Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > psref | Structured version Visualization version GIF version |
Description: A poset is reflexive. (Contributed by NM, 13-May-2008.) |
Ref | Expression |
---|---|
psref.1 | ⊢ 𝑋 = dom 𝑅 |
Ref | Expression |
---|---|
psref | ⊢ ((𝑅 ∈ PosetRel ∧ 𝐴 ∈ 𝑋) → 𝐴𝑅𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | psref.1 | . . . . 5 ⊢ 𝑋 = dom 𝑅 | |
2 | psdmrn 18206 | . . . . . 6 ⊢ (𝑅 ∈ PosetRel → (dom 𝑅 = ∪ ∪ 𝑅 ∧ ran 𝑅 = ∪ ∪ 𝑅)) | |
3 | 2 | simpld 494 | . . . . 5 ⊢ (𝑅 ∈ PosetRel → dom 𝑅 = ∪ ∪ 𝑅) |
4 | 1, 3 | eqtrid 2790 | . . . 4 ⊢ (𝑅 ∈ PosetRel → 𝑋 = ∪ ∪ 𝑅) |
5 | 4 | eleq2d 2824 | . . 3 ⊢ (𝑅 ∈ PosetRel → (𝐴 ∈ 𝑋 ↔ 𝐴 ∈ ∪ ∪ 𝑅)) |
6 | pslem 18205 | . . . 4 ⊢ (𝑅 ∈ PosetRel → (((𝐴𝑅𝐴 ∧ 𝐴𝑅𝐴) → 𝐴𝑅𝐴) ∧ (𝐴 ∈ ∪ ∪ 𝑅 → 𝐴𝑅𝐴) ∧ ((𝐴𝑅𝐴 ∧ 𝐴𝑅𝐴) → 𝐴 = 𝐴))) | |
7 | 6 | simp2d 1141 | . . 3 ⊢ (𝑅 ∈ PosetRel → (𝐴 ∈ ∪ ∪ 𝑅 → 𝐴𝑅𝐴)) |
8 | 5, 7 | sylbid 239 | . 2 ⊢ (𝑅 ∈ PosetRel → (𝐴 ∈ 𝑋 → 𝐴𝑅𝐴)) |
9 | 8 | imp 406 | 1 ⊢ ((𝑅 ∈ PosetRel ∧ 𝐴 ∈ 𝑋) → 𝐴𝑅𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2108 ∪ cuni 4836 class class class wbr 5070 dom cdm 5580 ran crn 5581 PosetRelcps 18197 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-opab 5133 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ps 18199 |
This theorem is referenced by: psss 18213 psssdm2 18214 ordtt1 22438 |
Copyright terms: Public domain | W3C validator |