MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ordtcnv Structured version   Visualization version   GIF version

Theorem ordtcnv 23086
Description: The order dual generates the same topology as the original order. (Contributed by Mario Carneiro, 3-Sep-2015.)
Assertion
Ref Expression
ordtcnv (𝑅 ∈ PosetRel → (ordTop‘𝑅) = (ordTop‘𝑅))

Proof of Theorem ordtcnv
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2729 . . . . . . . 8 dom 𝑅 = dom 𝑅
21psrn 18481 . . . . . . 7 (𝑅 ∈ PosetRel → dom 𝑅 = ran 𝑅)
32eqcomd 2735 . . . . . 6 (𝑅 ∈ PosetRel → ran 𝑅 = dom 𝑅)
43sneqd 4589 . . . . 5 (𝑅 ∈ PosetRel → {ran 𝑅} = {dom 𝑅})
5 vex 3440 . . . . . . . . . . . . 13 𝑦 ∈ V
6 vex 3440 . . . . . . . . . . . . 13 𝑥 ∈ V
75, 6brcnv 5825 . . . . . . . . . . . 12 (𝑦𝑅𝑥𝑥𝑅𝑦)
87a1i 11 . . . . . . . . . . 11 (𝑅 ∈ PosetRel → (𝑦𝑅𝑥𝑥𝑅𝑦))
98notbid 318 . . . . . . . . . 10 (𝑅 ∈ PosetRel → (¬ 𝑦𝑅𝑥 ↔ ¬ 𝑥𝑅𝑦))
103, 9rabeqbidv 3413 . . . . . . . . 9 (𝑅 ∈ PosetRel → {𝑦 ∈ ran 𝑅 ∣ ¬ 𝑦𝑅𝑥} = {𝑦 ∈ dom 𝑅 ∣ ¬ 𝑥𝑅𝑦})
113, 10mpteq12dv 5179 . . . . . . . 8 (𝑅 ∈ PosetRel → (𝑥 ∈ ran 𝑅 ↦ {𝑦 ∈ ran 𝑅 ∣ ¬ 𝑦𝑅𝑥}) = (𝑥 ∈ dom 𝑅 ↦ {𝑦 ∈ dom 𝑅 ∣ ¬ 𝑥𝑅𝑦}))
1211rneqd 5880 . . . . . . 7 (𝑅 ∈ PosetRel → ran (𝑥 ∈ ran 𝑅 ↦ {𝑦 ∈ ran 𝑅 ∣ ¬ 𝑦𝑅𝑥}) = ran (𝑥 ∈ dom 𝑅 ↦ {𝑦 ∈ dom 𝑅 ∣ ¬ 𝑥𝑅𝑦}))
136, 5brcnv 5825 . . . . . . . . . . . 12 (𝑥𝑅𝑦𝑦𝑅𝑥)
1413a1i 11 . . . . . . . . . . 11 (𝑅 ∈ PosetRel → (𝑥𝑅𝑦𝑦𝑅𝑥))
1514notbid 318 . . . . . . . . . 10 (𝑅 ∈ PosetRel → (¬ 𝑥𝑅𝑦 ↔ ¬ 𝑦𝑅𝑥))
163, 15rabeqbidv 3413 . . . . . . . . 9 (𝑅 ∈ PosetRel → {𝑦 ∈ ran 𝑅 ∣ ¬ 𝑥𝑅𝑦} = {𝑦 ∈ dom 𝑅 ∣ ¬ 𝑦𝑅𝑥})
173, 16mpteq12dv 5179 . . . . . . . 8 (𝑅 ∈ PosetRel → (𝑥 ∈ ran 𝑅 ↦ {𝑦 ∈ ran 𝑅 ∣ ¬ 𝑥𝑅𝑦}) = (𝑥 ∈ dom 𝑅 ↦ {𝑦 ∈ dom 𝑅 ∣ ¬ 𝑦𝑅𝑥}))
1817rneqd 5880 . . . . . . 7 (𝑅 ∈ PosetRel → ran (𝑥 ∈ ran 𝑅 ↦ {𝑦 ∈ ran 𝑅 ∣ ¬ 𝑥𝑅𝑦}) = ran (𝑥 ∈ dom 𝑅 ↦ {𝑦 ∈ dom 𝑅 ∣ ¬ 𝑦𝑅𝑥}))
1912, 18uneq12d 4120 . . . . . 6 (𝑅 ∈ PosetRel → (ran (𝑥 ∈ ran 𝑅 ↦ {𝑦 ∈ ran 𝑅 ∣ ¬ 𝑦𝑅𝑥}) ∪ ran (𝑥 ∈ ran 𝑅 ↦ {𝑦 ∈ ran 𝑅 ∣ ¬ 𝑥𝑅𝑦})) = (ran (𝑥 ∈ dom 𝑅 ↦ {𝑦 ∈ dom 𝑅 ∣ ¬ 𝑥𝑅𝑦}) ∪ ran (𝑥 ∈ dom 𝑅 ↦ {𝑦 ∈ dom 𝑅 ∣ ¬ 𝑦𝑅𝑥})))
20 uncom 4109 . . . . . 6 (ran (𝑥 ∈ dom 𝑅 ↦ {𝑦 ∈ dom 𝑅 ∣ ¬ 𝑥𝑅𝑦}) ∪ ran (𝑥 ∈ dom 𝑅 ↦ {𝑦 ∈ dom 𝑅 ∣ ¬ 𝑦𝑅𝑥})) = (ran (𝑥 ∈ dom 𝑅 ↦ {𝑦 ∈ dom 𝑅 ∣ ¬ 𝑦𝑅𝑥}) ∪ ran (𝑥 ∈ dom 𝑅 ↦ {𝑦 ∈ dom 𝑅 ∣ ¬ 𝑥𝑅𝑦}))
2119, 20eqtrdi 2780 . . . . 5 (𝑅 ∈ PosetRel → (ran (𝑥 ∈ ran 𝑅 ↦ {𝑦 ∈ ran 𝑅 ∣ ¬ 𝑦𝑅𝑥}) ∪ ran (𝑥 ∈ ran 𝑅 ↦ {𝑦 ∈ ran 𝑅 ∣ ¬ 𝑥𝑅𝑦})) = (ran (𝑥 ∈ dom 𝑅 ↦ {𝑦 ∈ dom 𝑅 ∣ ¬ 𝑦𝑅𝑥}) ∪ ran (𝑥 ∈ dom 𝑅 ↦ {𝑦 ∈ dom 𝑅 ∣ ¬ 𝑥𝑅𝑦})))
224, 21uneq12d 4120 . . . 4 (𝑅 ∈ PosetRel → ({ran 𝑅} ∪ (ran (𝑥 ∈ ran 𝑅 ↦ {𝑦 ∈ ran 𝑅 ∣ ¬ 𝑦𝑅𝑥}) ∪ ran (𝑥 ∈ ran 𝑅 ↦ {𝑦 ∈ ran 𝑅 ∣ ¬ 𝑥𝑅𝑦}))) = ({dom 𝑅} ∪ (ran (𝑥 ∈ dom 𝑅 ↦ {𝑦 ∈ dom 𝑅 ∣ ¬ 𝑦𝑅𝑥}) ∪ ran (𝑥 ∈ dom 𝑅 ↦ {𝑦 ∈ dom 𝑅 ∣ ¬ 𝑥𝑅𝑦}))))
2322fveq2d 6826 . . 3 (𝑅 ∈ PosetRel → (fi‘({ran 𝑅} ∪ (ran (𝑥 ∈ ran 𝑅 ↦ {𝑦 ∈ ran 𝑅 ∣ ¬ 𝑦𝑅𝑥}) ∪ ran (𝑥 ∈ ran 𝑅 ↦ {𝑦 ∈ ran 𝑅 ∣ ¬ 𝑥𝑅𝑦})))) = (fi‘({dom 𝑅} ∪ (ran (𝑥 ∈ dom 𝑅 ↦ {𝑦 ∈ dom 𝑅 ∣ ¬ 𝑦𝑅𝑥}) ∪ ran (𝑥 ∈ dom 𝑅 ↦ {𝑦 ∈ dom 𝑅 ∣ ¬ 𝑥𝑅𝑦})))))
2423fveq2d 6826 . 2 (𝑅 ∈ PosetRel → (topGen‘(fi‘({ran 𝑅} ∪ (ran (𝑥 ∈ ran 𝑅 ↦ {𝑦 ∈ ran 𝑅 ∣ ¬ 𝑦𝑅𝑥}) ∪ ran (𝑥 ∈ ran 𝑅 ↦ {𝑦 ∈ ran 𝑅 ∣ ¬ 𝑥𝑅𝑦}))))) = (topGen‘(fi‘({dom 𝑅} ∪ (ran (𝑥 ∈ dom 𝑅 ↦ {𝑦 ∈ dom 𝑅 ∣ ¬ 𝑦𝑅𝑥}) ∪ ran (𝑥 ∈ dom 𝑅 ↦ {𝑦 ∈ dom 𝑅 ∣ ¬ 𝑥𝑅𝑦}))))))
25 cnvps 18484 . . 3 (𝑅 ∈ PosetRel → 𝑅 ∈ PosetRel)
26 df-rn 5630 . . . 4 ran 𝑅 = dom 𝑅
27 eqid 2729 . . . 4 ran (𝑥 ∈ ran 𝑅 ↦ {𝑦 ∈ ran 𝑅 ∣ ¬ 𝑦𝑅𝑥}) = ran (𝑥 ∈ ran 𝑅 ↦ {𝑦 ∈ ran 𝑅 ∣ ¬ 𝑦𝑅𝑥})
28 eqid 2729 . . . 4 ran (𝑥 ∈ ran 𝑅 ↦ {𝑦 ∈ ran 𝑅 ∣ ¬ 𝑥𝑅𝑦}) = ran (𝑥 ∈ ran 𝑅 ↦ {𝑦 ∈ ran 𝑅 ∣ ¬ 𝑥𝑅𝑦})
2926, 27, 28ordtval 23074 . . 3 (𝑅 ∈ PosetRel → (ordTop‘𝑅) = (topGen‘(fi‘({ran 𝑅} ∪ (ran (𝑥 ∈ ran 𝑅 ↦ {𝑦 ∈ ran 𝑅 ∣ ¬ 𝑦𝑅𝑥}) ∪ ran (𝑥 ∈ ran 𝑅 ↦ {𝑦 ∈ ran 𝑅 ∣ ¬ 𝑥𝑅𝑦}))))))
3025, 29syl 17 . 2 (𝑅 ∈ PosetRel → (ordTop‘𝑅) = (topGen‘(fi‘({ran 𝑅} ∪ (ran (𝑥 ∈ ran 𝑅 ↦ {𝑦 ∈ ran 𝑅 ∣ ¬ 𝑦𝑅𝑥}) ∪ ran (𝑥 ∈ ran 𝑅 ↦ {𝑦 ∈ ran 𝑅 ∣ ¬ 𝑥𝑅𝑦}))))))
31 eqid 2729 . . 3 ran (𝑥 ∈ dom 𝑅 ↦ {𝑦 ∈ dom 𝑅 ∣ ¬ 𝑦𝑅𝑥}) = ran (𝑥 ∈ dom 𝑅 ↦ {𝑦 ∈ dom 𝑅 ∣ ¬ 𝑦𝑅𝑥})
32 eqid 2729 . . 3 ran (𝑥 ∈ dom 𝑅 ↦ {𝑦 ∈ dom 𝑅 ∣ ¬ 𝑥𝑅𝑦}) = ran (𝑥 ∈ dom 𝑅 ↦ {𝑦 ∈ dom 𝑅 ∣ ¬ 𝑥𝑅𝑦})
331, 31, 32ordtval 23074 . 2 (𝑅 ∈ PosetRel → (ordTop‘𝑅) = (topGen‘(fi‘({dom 𝑅} ∪ (ran (𝑥 ∈ dom 𝑅 ↦ {𝑦 ∈ dom 𝑅 ∣ ¬ 𝑦𝑅𝑥}) ∪ ran (𝑥 ∈ dom 𝑅 ↦ {𝑦 ∈ dom 𝑅 ∣ ¬ 𝑥𝑅𝑦}))))))
3424, 30, 333eqtr4d 2774 1 (𝑅 ∈ PosetRel → (ordTop‘𝑅) = (ordTop‘𝑅))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206   = wceq 1540  wcel 2109  {crab 3394  cun 3901  {csn 4577   class class class wbr 5092  cmpt 5173  ccnv 5618  dom cdm 5619  ran crn 5620  cfv 6482  ficfi 9300  topGenctg 17341  ordTopcordt 17403  PosetRelcps 18470
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3395  df-v 3438  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-br 5093  df-opab 5155  df-mpt 5174  df-id 5514  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-iota 6438  df-fun 6484  df-fv 6490  df-ordt 17405  df-ps 18472
This theorem is referenced by:  ordtrest2  23089  cnvordtrestixx  33896
  Copyright terms: Public domain W3C validator