![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > psref | Structured version Visualization version GIF version |
Description: A poset is reflexive. (Contributed by NM, 13-May-2008.) |
Ref | Expression |
---|---|
psref.1 | ⊢ 𝑋 = dom 𝑅 |
Ref | Expression |
---|---|
psref | ⊢ ((𝑅 ∈ PosetRel ∧ 𝐴 ∈ 𝑋) → 𝐴𝑅𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | psref.1 | . . . . 5 ⊢ 𝑋 = dom 𝑅 | |
2 | psdmrn 18568 | . . . . . 6 ⊢ (𝑅 ∈ PosetRel → (dom 𝑅 = ∪ ∪ 𝑅 ∧ ran 𝑅 = ∪ ∪ 𝑅)) | |
3 | 2 | simpld 493 | . . . . 5 ⊢ (𝑅 ∈ PosetRel → dom 𝑅 = ∪ ∪ 𝑅) |
4 | 1, 3 | eqtrid 2777 | . . . 4 ⊢ (𝑅 ∈ PosetRel → 𝑋 = ∪ ∪ 𝑅) |
5 | 4 | eleq2d 2811 | . . 3 ⊢ (𝑅 ∈ PosetRel → (𝐴 ∈ 𝑋 ↔ 𝐴 ∈ ∪ ∪ 𝑅)) |
6 | pslem 18567 | . . . 4 ⊢ (𝑅 ∈ PosetRel → (((𝐴𝑅𝐴 ∧ 𝐴𝑅𝐴) → 𝐴𝑅𝐴) ∧ (𝐴 ∈ ∪ ∪ 𝑅 → 𝐴𝑅𝐴) ∧ ((𝐴𝑅𝐴 ∧ 𝐴𝑅𝐴) → 𝐴 = 𝐴))) | |
7 | 6 | simp2d 1140 | . . 3 ⊢ (𝑅 ∈ PosetRel → (𝐴 ∈ ∪ ∪ 𝑅 → 𝐴𝑅𝐴)) |
8 | 5, 7 | sylbid 239 | . 2 ⊢ (𝑅 ∈ PosetRel → (𝐴 ∈ 𝑋 → 𝐴𝑅𝐴)) |
9 | 8 | imp 405 | 1 ⊢ ((𝑅 ∈ PosetRel ∧ 𝐴 ∈ 𝑋) → 𝐴𝑅𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 394 = wceq 1533 ∈ wcel 2098 ∪ cuni 4909 class class class wbr 5149 dom cdm 5678 ran crn 5679 PosetRelcps 18559 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-ext 2696 ax-sep 5300 ax-nul 5307 ax-pr 5429 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-sb 2060 df-clab 2703 df-cleq 2717 df-clel 2802 df-ral 3051 df-rex 3060 df-rab 3419 df-v 3463 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-nul 4323 df-if 4531 df-sn 4631 df-pr 4633 df-op 4637 df-uni 4910 df-br 5150 df-opab 5212 df-id 5576 df-xp 5684 df-rel 5685 df-cnv 5686 df-co 5687 df-dm 5688 df-rn 5689 df-res 5690 df-ps 18561 |
This theorem is referenced by: psss 18575 psssdm2 18576 ordtt1 23327 |
Copyright terms: Public domain | W3C validator |