![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > prodeq1 | Structured version Visualization version GIF version |
Description: Equality theorem for a product. (Contributed by Scott Fenton, 1-Dec-2017.) |
Ref | Expression |
---|---|
prodeq1 | ⊢ (𝐴 = 𝐵 → ∏𝑘 ∈ 𝐴 𝐶 = ∏𝑘 ∈ 𝐵 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfcv 2942 | . 2 ⊢ Ⅎ𝑘𝐴 | |
2 | nfcv 2942 | . 2 ⊢ Ⅎ𝑘𝐵 | |
3 | 1, 2 | prodeq1f 14974 | 1 ⊢ (𝐴 = 𝐵 → ∏𝑘 ∈ 𝐴 𝐶 = ∏𝑘 ∈ 𝐵 𝐶) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1653 ∏cprod 14971 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1891 ax-4 1905 ax-5 2006 ax-6 2072 ax-7 2107 ax-9 2166 ax-10 2185 ax-11 2200 ax-12 2213 ax-13 2378 ax-ext 2778 |
This theorem depends on definitions: df-bi 199 df-an 386 df-or 875 df-3an 1110 df-tru 1657 df-ex 1876 df-nf 1880 df-sb 2065 df-clab 2787 df-cleq 2793 df-clel 2796 df-nfc 2931 df-ral 3095 df-rex 3096 df-rab 3099 df-v 3388 df-dif 3773 df-un 3775 df-in 3777 df-ss 3784 df-nul 4117 df-if 4279 df-sn 4370 df-pr 4372 df-op 4376 df-uni 4630 df-br 4845 df-opab 4907 df-mpt 4924 df-xp 5319 df-cnv 5321 df-dm 5323 df-rn 5324 df-res 5325 df-ima 5326 df-pred 5899 df-iota 6065 df-f 6106 df-f1 6107 df-fo 6108 df-f1o 6109 df-fv 6110 df-ov 6882 df-oprab 6883 df-mpt2 6884 df-wrecs 7646 df-recs 7708 df-rdg 7746 df-seq 13055 df-prod 14972 |
This theorem is referenced by: prodeq1i 14984 prodeq1d 14987 prod1 15010 fprodf1o 15012 fprodss 15014 fprodcllem 15017 fprodmul 15026 fproddiv 15027 fprodconst 15044 fprodn0 15045 fprod2d 15047 fprodmodd 15063 coprmprod 15708 coprmproddvds 15710 fprodexp 40565 fprodabs2 40566 mccl 40569 fprodcn 40571 fprodcncf 40853 dvmptfprod 40899 dvnprodlem3 40902 hoidmvval 41532 ovnhoi 41558 hspmbllem2 41582 fmtnorec2 42232 |
Copyright terms: Public domain | W3C validator |