MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ordtcnv Structured version   Visualization version   GIF version

Theorem ordtcnv 23095
Description: The order dual generates the same topology as the original order. (Contributed by Mario Carneiro, 3-Sep-2015.)
Assertion
Ref Expression
ordtcnv (𝑅 ∈ PosetRel → (ordTop‘𝑅) = (ordTop‘𝑅))

Proof of Theorem ordtcnv
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2730 . . . . . . . 8 dom 𝑅 = dom 𝑅
21psrn 18541 . . . . . . 7 (𝑅 ∈ PosetRel → dom 𝑅 = ran 𝑅)
32eqcomd 2736 . . . . . 6 (𝑅 ∈ PosetRel → ran 𝑅 = dom 𝑅)
43sneqd 4604 . . . . 5 (𝑅 ∈ PosetRel → {ran 𝑅} = {dom 𝑅})
5 vex 3454 . . . . . . . . . . . . 13 𝑦 ∈ V
6 vex 3454 . . . . . . . . . . . . 13 𝑥 ∈ V
75, 6brcnv 5849 . . . . . . . . . . . 12 (𝑦𝑅𝑥𝑥𝑅𝑦)
87a1i 11 . . . . . . . . . . 11 (𝑅 ∈ PosetRel → (𝑦𝑅𝑥𝑥𝑅𝑦))
98notbid 318 . . . . . . . . . 10 (𝑅 ∈ PosetRel → (¬ 𝑦𝑅𝑥 ↔ ¬ 𝑥𝑅𝑦))
103, 9rabeqbidv 3427 . . . . . . . . 9 (𝑅 ∈ PosetRel → {𝑦 ∈ ran 𝑅 ∣ ¬ 𝑦𝑅𝑥} = {𝑦 ∈ dom 𝑅 ∣ ¬ 𝑥𝑅𝑦})
113, 10mpteq12dv 5197 . . . . . . . 8 (𝑅 ∈ PosetRel → (𝑥 ∈ ran 𝑅 ↦ {𝑦 ∈ ran 𝑅 ∣ ¬ 𝑦𝑅𝑥}) = (𝑥 ∈ dom 𝑅 ↦ {𝑦 ∈ dom 𝑅 ∣ ¬ 𝑥𝑅𝑦}))
1211rneqd 5905 . . . . . . 7 (𝑅 ∈ PosetRel → ran (𝑥 ∈ ran 𝑅 ↦ {𝑦 ∈ ran 𝑅 ∣ ¬ 𝑦𝑅𝑥}) = ran (𝑥 ∈ dom 𝑅 ↦ {𝑦 ∈ dom 𝑅 ∣ ¬ 𝑥𝑅𝑦}))
136, 5brcnv 5849 . . . . . . . . . . . 12 (𝑥𝑅𝑦𝑦𝑅𝑥)
1413a1i 11 . . . . . . . . . . 11 (𝑅 ∈ PosetRel → (𝑥𝑅𝑦𝑦𝑅𝑥))
1514notbid 318 . . . . . . . . . 10 (𝑅 ∈ PosetRel → (¬ 𝑥𝑅𝑦 ↔ ¬ 𝑦𝑅𝑥))
163, 15rabeqbidv 3427 . . . . . . . . 9 (𝑅 ∈ PosetRel → {𝑦 ∈ ran 𝑅 ∣ ¬ 𝑥𝑅𝑦} = {𝑦 ∈ dom 𝑅 ∣ ¬ 𝑦𝑅𝑥})
173, 16mpteq12dv 5197 . . . . . . . 8 (𝑅 ∈ PosetRel → (𝑥 ∈ ran 𝑅 ↦ {𝑦 ∈ ran 𝑅 ∣ ¬ 𝑥𝑅𝑦}) = (𝑥 ∈ dom 𝑅 ↦ {𝑦 ∈ dom 𝑅 ∣ ¬ 𝑦𝑅𝑥}))
1817rneqd 5905 . . . . . . 7 (𝑅 ∈ PosetRel → ran (𝑥 ∈ ran 𝑅 ↦ {𝑦 ∈ ran 𝑅 ∣ ¬ 𝑥𝑅𝑦}) = ran (𝑥 ∈ dom 𝑅 ↦ {𝑦 ∈ dom 𝑅 ∣ ¬ 𝑦𝑅𝑥}))
1912, 18uneq12d 4135 . . . . . 6 (𝑅 ∈ PosetRel → (ran (𝑥 ∈ ran 𝑅 ↦ {𝑦 ∈ ran 𝑅 ∣ ¬ 𝑦𝑅𝑥}) ∪ ran (𝑥 ∈ ran 𝑅 ↦ {𝑦 ∈ ran 𝑅 ∣ ¬ 𝑥𝑅𝑦})) = (ran (𝑥 ∈ dom 𝑅 ↦ {𝑦 ∈ dom 𝑅 ∣ ¬ 𝑥𝑅𝑦}) ∪ ran (𝑥 ∈ dom 𝑅 ↦ {𝑦 ∈ dom 𝑅 ∣ ¬ 𝑦𝑅𝑥})))
20 uncom 4124 . . . . . 6 (ran (𝑥 ∈ dom 𝑅 ↦ {𝑦 ∈ dom 𝑅 ∣ ¬ 𝑥𝑅𝑦}) ∪ ran (𝑥 ∈ dom 𝑅 ↦ {𝑦 ∈ dom 𝑅 ∣ ¬ 𝑦𝑅𝑥})) = (ran (𝑥 ∈ dom 𝑅 ↦ {𝑦 ∈ dom 𝑅 ∣ ¬ 𝑦𝑅𝑥}) ∪ ran (𝑥 ∈ dom 𝑅 ↦ {𝑦 ∈ dom 𝑅 ∣ ¬ 𝑥𝑅𝑦}))
2119, 20eqtrdi 2781 . . . . 5 (𝑅 ∈ PosetRel → (ran (𝑥 ∈ ran 𝑅 ↦ {𝑦 ∈ ran 𝑅 ∣ ¬ 𝑦𝑅𝑥}) ∪ ran (𝑥 ∈ ran 𝑅 ↦ {𝑦 ∈ ran 𝑅 ∣ ¬ 𝑥𝑅𝑦})) = (ran (𝑥 ∈ dom 𝑅 ↦ {𝑦 ∈ dom 𝑅 ∣ ¬ 𝑦𝑅𝑥}) ∪ ran (𝑥 ∈ dom 𝑅 ↦ {𝑦 ∈ dom 𝑅 ∣ ¬ 𝑥𝑅𝑦})))
224, 21uneq12d 4135 . . . 4 (𝑅 ∈ PosetRel → ({ran 𝑅} ∪ (ran (𝑥 ∈ ran 𝑅 ↦ {𝑦 ∈ ran 𝑅 ∣ ¬ 𝑦𝑅𝑥}) ∪ ran (𝑥 ∈ ran 𝑅 ↦ {𝑦 ∈ ran 𝑅 ∣ ¬ 𝑥𝑅𝑦}))) = ({dom 𝑅} ∪ (ran (𝑥 ∈ dom 𝑅 ↦ {𝑦 ∈ dom 𝑅 ∣ ¬ 𝑦𝑅𝑥}) ∪ ran (𝑥 ∈ dom 𝑅 ↦ {𝑦 ∈ dom 𝑅 ∣ ¬ 𝑥𝑅𝑦}))))
2322fveq2d 6865 . . 3 (𝑅 ∈ PosetRel → (fi‘({ran 𝑅} ∪ (ran (𝑥 ∈ ran 𝑅 ↦ {𝑦 ∈ ran 𝑅 ∣ ¬ 𝑦𝑅𝑥}) ∪ ran (𝑥 ∈ ran 𝑅 ↦ {𝑦 ∈ ran 𝑅 ∣ ¬ 𝑥𝑅𝑦})))) = (fi‘({dom 𝑅} ∪ (ran (𝑥 ∈ dom 𝑅 ↦ {𝑦 ∈ dom 𝑅 ∣ ¬ 𝑦𝑅𝑥}) ∪ ran (𝑥 ∈ dom 𝑅 ↦ {𝑦 ∈ dom 𝑅 ∣ ¬ 𝑥𝑅𝑦})))))
2423fveq2d 6865 . 2 (𝑅 ∈ PosetRel → (topGen‘(fi‘({ran 𝑅} ∪ (ran (𝑥 ∈ ran 𝑅 ↦ {𝑦 ∈ ran 𝑅 ∣ ¬ 𝑦𝑅𝑥}) ∪ ran (𝑥 ∈ ran 𝑅 ↦ {𝑦 ∈ ran 𝑅 ∣ ¬ 𝑥𝑅𝑦}))))) = (topGen‘(fi‘({dom 𝑅} ∪ (ran (𝑥 ∈ dom 𝑅 ↦ {𝑦 ∈ dom 𝑅 ∣ ¬ 𝑦𝑅𝑥}) ∪ ran (𝑥 ∈ dom 𝑅 ↦ {𝑦 ∈ dom 𝑅 ∣ ¬ 𝑥𝑅𝑦}))))))
25 cnvps 18544 . . 3 (𝑅 ∈ PosetRel → 𝑅 ∈ PosetRel)
26 df-rn 5652 . . . 4 ran 𝑅 = dom 𝑅
27 eqid 2730 . . . 4 ran (𝑥 ∈ ran 𝑅 ↦ {𝑦 ∈ ran 𝑅 ∣ ¬ 𝑦𝑅𝑥}) = ran (𝑥 ∈ ran 𝑅 ↦ {𝑦 ∈ ran 𝑅 ∣ ¬ 𝑦𝑅𝑥})
28 eqid 2730 . . . 4 ran (𝑥 ∈ ran 𝑅 ↦ {𝑦 ∈ ran 𝑅 ∣ ¬ 𝑥𝑅𝑦}) = ran (𝑥 ∈ ran 𝑅 ↦ {𝑦 ∈ ran 𝑅 ∣ ¬ 𝑥𝑅𝑦})
2926, 27, 28ordtval 23083 . . 3 (𝑅 ∈ PosetRel → (ordTop‘𝑅) = (topGen‘(fi‘({ran 𝑅} ∪ (ran (𝑥 ∈ ran 𝑅 ↦ {𝑦 ∈ ran 𝑅 ∣ ¬ 𝑦𝑅𝑥}) ∪ ran (𝑥 ∈ ran 𝑅 ↦ {𝑦 ∈ ran 𝑅 ∣ ¬ 𝑥𝑅𝑦}))))))
3025, 29syl 17 . 2 (𝑅 ∈ PosetRel → (ordTop‘𝑅) = (topGen‘(fi‘({ran 𝑅} ∪ (ran (𝑥 ∈ ran 𝑅 ↦ {𝑦 ∈ ran 𝑅 ∣ ¬ 𝑦𝑅𝑥}) ∪ ran (𝑥 ∈ ran 𝑅 ↦ {𝑦 ∈ ran 𝑅 ∣ ¬ 𝑥𝑅𝑦}))))))
31 eqid 2730 . . 3 ran (𝑥 ∈ dom 𝑅 ↦ {𝑦 ∈ dom 𝑅 ∣ ¬ 𝑦𝑅𝑥}) = ran (𝑥 ∈ dom 𝑅 ↦ {𝑦 ∈ dom 𝑅 ∣ ¬ 𝑦𝑅𝑥})
32 eqid 2730 . . 3 ran (𝑥 ∈ dom 𝑅 ↦ {𝑦 ∈ dom 𝑅 ∣ ¬ 𝑥𝑅𝑦}) = ran (𝑥 ∈ dom 𝑅 ↦ {𝑦 ∈ dom 𝑅 ∣ ¬ 𝑥𝑅𝑦})
331, 31, 32ordtval 23083 . 2 (𝑅 ∈ PosetRel → (ordTop‘𝑅) = (topGen‘(fi‘({dom 𝑅} ∪ (ran (𝑥 ∈ dom 𝑅 ↦ {𝑦 ∈ dom 𝑅 ∣ ¬ 𝑦𝑅𝑥}) ∪ ran (𝑥 ∈ dom 𝑅 ↦ {𝑦 ∈ dom 𝑅 ∣ ¬ 𝑥𝑅𝑦}))))))
3424, 30, 333eqtr4d 2775 1 (𝑅 ∈ PosetRel → (ordTop‘𝑅) = (ordTop‘𝑅))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206   = wceq 1540  wcel 2109  {crab 3408  cun 3915  {csn 4592   class class class wbr 5110  cmpt 5191  ccnv 5640  dom cdm 5641  ran crn 5642  cfv 6514  ficfi 9368  topGenctg 17407  ordTopcordt 17469  PosetRelcps 18530
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-rab 3409  df-v 3452  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-br 5111  df-opab 5173  df-mpt 5192  df-id 5536  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-iota 6467  df-fun 6516  df-fv 6522  df-ordt 17471  df-ps 18532
This theorem is referenced by:  ordtrest2  23098  cnvordtrestixx  33910
  Copyright terms: Public domain W3C validator