MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  prodeq1 Structured version   Visualization version   GIF version

Theorem prodeq1 15600
Description: Equality theorem for a product. (Contributed by Scott Fenton, 1-Dec-2017.)
Assertion
Ref Expression
prodeq1 (𝐴 = 𝐵 → ∏𝑘𝐴 𝐶 = ∏𝑘𝐵 𝐶)
Distinct variable groups:   𝐴,𝑘   𝐵,𝑘
Allowed substitution hint:   𝐶(𝑘)

Proof of Theorem prodeq1
StepHypRef Expression
1 nfcv 2908 . 2 𝑘𝐴
2 nfcv 2908 . 2 𝑘𝐵
31, 2prodeq1f 15599 1 (𝐴 = 𝐵 → ∏𝑘𝐴 𝐶 = ∏𝑘𝐵 𝐶)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1541  cprod 15596
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1801  ax-4 1815  ax-5 1916  ax-6 1974  ax-7 2014  ax-8 2111  ax-9 2119  ax-10 2140  ax-11 2157  ax-12 2174  ax-ext 2710
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1544  df-fal 1554  df-ex 1786  df-nf 1790  df-sb 2071  df-clab 2717  df-cleq 2731  df-clel 2817  df-nfc 2890  df-ral 3070  df-rex 3071  df-rab 3074  df-v 3432  df-dif 3894  df-un 3896  df-in 3898  df-ss 3908  df-nul 4262  df-if 4465  df-sn 4567  df-pr 4569  df-op 4573  df-uni 4845  df-br 5079  df-opab 5141  df-mpt 5162  df-xp 5594  df-cnv 5596  df-co 5597  df-dm 5598  df-rn 5599  df-res 5600  df-ima 5601  df-pred 6199  df-iota 6388  df-f 6434  df-f1 6435  df-fo 6436  df-f1o 6437  df-fv 6438  df-ov 7271  df-oprab 7272  df-mpo 7273  df-frecs 8081  df-wrecs 8112  df-recs 8186  df-rdg 8225  df-seq 13703  df-prod 15597
This theorem is referenced by:  prodeq1i  15609  prodeq1d  15612  prod1  15635  fprodf1o  15637  fprodss  15639  fprodcllem  15642  fprodmul  15651  fproddiv  15652  fprodconst  15669  fprodn0  15670  fprod2d  15672  fprodmodd  15688  coprmprod  16347  coprmproddvds  16349  fprodexp  43089  fprodabs2  43090  mccl  43093  fprodcn  43095  fprodcncf  43395  dvmptfprod  43440  dvnprodlem3  43443  hoidmvval  44069  ovnhoi  44095  hspmbllem2  44119  fmtnorec2  44947
  Copyright terms: Public domain W3C validator