MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  psref Structured version   Visualization version   GIF version

Theorem psref 18644
Description: A poset is reflexive. (Contributed by NM, 13-May-2008.)
Hypothesis
Ref Expression
psref.1 𝑋 = dom 𝑅
Assertion
Ref Expression
psref ((𝑅 ∈ PosetRel ∧ 𝐴𝑋) → 𝐴𝑅𝐴)

Proof of Theorem psref
StepHypRef Expression
1 psref.1 . . . . 5 𝑋 = dom 𝑅
2 psdmrn 18643 . . . . . 6 (𝑅 ∈ PosetRel → (dom 𝑅 = 𝑅 ∧ ran 𝑅 = 𝑅))
32simpld 494 . . . . 5 (𝑅 ∈ PosetRel → dom 𝑅 = 𝑅)
41, 3eqtrid 2792 . . . 4 (𝑅 ∈ PosetRel → 𝑋 = 𝑅)
54eleq2d 2830 . . 3 (𝑅 ∈ PosetRel → (𝐴𝑋𝐴 𝑅))
6 pslem 18642 . . . 4 (𝑅 ∈ PosetRel → (((𝐴𝑅𝐴𝐴𝑅𝐴) → 𝐴𝑅𝐴) ∧ (𝐴 𝑅𝐴𝑅𝐴) ∧ ((𝐴𝑅𝐴𝐴𝑅𝐴) → 𝐴 = 𝐴)))
76simp2d 1143 . . 3 (𝑅 ∈ PosetRel → (𝐴 𝑅𝐴𝑅𝐴))
85, 7sylbid 240 . 2 (𝑅 ∈ PosetRel → (𝐴𝑋𝐴𝑅𝐴))
98imp 406 1 ((𝑅 ∈ PosetRel ∧ 𝐴𝑋) → 𝐴𝑅𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1537  wcel 2108   cuni 4931   class class class wbr 5166  dom cdm 5700  ran crn 5701  PosetRelcps 18634
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pr 5447
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-opab 5229  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ps 18636
This theorem is referenced by:  psss  18650  psssdm2  18651  ordtt1  23408
  Copyright terms: Public domain W3C validator