Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > psref | Structured version Visualization version GIF version |
Description: A poset is reflexive. (Contributed by NM, 13-May-2008.) |
Ref | Expression |
---|---|
psref.1 | ⊢ 𝑋 = dom 𝑅 |
Ref | Expression |
---|---|
psref | ⊢ ((𝑅 ∈ PosetRel ∧ 𝐴 ∈ 𝑋) → 𝐴𝑅𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | psref.1 | . . . . 5 ⊢ 𝑋 = dom 𝑅 | |
2 | psdmrn 18291 | . . . . . 6 ⊢ (𝑅 ∈ PosetRel → (dom 𝑅 = ∪ ∪ 𝑅 ∧ ran 𝑅 = ∪ ∪ 𝑅)) | |
3 | 2 | simpld 495 | . . . . 5 ⊢ (𝑅 ∈ PosetRel → dom 𝑅 = ∪ ∪ 𝑅) |
4 | 1, 3 | eqtrid 2790 | . . . 4 ⊢ (𝑅 ∈ PosetRel → 𝑋 = ∪ ∪ 𝑅) |
5 | 4 | eleq2d 2824 | . . 3 ⊢ (𝑅 ∈ PosetRel → (𝐴 ∈ 𝑋 ↔ 𝐴 ∈ ∪ ∪ 𝑅)) |
6 | pslem 18290 | . . . 4 ⊢ (𝑅 ∈ PosetRel → (((𝐴𝑅𝐴 ∧ 𝐴𝑅𝐴) → 𝐴𝑅𝐴) ∧ (𝐴 ∈ ∪ ∪ 𝑅 → 𝐴𝑅𝐴) ∧ ((𝐴𝑅𝐴 ∧ 𝐴𝑅𝐴) → 𝐴 = 𝐴))) | |
7 | 6 | simp2d 1142 | . . 3 ⊢ (𝑅 ∈ PosetRel → (𝐴 ∈ ∪ ∪ 𝑅 → 𝐴𝑅𝐴)) |
8 | 5, 7 | sylbid 239 | . 2 ⊢ (𝑅 ∈ PosetRel → (𝐴 ∈ 𝑋 → 𝐴𝑅𝐴)) |
9 | 8 | imp 407 | 1 ⊢ ((𝑅 ∈ PosetRel ∧ 𝐴 ∈ 𝑋) → 𝐴𝑅𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1539 ∈ wcel 2106 ∪ cuni 4839 class class class wbr 5074 dom cdm 5589 ran crn 5590 PosetRelcps 18282 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-11 2154 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pr 5352 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3434 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-br 5075 df-opab 5137 df-id 5489 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ps 18284 |
This theorem is referenced by: psss 18298 psssdm2 18299 ordtt1 22530 |
Copyright terms: Public domain | W3C validator |