Step | Hyp | Ref
| Expression |
1 | | eqid 2740 |
. . . . . . . 8
⊢ dom 𝑅 = dom 𝑅 |
2 | 1 | psrn 18291 |
. . . . . . 7
⊢ (𝑅 ∈ PosetRel → dom
𝑅 = ran 𝑅) |
3 | 2 | eqcomd 2746 |
. . . . . 6
⊢ (𝑅 ∈ PosetRel → ran
𝑅 = dom 𝑅) |
4 | 3 | sneqd 4579 |
. . . . 5
⊢ (𝑅 ∈ PosetRel → {ran
𝑅} = {dom 𝑅}) |
5 | | vex 3435 |
. . . . . . . . . . . . 13
⊢ 𝑦 ∈ V |
6 | | vex 3435 |
. . . . . . . . . . . . 13
⊢ 𝑥 ∈ V |
7 | 5, 6 | brcnv 5790 |
. . . . . . . . . . . 12
⊢ (𝑦◡𝑅𝑥 ↔ 𝑥𝑅𝑦) |
8 | 7 | a1i 11 |
. . . . . . . . . . 11
⊢ (𝑅 ∈ PosetRel → (𝑦◡𝑅𝑥 ↔ 𝑥𝑅𝑦)) |
9 | 8 | notbid 318 |
. . . . . . . . . 10
⊢ (𝑅 ∈ PosetRel → (¬
𝑦◡𝑅𝑥 ↔ ¬ 𝑥𝑅𝑦)) |
10 | 3, 9 | rabeqbidv 3419 |
. . . . . . . . 9
⊢ (𝑅 ∈ PosetRel → {𝑦 ∈ ran 𝑅 ∣ ¬ 𝑦◡𝑅𝑥} = {𝑦 ∈ dom 𝑅 ∣ ¬ 𝑥𝑅𝑦}) |
11 | 3, 10 | mpteq12dv 5170 |
. . . . . . . 8
⊢ (𝑅 ∈ PosetRel → (𝑥 ∈ ran 𝑅 ↦ {𝑦 ∈ ran 𝑅 ∣ ¬ 𝑦◡𝑅𝑥}) = (𝑥 ∈ dom 𝑅 ↦ {𝑦 ∈ dom 𝑅 ∣ ¬ 𝑥𝑅𝑦})) |
12 | 11 | rneqd 5846 |
. . . . . . 7
⊢ (𝑅 ∈ PosetRel → ran
(𝑥 ∈ ran 𝑅 ↦ {𝑦 ∈ ran 𝑅 ∣ ¬ 𝑦◡𝑅𝑥}) = ran (𝑥 ∈ dom 𝑅 ↦ {𝑦 ∈ dom 𝑅 ∣ ¬ 𝑥𝑅𝑦})) |
13 | 6, 5 | brcnv 5790 |
. . . . . . . . . . . 12
⊢ (𝑥◡𝑅𝑦 ↔ 𝑦𝑅𝑥) |
14 | 13 | a1i 11 |
. . . . . . . . . . 11
⊢ (𝑅 ∈ PosetRel → (𝑥◡𝑅𝑦 ↔ 𝑦𝑅𝑥)) |
15 | 14 | notbid 318 |
. . . . . . . . . 10
⊢ (𝑅 ∈ PosetRel → (¬
𝑥◡𝑅𝑦 ↔ ¬ 𝑦𝑅𝑥)) |
16 | 3, 15 | rabeqbidv 3419 |
. . . . . . . . 9
⊢ (𝑅 ∈ PosetRel → {𝑦 ∈ ran 𝑅 ∣ ¬ 𝑥◡𝑅𝑦} = {𝑦 ∈ dom 𝑅 ∣ ¬ 𝑦𝑅𝑥}) |
17 | 3, 16 | mpteq12dv 5170 |
. . . . . . . 8
⊢ (𝑅 ∈ PosetRel → (𝑥 ∈ ran 𝑅 ↦ {𝑦 ∈ ran 𝑅 ∣ ¬ 𝑥◡𝑅𝑦}) = (𝑥 ∈ dom 𝑅 ↦ {𝑦 ∈ dom 𝑅 ∣ ¬ 𝑦𝑅𝑥})) |
18 | 17 | rneqd 5846 |
. . . . . . 7
⊢ (𝑅 ∈ PosetRel → ran
(𝑥 ∈ ran 𝑅 ↦ {𝑦 ∈ ran 𝑅 ∣ ¬ 𝑥◡𝑅𝑦}) = ran (𝑥 ∈ dom 𝑅 ↦ {𝑦 ∈ dom 𝑅 ∣ ¬ 𝑦𝑅𝑥})) |
19 | 12, 18 | uneq12d 4103 |
. . . . . 6
⊢ (𝑅 ∈ PosetRel → (ran
(𝑥 ∈ ran 𝑅 ↦ {𝑦 ∈ ran 𝑅 ∣ ¬ 𝑦◡𝑅𝑥}) ∪ ran (𝑥 ∈ ran 𝑅 ↦ {𝑦 ∈ ran 𝑅 ∣ ¬ 𝑥◡𝑅𝑦})) = (ran (𝑥 ∈ dom 𝑅 ↦ {𝑦 ∈ dom 𝑅 ∣ ¬ 𝑥𝑅𝑦}) ∪ ran (𝑥 ∈ dom 𝑅 ↦ {𝑦 ∈ dom 𝑅 ∣ ¬ 𝑦𝑅𝑥}))) |
20 | | uncom 4092 |
. . . . . 6
⊢ (ran
(𝑥 ∈ dom 𝑅 ↦ {𝑦 ∈ dom 𝑅 ∣ ¬ 𝑥𝑅𝑦}) ∪ ran (𝑥 ∈ dom 𝑅 ↦ {𝑦 ∈ dom 𝑅 ∣ ¬ 𝑦𝑅𝑥})) = (ran (𝑥 ∈ dom 𝑅 ↦ {𝑦 ∈ dom 𝑅 ∣ ¬ 𝑦𝑅𝑥}) ∪ ran (𝑥 ∈ dom 𝑅 ↦ {𝑦 ∈ dom 𝑅 ∣ ¬ 𝑥𝑅𝑦})) |
21 | 19, 20 | eqtrdi 2796 |
. . . . 5
⊢ (𝑅 ∈ PosetRel → (ran
(𝑥 ∈ ran 𝑅 ↦ {𝑦 ∈ ran 𝑅 ∣ ¬ 𝑦◡𝑅𝑥}) ∪ ran (𝑥 ∈ ran 𝑅 ↦ {𝑦 ∈ ran 𝑅 ∣ ¬ 𝑥◡𝑅𝑦})) = (ran (𝑥 ∈ dom 𝑅 ↦ {𝑦 ∈ dom 𝑅 ∣ ¬ 𝑦𝑅𝑥}) ∪ ran (𝑥 ∈ dom 𝑅 ↦ {𝑦 ∈ dom 𝑅 ∣ ¬ 𝑥𝑅𝑦}))) |
22 | 4, 21 | uneq12d 4103 |
. . . 4
⊢ (𝑅 ∈ PosetRel → ({ran
𝑅} ∪ (ran (𝑥 ∈ ran 𝑅 ↦ {𝑦 ∈ ran 𝑅 ∣ ¬ 𝑦◡𝑅𝑥}) ∪ ran (𝑥 ∈ ran 𝑅 ↦ {𝑦 ∈ ran 𝑅 ∣ ¬ 𝑥◡𝑅𝑦}))) = ({dom 𝑅} ∪ (ran (𝑥 ∈ dom 𝑅 ↦ {𝑦 ∈ dom 𝑅 ∣ ¬ 𝑦𝑅𝑥}) ∪ ran (𝑥 ∈ dom 𝑅 ↦ {𝑦 ∈ dom 𝑅 ∣ ¬ 𝑥𝑅𝑦})))) |
23 | 22 | fveq2d 6775 |
. . 3
⊢ (𝑅 ∈ PosetRel →
(fi‘({ran 𝑅} ∪
(ran (𝑥 ∈ ran 𝑅 ↦ {𝑦 ∈ ran 𝑅 ∣ ¬ 𝑦◡𝑅𝑥}) ∪ ran (𝑥 ∈ ran 𝑅 ↦ {𝑦 ∈ ran 𝑅 ∣ ¬ 𝑥◡𝑅𝑦})))) = (fi‘({dom 𝑅} ∪ (ran (𝑥 ∈ dom 𝑅 ↦ {𝑦 ∈ dom 𝑅 ∣ ¬ 𝑦𝑅𝑥}) ∪ ran (𝑥 ∈ dom 𝑅 ↦ {𝑦 ∈ dom 𝑅 ∣ ¬ 𝑥𝑅𝑦}))))) |
24 | 23 | fveq2d 6775 |
. 2
⊢ (𝑅 ∈ PosetRel →
(topGen‘(fi‘({ran 𝑅} ∪ (ran (𝑥 ∈ ran 𝑅 ↦ {𝑦 ∈ ran 𝑅 ∣ ¬ 𝑦◡𝑅𝑥}) ∪ ran (𝑥 ∈ ran 𝑅 ↦ {𝑦 ∈ ran 𝑅 ∣ ¬ 𝑥◡𝑅𝑦}))))) = (topGen‘(fi‘({dom 𝑅} ∪ (ran (𝑥 ∈ dom 𝑅 ↦ {𝑦 ∈ dom 𝑅 ∣ ¬ 𝑦𝑅𝑥}) ∪ ran (𝑥 ∈ dom 𝑅 ↦ {𝑦 ∈ dom 𝑅 ∣ ¬ 𝑥𝑅𝑦})))))) |
25 | | cnvps 18294 |
. . 3
⊢ (𝑅 ∈ PosetRel → ◡𝑅 ∈ PosetRel) |
26 | | df-rn 5601 |
. . . 4
⊢ ran 𝑅 = dom ◡𝑅 |
27 | | eqid 2740 |
. . . 4
⊢ ran
(𝑥 ∈ ran 𝑅 ↦ {𝑦 ∈ ran 𝑅 ∣ ¬ 𝑦◡𝑅𝑥}) = ran (𝑥 ∈ ran 𝑅 ↦ {𝑦 ∈ ran 𝑅 ∣ ¬ 𝑦◡𝑅𝑥}) |
28 | | eqid 2740 |
. . . 4
⊢ ran
(𝑥 ∈ ran 𝑅 ↦ {𝑦 ∈ ran 𝑅 ∣ ¬ 𝑥◡𝑅𝑦}) = ran (𝑥 ∈ ran 𝑅 ↦ {𝑦 ∈ ran 𝑅 ∣ ¬ 𝑥◡𝑅𝑦}) |
29 | 26, 27, 28 | ordtval 22338 |
. . 3
⊢ (◡𝑅 ∈ PosetRel → (ordTop‘◡𝑅) = (topGen‘(fi‘({ran 𝑅} ∪ (ran (𝑥 ∈ ran 𝑅 ↦ {𝑦 ∈ ran 𝑅 ∣ ¬ 𝑦◡𝑅𝑥}) ∪ ran (𝑥 ∈ ran 𝑅 ↦ {𝑦 ∈ ran 𝑅 ∣ ¬ 𝑥◡𝑅𝑦})))))) |
30 | 25, 29 | syl 17 |
. 2
⊢ (𝑅 ∈ PosetRel →
(ordTop‘◡𝑅) = (topGen‘(fi‘({ran 𝑅} ∪ (ran (𝑥 ∈ ran 𝑅 ↦ {𝑦 ∈ ran 𝑅 ∣ ¬ 𝑦◡𝑅𝑥}) ∪ ran (𝑥 ∈ ran 𝑅 ↦ {𝑦 ∈ ran 𝑅 ∣ ¬ 𝑥◡𝑅𝑦})))))) |
31 | | eqid 2740 |
. . 3
⊢ ran
(𝑥 ∈ dom 𝑅 ↦ {𝑦 ∈ dom 𝑅 ∣ ¬ 𝑦𝑅𝑥}) = ran (𝑥 ∈ dom 𝑅 ↦ {𝑦 ∈ dom 𝑅 ∣ ¬ 𝑦𝑅𝑥}) |
32 | | eqid 2740 |
. . 3
⊢ ran
(𝑥 ∈ dom 𝑅 ↦ {𝑦 ∈ dom 𝑅 ∣ ¬ 𝑥𝑅𝑦}) = ran (𝑥 ∈ dom 𝑅 ↦ {𝑦 ∈ dom 𝑅 ∣ ¬ 𝑥𝑅𝑦}) |
33 | 1, 31, 32 | ordtval 22338 |
. 2
⊢ (𝑅 ∈ PosetRel →
(ordTop‘𝑅) =
(topGen‘(fi‘({dom 𝑅} ∪ (ran (𝑥 ∈ dom 𝑅 ↦ {𝑦 ∈ dom 𝑅 ∣ ¬ 𝑦𝑅𝑥}) ∪ ran (𝑥 ∈ dom 𝑅 ↦ {𝑦 ∈ dom 𝑅 ∣ ¬ 𝑥𝑅𝑦})))))) |
34 | 24, 30, 33 | 3eqtr4d 2790 |
1
⊢ (𝑅 ∈ PosetRel →
(ordTop‘◡𝑅) = (ordTop‘𝑅)) |