Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > prodeq1 | Structured version Visualization version GIF version |
Description: Equality theorem for a product. (Contributed by Scott Fenton, 1-Dec-2017.) |
Ref | Expression |
---|---|
prodeq1 | ⊢ (𝐴 = 𝐵 → ∏𝑘 ∈ 𝐴 𝐶 = ∏𝑘 ∈ 𝐵 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfcv 2919 | . 2 ⊢ Ⅎ𝑘𝐴 | |
2 | nfcv 2919 | . 2 ⊢ Ⅎ𝑘𝐵 | |
3 | 1, 2 | prodeq1f 15323 | 1 ⊢ (𝐴 = 𝐵 → ∏𝑘 ∈ 𝐴 𝐶 = ∏𝑘 ∈ 𝐵 𝐶) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1538 ∏cprod 15320 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1911 ax-6 1970 ax-7 2015 ax-8 2113 ax-9 2121 ax-10 2142 ax-11 2158 ax-12 2175 ax-ext 2729 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 845 df-3an 1086 df-tru 1541 df-ex 1782 df-nf 1786 df-sb 2070 df-clab 2736 df-cleq 2750 df-clel 2830 df-nfc 2901 df-ral 3075 df-rex 3076 df-rab 3079 df-v 3411 df-un 3865 df-in 3867 df-ss 3877 df-if 4424 df-sn 4526 df-pr 4528 df-op 4532 df-uni 4802 df-br 5037 df-opab 5099 df-mpt 5117 df-xp 5534 df-cnv 5536 df-dm 5538 df-rn 5539 df-res 5540 df-ima 5541 df-pred 6131 df-iota 6299 df-f 6344 df-f1 6345 df-fo 6346 df-f1o 6347 df-fv 6348 df-ov 7159 df-oprab 7160 df-mpo 7161 df-wrecs 7963 df-recs 8024 df-rdg 8062 df-seq 13432 df-prod 15321 |
This theorem is referenced by: prodeq1i 15333 prodeq1d 15336 prod1 15359 fprodf1o 15361 fprodss 15363 fprodcllem 15366 fprodmul 15375 fproddiv 15376 fprodconst 15393 fprodn0 15394 fprod2d 15396 fprodmodd 15412 coprmprod 16070 coprmproddvds 16072 fprodexp 42637 fprodabs2 42638 mccl 42641 fprodcn 42643 fprodcncf 42943 dvmptfprod 42988 dvnprodlem3 42991 hoidmvval 43617 ovnhoi 43643 hspmbllem2 43667 fmtnorec2 44477 |
Copyright terms: Public domain | W3C validator |