MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  prodeq1 Structured version   Visualization version   GIF version

Theorem prodeq1 15880
Description: Equality theorem for a product. (Contributed by Scott Fenton, 1-Dec-2017.)
Assertion
Ref Expression
prodeq1 (𝐴 = 𝐵 → ∏𝑘𝐴 𝐶 = ∏𝑘𝐵 𝐶)
Distinct variable groups:   𝐴,𝑘   𝐵,𝑘
Allowed substitution hint:   𝐶(𝑘)

Proof of Theorem prodeq1
Dummy variables 𝑥 𝑦 𝑚 𝑛 𝑓 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 sseq1 3975 . . . . . 6 (𝐴 = 𝐵 → (𝐴 ⊆ (ℤ𝑚) ↔ 𝐵 ⊆ (ℤ𝑚)))
2 eleq2 2818 . . . . . . . . . . . . 13 (𝐴 = 𝐵 → (𝑘𝐴𝑘𝐵))
32ifbid 4515 . . . . . . . . . . . 12 (𝐴 = 𝐵 → if(𝑘𝐴, 𝐶, 1) = if(𝑘𝐵, 𝐶, 1))
43mpteq2dv 5204 . . . . . . . . . . 11 (𝐴 = 𝐵 → (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐶, 1)) = (𝑘 ∈ ℤ ↦ if(𝑘𝐵, 𝐶, 1)))
54seqeq3d 13981 . . . . . . . . . 10 (𝐴 = 𝐵 → seq𝑛( · , (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐶, 1))) = seq𝑛( · , (𝑘 ∈ ℤ ↦ if(𝑘𝐵, 𝐶, 1))))
65breq1d 5120 . . . . . . . . 9 (𝐴 = 𝐵 → (seq𝑛( · , (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐶, 1))) ⇝ 𝑦 ↔ seq𝑛( · , (𝑘 ∈ ℤ ↦ if(𝑘𝐵, 𝐶, 1))) ⇝ 𝑦))
76anbi2d 630 . . . . . . . 8 (𝐴 = 𝐵 → ((𝑦 ≠ 0 ∧ seq𝑛( · , (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐶, 1))) ⇝ 𝑦) ↔ (𝑦 ≠ 0 ∧ seq𝑛( · , (𝑘 ∈ ℤ ↦ if(𝑘𝐵, 𝐶, 1))) ⇝ 𝑦)))
87exbidv 1921 . . . . . . 7 (𝐴 = 𝐵 → (∃𝑦(𝑦 ≠ 0 ∧ seq𝑛( · , (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐶, 1))) ⇝ 𝑦) ↔ ∃𝑦(𝑦 ≠ 0 ∧ seq𝑛( · , (𝑘 ∈ ℤ ↦ if(𝑘𝐵, 𝐶, 1))) ⇝ 𝑦)))
98rexbidv 3158 . . . . . 6 (𝐴 = 𝐵 → (∃𝑛 ∈ (ℤ𝑚)∃𝑦(𝑦 ≠ 0 ∧ seq𝑛( · , (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐶, 1))) ⇝ 𝑦) ↔ ∃𝑛 ∈ (ℤ𝑚)∃𝑦(𝑦 ≠ 0 ∧ seq𝑛( · , (𝑘 ∈ ℤ ↦ if(𝑘𝐵, 𝐶, 1))) ⇝ 𝑦)))
104seqeq3d 13981 . . . . . . 7 (𝐴 = 𝐵 → seq𝑚( · , (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐶, 1))) = seq𝑚( · , (𝑘 ∈ ℤ ↦ if(𝑘𝐵, 𝐶, 1))))
1110breq1d 5120 . . . . . 6 (𝐴 = 𝐵 → (seq𝑚( · , (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐶, 1))) ⇝ 𝑥 ↔ seq𝑚( · , (𝑘 ∈ ℤ ↦ if(𝑘𝐵, 𝐶, 1))) ⇝ 𝑥))
121, 9, 113anbi123d 1438 . . . . 5 (𝐴 = 𝐵 → ((𝐴 ⊆ (ℤ𝑚) ∧ ∃𝑛 ∈ (ℤ𝑚)∃𝑦(𝑦 ≠ 0 ∧ seq𝑛( · , (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐶, 1))) ⇝ 𝑦) ∧ seq𝑚( · , (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐶, 1))) ⇝ 𝑥) ↔ (𝐵 ⊆ (ℤ𝑚) ∧ ∃𝑛 ∈ (ℤ𝑚)∃𝑦(𝑦 ≠ 0 ∧ seq𝑛( · , (𝑘 ∈ ℤ ↦ if(𝑘𝐵, 𝐶, 1))) ⇝ 𝑦) ∧ seq𝑚( · , (𝑘 ∈ ℤ ↦ if(𝑘𝐵, 𝐶, 1))) ⇝ 𝑥)))
1312rexbidv 3158 . . . 4 (𝐴 = 𝐵 → (∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ𝑚) ∧ ∃𝑛 ∈ (ℤ𝑚)∃𝑦(𝑦 ≠ 0 ∧ seq𝑛( · , (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐶, 1))) ⇝ 𝑦) ∧ seq𝑚( · , (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐶, 1))) ⇝ 𝑥) ↔ ∃𝑚 ∈ ℤ (𝐵 ⊆ (ℤ𝑚) ∧ ∃𝑛 ∈ (ℤ𝑚)∃𝑦(𝑦 ≠ 0 ∧ seq𝑛( · , (𝑘 ∈ ℤ ↦ if(𝑘𝐵, 𝐶, 1))) ⇝ 𝑦) ∧ seq𝑚( · , (𝑘 ∈ ℤ ↦ if(𝑘𝐵, 𝐶, 1))) ⇝ 𝑥)))
14 f1oeq3 6793 . . . . . . 7 (𝐴 = 𝐵 → (𝑓:(1...𝑚)–1-1-onto𝐴𝑓:(1...𝑚)–1-1-onto𝐵))
1514anbi1d 631 . . . . . 6 (𝐴 = 𝐵 → ((𝑓:(1...𝑚)–1-1-onto𝐴𝑥 = (seq1( · , (𝑛 ∈ ℕ ↦ (𝑓𝑛) / 𝑘𝐶))‘𝑚)) ↔ (𝑓:(1...𝑚)–1-1-onto𝐵𝑥 = (seq1( · , (𝑛 ∈ ℕ ↦ (𝑓𝑛) / 𝑘𝐶))‘𝑚))))
1615exbidv 1921 . . . . 5 (𝐴 = 𝐵 → (∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑥 = (seq1( · , (𝑛 ∈ ℕ ↦ (𝑓𝑛) / 𝑘𝐶))‘𝑚)) ↔ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐵𝑥 = (seq1( · , (𝑛 ∈ ℕ ↦ (𝑓𝑛) / 𝑘𝐶))‘𝑚))))
1716rexbidv 3158 . . . 4 (𝐴 = 𝐵 → (∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑥 = (seq1( · , (𝑛 ∈ ℕ ↦ (𝑓𝑛) / 𝑘𝐶))‘𝑚)) ↔ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐵𝑥 = (seq1( · , (𝑛 ∈ ℕ ↦ (𝑓𝑛) / 𝑘𝐶))‘𝑚))))
1813, 17orbi12d 918 . . 3 (𝐴 = 𝐵 → ((∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ𝑚) ∧ ∃𝑛 ∈ (ℤ𝑚)∃𝑦(𝑦 ≠ 0 ∧ seq𝑛( · , (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐶, 1))) ⇝ 𝑦) ∧ seq𝑚( · , (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐶, 1))) ⇝ 𝑥) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑥 = (seq1( · , (𝑛 ∈ ℕ ↦ (𝑓𝑛) / 𝑘𝐶))‘𝑚))) ↔ (∃𝑚 ∈ ℤ (𝐵 ⊆ (ℤ𝑚) ∧ ∃𝑛 ∈ (ℤ𝑚)∃𝑦(𝑦 ≠ 0 ∧ seq𝑛( · , (𝑘 ∈ ℤ ↦ if(𝑘𝐵, 𝐶, 1))) ⇝ 𝑦) ∧ seq𝑚( · , (𝑘 ∈ ℤ ↦ if(𝑘𝐵, 𝐶, 1))) ⇝ 𝑥) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐵𝑥 = (seq1( · , (𝑛 ∈ ℕ ↦ (𝑓𝑛) / 𝑘𝐶))‘𝑚)))))
1918iotabidv 6498 . 2 (𝐴 = 𝐵 → (℩𝑥(∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ𝑚) ∧ ∃𝑛 ∈ (ℤ𝑚)∃𝑦(𝑦 ≠ 0 ∧ seq𝑛( · , (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐶, 1))) ⇝ 𝑦) ∧ seq𝑚( · , (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐶, 1))) ⇝ 𝑥) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑥 = (seq1( · , (𝑛 ∈ ℕ ↦ (𝑓𝑛) / 𝑘𝐶))‘𝑚)))) = (℩𝑥(∃𝑚 ∈ ℤ (𝐵 ⊆ (ℤ𝑚) ∧ ∃𝑛 ∈ (ℤ𝑚)∃𝑦(𝑦 ≠ 0 ∧ seq𝑛( · , (𝑘 ∈ ℤ ↦ if(𝑘𝐵, 𝐶, 1))) ⇝ 𝑦) ∧ seq𝑚( · , (𝑘 ∈ ℤ ↦ if(𝑘𝐵, 𝐶, 1))) ⇝ 𝑥) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐵𝑥 = (seq1( · , (𝑛 ∈ ℕ ↦ (𝑓𝑛) / 𝑘𝐶))‘𝑚)))))
20 df-prod 15877 . 2 𝑘𝐴 𝐶 = (℩𝑥(∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ𝑚) ∧ ∃𝑛 ∈ (ℤ𝑚)∃𝑦(𝑦 ≠ 0 ∧ seq𝑛( · , (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐶, 1))) ⇝ 𝑦) ∧ seq𝑚( · , (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐶, 1))) ⇝ 𝑥) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑥 = (seq1( · , (𝑛 ∈ ℕ ↦ (𝑓𝑛) / 𝑘𝐶))‘𝑚))))
21 df-prod 15877 . 2 𝑘𝐵 𝐶 = (℩𝑥(∃𝑚 ∈ ℤ (𝐵 ⊆ (ℤ𝑚) ∧ ∃𝑛 ∈ (ℤ𝑚)∃𝑦(𝑦 ≠ 0 ∧ seq𝑛( · , (𝑘 ∈ ℤ ↦ if(𝑘𝐵, 𝐶, 1))) ⇝ 𝑦) ∧ seq𝑚( · , (𝑘 ∈ ℤ ↦ if(𝑘𝐵, 𝐶, 1))) ⇝ 𝑥) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐵𝑥 = (seq1( · , (𝑛 ∈ ℕ ↦ (𝑓𝑛) / 𝑘𝐶))‘𝑚))))
2219, 20, 213eqtr4g 2790 1 (𝐴 = 𝐵 → ∏𝑘𝐴 𝐶 = ∏𝑘𝐵 𝐶)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wo 847  w3a 1086   = wceq 1540  wex 1779  wcel 2109  wne 2926  wrex 3054  csb 3865  wss 3917  ifcif 4491   class class class wbr 5110  cmpt 5191  cio 6465  1-1-ontowf1o 6513  cfv 6514  (class class class)co 7390  0cc0 11075  1c1 11076   · cmul 11080  cn 12193  cz 12536  cuz 12800  ...cfz 13475  seqcseq 13973  cli 15457  cprod 15876
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2702
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2709  df-cleq 2722  df-clel 2804  df-ral 3046  df-rex 3055  df-rab 3409  df-v 3452  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-nul 4300  df-if 4492  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-br 5111  df-opab 5173  df-mpt 5192  df-xp 5647  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-iota 6467  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-ov 7393  df-oprab 7394  df-mpo 7395  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-seq 13974  df-prod 15877
This theorem is referenced by:  prodeq1iOLD  15890  prodeq1d  15893  prod1  15917  fprodf1o  15919  fprodss  15921  fprodcllem  15924  fprodmul  15933  fproddiv  15934  fprodconst  15951  fprodn0  15952  fprod2d  15954  fprodmodd  15970  coprmprod  16638  coprmproddvds  16640  fprodexp  45599  fprodabs2  45600  mccl  45603  fprodcn  45605  fprodcncf  45905  dvmptfprod  45950  dvnprodlem3  45953  hoidmvval  46582  ovnhoi  46608  hspmbllem2  46632  fmtnorec2  47548
  Copyright terms: Public domain W3C validator