3 13971 . . . . . . . . . . 11 ((𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐶, 1)) = (𝑘 ∈ ℤ ↦ if(𝑘𝐵, 𝐶, 1)) → seq𝑛( · , (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐶, 1))) = seq𝑛( · , (𝑘 ∈ ℤ ↦ if(𝑘𝐵, 𝐶, 1))))
86, 7ax-mp 5 . . . . . . . . . 10 seq𝑛( · , (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐶, 1))) = seq𝑛( · , (𝑘 ∈ ℤ ↦ if(𝑘𝐵, 𝐶, 1)))
98breq1i 5114 . . . . . . . . 9 (seq𝑛( · , (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐶, 1))) ⇝ 𝑦 ↔ seq𝑛( · , (𝑘 ∈ ℤ ↦ if(𝑘𝐵, 𝐶, 1))) ⇝ 𝑦)
109anbi2i 623 . . . . . . . 8 ((𝑦 ≠ 0 ∧ seq𝑛( · , (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐶, 1))) ⇝ 𝑦) ↔ (𝑦 ≠ 0 ∧ seq𝑛( · , (𝑘 ∈ ℤ ↦ if(𝑘𝐵, 𝐶, 1))) ⇝ 𝑦))
1110exbii 1848 . . . . . . 7 (∃𝑦(𝑦 ≠ 0 ∧ seq𝑛( · , (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐶, 1))) ⇝ 𝑦) ↔ ∃𝑦(𝑦 ≠ 0 ∧ seq𝑛( · , (𝑘 ∈ ℤ ↦ if(𝑘𝐵, 𝐶, 1))) ⇝ 𝑦))
1211rexbii 3076 . . . . . 6 (∃𝑛 ∈ (ℤ𝑚)∃𝑦(𝑦 ≠ 0 ∧ seq𝑛( · , (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐶, 1))) ⇝ 𝑦) ↔ ∃𝑛 ∈ (ℤ𝑚)∃𝑦(𝑦 ≠ 0 ∧ seq𝑛( · , (𝑘 ∈ ℤ ↦ if(𝑘𝐵, 𝐶, 1))) ⇝ 𝑦))
13 seqeq3 13971 . . . . . . . 8 ((𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐶, 1)) = (𝑘 ∈ ℤ ↦ if(𝑘𝐵, 𝐶, 1)) → seq𝑚( · , (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐶, 1))) = seq𝑚( · , (𝑘 ∈ ℤ ↦ if(𝑘𝐵, 𝐶, 1))))
146, 13ax-mp 5 . . . . . . 7 seq𝑚( · , (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐶, 1))) = seq𝑚( · , (𝑘 ∈ ℤ ↦ if(𝑘𝐵, 𝐶, 1)))
1514breq1i 5114 . . . . . 6 (seq𝑚( · , (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐶, 1))) ⇝ 𝑥 ↔ seq𝑚( · , (𝑘 ∈ ℤ ↦ if(𝑘𝐵, 𝐶, 1))) ⇝ 𝑥)
162, 12, 153anbi123i 1155 . . . . 5 ((𝐴 ⊆ (ℤ𝑚) ∧ ∃𝑛 ∈ (ℤ𝑚)∃𝑦(𝑦 ≠ 0 ∧ seq𝑛( · , (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐶, 1))) ⇝ 𝑦) ∧ seq𝑚( · , (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐶, 1))) ⇝ 𝑥) ↔ (𝐵 ⊆ (ℤ𝑚) ∧ ∃𝑛 ∈ (ℤ𝑚)∃𝑦(𝑦 ≠ 0 ∧ seq𝑛( · , (𝑘 ∈ ℤ ↦ if(𝑘𝐵, 𝐶, 1))) ⇝ 𝑦) ∧ seq𝑚( · , (𝑘 ∈ ℤ ↦ if(𝑘𝐵, 𝐶, 1))) ⇝ 𝑥))
1716rexbii 3076 . . . 4 (∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ𝑚) ∧ ∃𝑛 ∈ (ℤ𝑚)∃𝑦(𝑦 ≠ 0 ∧ seq𝑛( · , (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐶, 1))) ⇝ 𝑦) ∧ seq𝑚( · , (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐶, 1))) ⇝ 𝑥) ↔ ∃𝑚 ∈ ℤ (𝐵 ⊆ (ℤ𝑚) ∧ ∃𝑛 ∈ (ℤ𝑚)∃𝑦(𝑦 ≠ 0 ∧ seq𝑛( · , (𝑘 ∈ ℤ ↦ if(𝑘𝐵, 𝐶, 1))) ⇝ 𝑦) ∧ seq𝑚( · , (𝑘 ∈ ℤ ↦ if(𝑘𝐵, 𝐶, 1))) ⇝ 𝑥))
18 f1oeq3 6790 . . . . . . . 8 (𝐴 = 𝐵 → (𝑓:(1...𝑚)–1-1-onto𝐴𝑓:(1...𝑚)–1-1-onto𝐵))
191, 18ax-mp 5 . . . . . . 7 (𝑓:(1...𝑚)–1-1-onto𝐴𝑓:(1...𝑚)–1-1-onto𝐵)
2019anbi1i 624 . . . . . 6 ((𝑓:(1...𝑚)–1-1-onto𝐴𝑥 = (seq1( · , (𝑛 ∈ ℕ ↦ (𝑓𝑛) / 𝑘𝐶))‘𝑚)) ↔ (𝑓:(1...𝑚)–1-1-onto𝐵𝑥 = (seq1( · , (𝑛 ∈ ℕ ↦ (𝑓𝑛) / 𝑘𝐶))‘𝑚)))
2120exbii 1848 . . . . 5 (∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑥 = (seq1( · , (𝑛 ∈ ℕ ↦ (𝑓𝑛) / 𝑘𝐶))‘𝑚)) ↔ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐵𝑥 = (seq1( · , (𝑛 ∈ ℕ ↦ (𝑓𝑛) / 𝑘𝐶))‘𝑚)))
2221rexbii 3076 . . . 4 (∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑥 = (seq1( · , (𝑛 ∈ ℕ ↦ (𝑓𝑛) / 𝑘𝐶))‘𝑚)) ↔ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐵𝑥 = (seq1( · , (𝑛 ∈ ℕ ↦ (𝑓𝑛) / 𝑘𝐶))‘𝑚)))
2317, 22orbi12i 914 . . 3 ((∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ𝑚) ∧ ∃𝑛 ∈ (ℤ𝑚)∃𝑦(𝑦 ≠ 0 ∧ seq𝑛( · , (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐶, 1))) ⇝ 𝑦) ∧ seq𝑚( · , (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐶, 1))) ⇝ 𝑥) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑥 = (seq1( · , (𝑛 ∈ ℕ ↦ (𝑓𝑛) / 𝑘𝐶))‘𝑚))) ↔ (∃𝑚 ∈ ℤ (𝐵 ⊆ (ℤ𝑚) ∧ ∃𝑛 ∈ (ℤ𝑚)∃𝑦(𝑦 ≠ 0 ∧ seq𝑛( · , (𝑘 ∈ ℤ ↦ if(𝑘𝐵, 𝐶, 1))) ⇝ 𝑦) ∧ seq𝑚( · , (𝑘 ∈ ℤ ↦ if(𝑘𝐵, 𝐶, 1))) ⇝ 𝑥) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐵𝑥 = (seq1( · , (𝑛 ∈ ℕ ↦ (𝑓𝑛) / 𝑘𝐶))‘𝑚))))
2423iotabii 6496 . 2 (℩𝑥(∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ𝑚) ∧ ∃𝑛 ∈ (ℤ𝑚)∃𝑦(𝑦 ≠ 0 ∧ seq𝑛( · , (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐶, 1))) ⇝ 𝑦) ∧ seq𝑚( · , (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐶, 1))) ⇝ 𝑥) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑥 = (seq1( · , (𝑛 ∈ ℕ ↦ (𝑓𝑛) / 𝑘𝐶))‘𝑚)))) = (℩𝑥(∃𝑚 ∈ ℤ (𝐵 ⊆ (ℤ𝑚) ∧ ∃𝑛 ∈ (ℤ𝑚)∃𝑦(𝑦 ≠ 0 ∧ seq𝑛( · , (𝑘 ∈ ℤ ↦ if(𝑘𝐵, 𝐶, 1))) ⇝ 𝑦) ∧ seq𝑚( · , (𝑘 ∈ ℤ ↦ if(𝑘𝐵, 𝐶, 1))) ⇝ 𝑥) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐵𝑥 = (seq1( · , (𝑛 ∈ ℕ ↦ (𝑓𝑛) / 𝑘𝐶))‘𝑚))))
25 df-prod 15870 . 2 𝑘𝐴 𝐶 = (℩𝑥(∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ𝑚) ∧ ∃𝑛 ∈ (ℤ𝑚)∃𝑦(𝑦 ≠ 0 ∧ seq𝑛( · , (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐶, 1))) ⇝ 𝑦) ∧ seq𝑚( · , (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐶, 1))) ⇝ 𝑥) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑥 = (seq1( · , (𝑛 ∈ ℕ ↦ (𝑓𝑛) / 𝑘𝐶))‘𝑚))))
26 df-prod 15870 . 2 𝑘𝐵 𝐶 = (℩𝑥(∃𝑚 ∈ ℤ (𝐵 ⊆ (ℤ𝑚) ∧ ∃𝑛 ∈ (ℤ𝑚)∃𝑦(𝑦 ≠ 0 ∧ seq𝑛( · , (𝑘 ∈ ℤ ↦ if(𝑘𝐵, 𝐶, 1))) ⇝ 𝑦) ∧ seq𝑚( · , (𝑘 ∈ ℤ ↦ if(𝑘𝐵, 𝐶, 1))) ⇝ 𝑥) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐵𝑥 = (seq1( · , (𝑛 ∈ ℕ ↦ (𝑓𝑛) / 𝑘𝐶))‘𝑚))))
2724, 25, 263eqtr4i 2762 1 𝑘𝐴 𝐶 = ∏𝑘𝐵 𝐶
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395  wo 847  w3a 1086   = wceq 1540  wex 1779  wcel 2109  wne 2925  wrex 3053  csb 3862  wss 3914  ifcif 4488   class class class wbr 5107  cmpt 5188  cio 6462  1-1-ontowf1o 6510  cfv 6511  (class class class)co 7387  0cc0 11068  1c1 11069   · cmul 11073  cn 12186  cz 12529  cuz 12793  ...cfz 13468  seqcseq 13966  cli 15450  cprod 15869
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-ral 3045  df-rex 3054  df-rab 3406  df-v 3449  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-br 5108  df-opab 5170  df-mpt 5189  df-xp 5644  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-iota 6464  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-ov 7390  df-oprab 7391  df-mpo 7392  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-seq 13967  df-prod 15870
This theorem is referenced by:  prodeq12i  15885  fprodxp  15948  risefac0  15993  fallfacfwd  16002  prmo0  17007  breprexp  34624  prodeq12si  36193  etransclem31  46263  etransclem35  46267  hoidmv1le  46592  fmtnorec2  47544
  Copyright terms: Public domain W3C validator