MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  prodeq1 Structured version   Visualization version   GIF version

Theorem prodeq1 15857
Description: Equality theorem for a product. (Contributed by Scott Fenton, 1-Dec-2017.)
Assertion
Ref Expression
prodeq1 (𝐴 = 𝐵 → ∏𝑘𝐴 𝐶 = ∏𝑘𝐵 𝐶)
Distinct variable groups:   𝐴,𝑘   𝐵,𝑘
Allowed substitution hint:   𝐶(𝑘)

Proof of Theorem prodeq1
StepHypRef Expression
1 nfcv 2901 . 2 𝑘𝐴
2 nfcv 2901 . 2 𝑘𝐵
31, 2prodeq1f 15856 1 (𝐴 = 𝐵 → ∏𝑘𝐴 𝐶 = ∏𝑘𝐵 𝐶)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1539  cprod 15853
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-10 2135  ax-11 2152  ax-12 2169  ax-ext 2701
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1780  df-nf 1784  df-sb 2066  df-clab 2708  df-cleq 2722  df-clel 2808  df-nfc 2883  df-ral 3060  df-rex 3069  df-rab 3431  df-v 3474  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4322  df-if 4528  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-br 5148  df-opab 5210  df-mpt 5231  df-xp 5681  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-pred 6299  df-iota 6494  df-f 6546  df-f1 6547  df-fo 6548  df-f1o 6549  df-fv 6550  df-ov 7414  df-oprab 7415  df-mpo 7416  df-frecs 8268  df-wrecs 8299  df-recs 8373  df-rdg 8412  df-seq 13971  df-prod 15854
This theorem is referenced by:  prodeq1i  15866  prodeq1d  15869  prod1  15892  fprodf1o  15894  fprodss  15896  fprodcllem  15899  fprodmul  15908  fproddiv  15909  fprodconst  15926  fprodn0  15927  fprod2d  15929  fprodmodd  15945  coprmprod  16602  coprmproddvds  16604  fprodexp  44608  fprodabs2  44609  mccl  44612  fprodcn  44614  fprodcncf  44914  dvmptfprod  44959  dvnprodlem3  44962  hoidmvval  45591  ovnhoi  45617  hspmbllem2  45641  fmtnorec2  46509
  Copyright terms: Public domain W3C validator