MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  prodeq1i Structured version   Visualization version   GIF version

Theorem prodeq1i 15867
Description: Equality inference for product. (Contributed by Scott Fenton, 4-Dec-2017.)
Hypothesis
Ref Expression
prodeq1i.1 𝐴 = 𝐵
Assertion
Ref Expression
prodeq1i 𝑘𝐴 𝐶 = ∏𝑘𝐵 𝐶
Distinct variable groups:   𝐴,𝑘   𝐵,𝑘
Allowed substitution hint:   𝐶(𝑘)

Proof of Theorem prodeq1i
StepHypRef Expression
1 prodeq1i.1 . 2 𝐴 = 𝐵
2 prodeq1 15858 . 2 (𝐴 = 𝐵 → ∏𝑘𝐴 𝐶 = ∏𝑘𝐵 𝐶)
31, 2ax-mp 5 1 𝑘𝐴 𝐶 = ∏𝑘𝐵 𝐶
Colors of variables: wff setvar class
Syntax hints:   = wceq 1540  cprod 15854
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2702
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ral 3061  df-rex 3070  df-rab 3432  df-v 3475  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-br 5149  df-opab 5211  df-mpt 5232  df-xp 5682  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-pred 6300  df-iota 6495  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-ov 7415  df-oprab 7416  df-mpo 7417  df-frecs 8270  df-wrecs 8301  df-recs 8375  df-rdg 8414  df-seq 13972  df-prod 15855
This theorem is referenced by:  prodeq12i  15869  fprodxp  15931  risefac0  15976  fallfacfwd  15985  prmo0  16974  breprexp  33944  etransclem31  45280  etransclem35  45284  hoidmv1le  45609  fmtnorec2  46510
  Copyright terms: Public domain W3C validator