| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > psref | Structured version Visualization version GIF version | ||
| Description: A poset is reflexive. (Contributed by NM, 13-May-2008.) |
| Ref | Expression |
|---|---|
| psref.1 | ⊢ 𝑋 = dom 𝑅 |
| Ref | Expression |
|---|---|
| psref | ⊢ ((𝑅 ∈ PosetRel ∧ 𝐴 ∈ 𝑋) → 𝐴𝑅𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | psref.1 | . . . . 5 ⊢ 𝑋 = dom 𝑅 | |
| 2 | psdmrn 18497 | . . . . . 6 ⊢ (𝑅 ∈ PosetRel → (dom 𝑅 = ∪ ∪ 𝑅 ∧ ran 𝑅 = ∪ ∪ 𝑅)) | |
| 3 | 2 | simpld 494 | . . . . 5 ⊢ (𝑅 ∈ PosetRel → dom 𝑅 = ∪ ∪ 𝑅) |
| 4 | 1, 3 | eqtrid 2776 | . . . 4 ⊢ (𝑅 ∈ PosetRel → 𝑋 = ∪ ∪ 𝑅) |
| 5 | 4 | eleq2d 2814 | . . 3 ⊢ (𝑅 ∈ PosetRel → (𝐴 ∈ 𝑋 ↔ 𝐴 ∈ ∪ ∪ 𝑅)) |
| 6 | pslem 18496 | . . . 4 ⊢ (𝑅 ∈ PosetRel → (((𝐴𝑅𝐴 ∧ 𝐴𝑅𝐴) → 𝐴𝑅𝐴) ∧ (𝐴 ∈ ∪ ∪ 𝑅 → 𝐴𝑅𝐴) ∧ ((𝐴𝑅𝐴 ∧ 𝐴𝑅𝐴) → 𝐴 = 𝐴))) | |
| 7 | 6 | simp2d 1143 | . . 3 ⊢ (𝑅 ∈ PosetRel → (𝐴 ∈ ∪ ∪ 𝑅 → 𝐴𝑅𝐴)) |
| 8 | 5, 7 | sylbid 240 | . 2 ⊢ (𝑅 ∈ PosetRel → (𝐴 ∈ 𝑋 → 𝐴𝑅𝐴)) |
| 9 | 8 | imp 406 | 1 ⊢ ((𝑅 ∈ PosetRel ∧ 𝐴 ∈ 𝑋) → 𝐴𝑅𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∪ cuni 4861 class class class wbr 5095 dom cdm 5623 ran crn 5624 PosetRelcps 18488 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-sep 5238 ax-nul 5248 ax-pr 5374 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ral 3045 df-rex 3054 df-rab 3397 df-v 3440 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-nul 4287 df-if 4479 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-br 5096 df-opab 5158 df-id 5518 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ps 18490 |
| This theorem is referenced by: psss 18504 psssdm2 18505 ordtt1 23282 |
| Copyright terms: Public domain | W3C validator |