MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  psref Structured version   Visualization version   GIF version

Theorem psref 18632
Description: A poset is reflexive. (Contributed by NM, 13-May-2008.)
Hypothesis
Ref Expression
psref.1 𝑋 = dom 𝑅
Assertion
Ref Expression
psref ((𝑅 ∈ PosetRel ∧ 𝐴𝑋) → 𝐴𝑅𝐴)

Proof of Theorem psref
StepHypRef Expression
1 psref.1 . . . . 5 𝑋 = dom 𝑅
2 psdmrn 18631 . . . . . 6 (𝑅 ∈ PosetRel → (dom 𝑅 = 𝑅 ∧ ran 𝑅 = 𝑅))
32simpld 494 . . . . 5 (𝑅 ∈ PosetRel → dom 𝑅 = 𝑅)
41, 3eqtrid 2787 . . . 4 (𝑅 ∈ PosetRel → 𝑋 = 𝑅)
54eleq2d 2825 . . 3 (𝑅 ∈ PosetRel → (𝐴𝑋𝐴 𝑅))
6 pslem 18630 . . . 4 (𝑅 ∈ PosetRel → (((𝐴𝑅𝐴𝐴𝑅𝐴) → 𝐴𝑅𝐴) ∧ (𝐴 𝑅𝐴𝑅𝐴) ∧ ((𝐴𝑅𝐴𝐴𝑅𝐴) → 𝐴 = 𝐴)))
76simp2d 1142 . . 3 (𝑅 ∈ PosetRel → (𝐴 𝑅𝐴𝑅𝐴))
85, 7sylbid 240 . 2 (𝑅 ∈ PosetRel → (𝐴𝑋𝐴𝑅𝐴))
98imp 406 1 ((𝑅 ∈ PosetRel ∧ 𝐴𝑋) → 𝐴𝑅𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1537  wcel 2106   cuni 4912   class class class wbr 5148  dom cdm 5689  ran crn 5690  PosetRelcps 18622
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-ext 2706  ax-sep 5302  ax-nul 5312  ax-pr 5438
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-sb 2063  df-clab 2713  df-cleq 2727  df-clel 2814  df-ral 3060  df-rex 3069  df-rab 3434  df-v 3480  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-nul 4340  df-if 4532  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-br 5149  df-opab 5211  df-id 5583  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ps 18624
This theorem is referenced by:  psss  18638  psssdm2  18639  ordtt1  23403
  Copyright terms: Public domain W3C validator