![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > prodeq1 | Structured version Visualization version GIF version |
Description: Equality theorem for a product. (Contributed by Scott Fenton, 1-Dec-2017.) |
Ref | Expression |
---|---|
prodeq1 | ⊢ (𝐴 = 𝐵 → ∏𝑘 ∈ 𝐴 𝐶 = ∏𝑘 ∈ 𝐵 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfcv 2899 | . 2 ⊢ Ⅎ𝑘𝐴 | |
2 | nfcv 2899 | . 2 ⊢ Ⅎ𝑘𝐵 | |
3 | 1, 2 | prodeq1f 15885 | 1 ⊢ (𝐴 = 𝐵 → ∏𝑘 ∈ 𝐴 𝐶 = ∏𝑘 ∈ 𝐵 𝐶) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1534 ∏cprod 15882 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2699 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ral 3059 df-rex 3068 df-rab 3430 df-v 3473 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4324 df-if 4530 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4909 df-br 5149 df-opab 5211 df-mpt 5232 df-xp 5684 df-cnv 5686 df-co 5687 df-dm 5688 df-rn 5689 df-res 5690 df-ima 5691 df-pred 6305 df-iota 6500 df-f 6552 df-f1 6553 df-fo 6554 df-f1o 6555 df-fv 6556 df-ov 7423 df-oprab 7424 df-mpo 7425 df-frecs 8287 df-wrecs 8318 df-recs 8392 df-rdg 8431 df-seq 14000 df-prod 15883 |
This theorem is referenced by: prodeq1i 15895 prodeq1d 15898 prod1 15921 fprodf1o 15923 fprodss 15925 fprodcllem 15928 fprodmul 15937 fproddiv 15938 fprodconst 15955 fprodn0 15956 fprod2d 15958 fprodmodd 15974 coprmprod 16632 coprmproddvds 16634 fprodexp 44982 fprodabs2 44983 mccl 44986 fprodcn 44988 fprodcncf 45288 dvmptfprod 45333 dvnprodlem3 45336 hoidmvval 45965 ovnhoi 45991 hspmbllem2 46015 fmtnorec2 46883 |
Copyright terms: Public domain | W3C validator |