Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > prodeq1 | Structured version Visualization version GIF version |
Description: Equality theorem for a product. (Contributed by Scott Fenton, 1-Dec-2017.) |
Ref | Expression |
---|---|
prodeq1 | ⊢ (𝐴 = 𝐵 → ∏𝑘 ∈ 𝐴 𝐶 = ∏𝑘 ∈ 𝐵 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfcv 2908 | . 2 ⊢ Ⅎ𝑘𝐴 | |
2 | nfcv 2908 | . 2 ⊢ Ⅎ𝑘𝐵 | |
3 | 1, 2 | prodeq1f 15599 | 1 ⊢ (𝐴 = 𝐵 → ∏𝑘 ∈ 𝐴 𝐶 = ∏𝑘 ∈ 𝐵 𝐶) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1541 ∏cprod 15596 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1801 ax-4 1815 ax-5 1916 ax-6 1974 ax-7 2014 ax-8 2111 ax-9 2119 ax-10 2140 ax-11 2157 ax-12 2174 ax-ext 2710 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1544 df-fal 1554 df-ex 1786 df-nf 1790 df-sb 2071 df-clab 2717 df-cleq 2731 df-clel 2817 df-nfc 2890 df-ral 3070 df-rex 3071 df-rab 3074 df-v 3432 df-dif 3894 df-un 3896 df-in 3898 df-ss 3908 df-nul 4262 df-if 4465 df-sn 4567 df-pr 4569 df-op 4573 df-uni 4845 df-br 5079 df-opab 5141 df-mpt 5162 df-xp 5594 df-cnv 5596 df-co 5597 df-dm 5598 df-rn 5599 df-res 5600 df-ima 5601 df-pred 6199 df-iota 6388 df-f 6434 df-f1 6435 df-fo 6436 df-f1o 6437 df-fv 6438 df-ov 7271 df-oprab 7272 df-mpo 7273 df-frecs 8081 df-wrecs 8112 df-recs 8186 df-rdg 8225 df-seq 13703 df-prod 15597 |
This theorem is referenced by: prodeq1i 15609 prodeq1d 15612 prod1 15635 fprodf1o 15637 fprodss 15639 fprodcllem 15642 fprodmul 15651 fproddiv 15652 fprodconst 15669 fprodn0 15670 fprod2d 15672 fprodmodd 15688 coprmprod 16347 coprmproddvds 16349 fprodexp 43089 fprodabs2 43090 mccl 43093 fprodcn 43095 fprodcncf 43395 dvmptfprod 43440 dvnprodlem3 43443 hoidmvval 44069 ovnhoi 44095 hspmbllem2 44119 fmtnorec2 44947 |
Copyright terms: Public domain | W3C validator |