MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ordtcnv Structured version   Visualization version   GIF version

Theorem ordtcnv 23121
Description: The order dual generates the same topology as the original order. (Contributed by Mario Carneiro, 3-Sep-2015.)
Assertion
Ref Expression
ordtcnv (𝑅 ∈ PosetRel → (ordTop‘𝑅) = (ordTop‘𝑅))

Proof of Theorem ordtcnv
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2729 . . . . . . . 8 dom 𝑅 = dom 𝑅
21psrn 18516 . . . . . . 7 (𝑅 ∈ PosetRel → dom 𝑅 = ran 𝑅)
32eqcomd 2735 . . . . . 6 (𝑅 ∈ PosetRel → ran 𝑅 = dom 𝑅)
43sneqd 4597 . . . . 5 (𝑅 ∈ PosetRel → {ran 𝑅} = {dom 𝑅})
5 vex 3448 . . . . . . . . . . . . 13 𝑦 ∈ V
6 vex 3448 . . . . . . . . . . . . 13 𝑥 ∈ V
75, 6brcnv 5836 . . . . . . . . . . . 12 (𝑦𝑅𝑥𝑥𝑅𝑦)
87a1i 11 . . . . . . . . . . 11 (𝑅 ∈ PosetRel → (𝑦𝑅𝑥𝑥𝑅𝑦))
98notbid 318 . . . . . . . . . 10 (𝑅 ∈ PosetRel → (¬ 𝑦𝑅𝑥 ↔ ¬ 𝑥𝑅𝑦))
103, 9rabeqbidv 3421 . . . . . . . . 9 (𝑅 ∈ PosetRel → {𝑦 ∈ ran 𝑅 ∣ ¬ 𝑦𝑅𝑥} = {𝑦 ∈ dom 𝑅 ∣ ¬ 𝑥𝑅𝑦})
113, 10mpteq12dv 5189 . . . . . . . 8 (𝑅 ∈ PosetRel → (𝑥 ∈ ran 𝑅 ↦ {𝑦 ∈ ran 𝑅 ∣ ¬ 𝑦𝑅𝑥}) = (𝑥 ∈ dom 𝑅 ↦ {𝑦 ∈ dom 𝑅 ∣ ¬ 𝑥𝑅𝑦}))
1211rneqd 5891 . . . . . . 7 (𝑅 ∈ PosetRel → ran (𝑥 ∈ ran 𝑅 ↦ {𝑦 ∈ ran 𝑅 ∣ ¬ 𝑦𝑅𝑥}) = ran (𝑥 ∈ dom 𝑅 ↦ {𝑦 ∈ dom 𝑅 ∣ ¬ 𝑥𝑅𝑦}))
136, 5brcnv 5836 . . . . . . . . . . . 12 (𝑥𝑅𝑦𝑦𝑅𝑥)
1413a1i 11 . . . . . . . . . . 11 (𝑅 ∈ PosetRel → (𝑥𝑅𝑦𝑦𝑅𝑥))
1514notbid 318 . . . . . . . . . 10 (𝑅 ∈ PosetRel → (¬ 𝑥𝑅𝑦 ↔ ¬ 𝑦𝑅𝑥))
163, 15rabeqbidv 3421 . . . . . . . . 9 (𝑅 ∈ PosetRel → {𝑦 ∈ ran 𝑅 ∣ ¬ 𝑥𝑅𝑦} = {𝑦 ∈ dom 𝑅 ∣ ¬ 𝑦𝑅𝑥})
173, 16mpteq12dv 5189 . . . . . . . 8 (𝑅 ∈ PosetRel → (𝑥 ∈ ran 𝑅 ↦ {𝑦 ∈ ran 𝑅 ∣ ¬ 𝑥𝑅𝑦}) = (𝑥 ∈ dom 𝑅 ↦ {𝑦 ∈ dom 𝑅 ∣ ¬ 𝑦𝑅𝑥}))
1817rneqd 5891 . . . . . . 7 (𝑅 ∈ PosetRel → ran (𝑥 ∈ ran 𝑅 ↦ {𝑦 ∈ ran 𝑅 ∣ ¬ 𝑥𝑅𝑦}) = ran (𝑥 ∈ dom 𝑅 ↦ {𝑦 ∈ dom 𝑅 ∣ ¬ 𝑦𝑅𝑥}))
1912, 18uneq12d 4128 . . . . . 6 (𝑅 ∈ PosetRel → (ran (𝑥 ∈ ran 𝑅 ↦ {𝑦 ∈ ran 𝑅 ∣ ¬ 𝑦𝑅𝑥}) ∪ ran (𝑥 ∈ ran 𝑅 ↦ {𝑦 ∈ ran 𝑅 ∣ ¬ 𝑥𝑅𝑦})) = (ran (𝑥 ∈ dom 𝑅 ↦ {𝑦 ∈ dom 𝑅 ∣ ¬ 𝑥𝑅𝑦}) ∪ ran (𝑥 ∈ dom 𝑅 ↦ {𝑦 ∈ dom 𝑅 ∣ ¬ 𝑦𝑅𝑥})))
20 uncom 4117 . . . . . 6 (ran (𝑥 ∈ dom 𝑅 ↦ {𝑦 ∈ dom 𝑅 ∣ ¬ 𝑥𝑅𝑦}) ∪ ran (𝑥 ∈ dom 𝑅 ↦ {𝑦 ∈ dom 𝑅 ∣ ¬ 𝑦𝑅𝑥})) = (ran (𝑥 ∈ dom 𝑅 ↦ {𝑦 ∈ dom 𝑅 ∣ ¬ 𝑦𝑅𝑥}) ∪ ran (𝑥 ∈ dom 𝑅 ↦ {𝑦 ∈ dom 𝑅 ∣ ¬ 𝑥𝑅𝑦}))
2119, 20eqtrdi 2780 . . . . 5 (𝑅 ∈ PosetRel → (ran (𝑥 ∈ ran 𝑅 ↦ {𝑦 ∈ ran 𝑅 ∣ ¬ 𝑦𝑅𝑥}) ∪ ran (𝑥 ∈ ran 𝑅 ↦ {𝑦 ∈ ran 𝑅 ∣ ¬ 𝑥𝑅𝑦})) = (ran (𝑥 ∈ dom 𝑅 ↦ {𝑦 ∈ dom 𝑅 ∣ ¬ 𝑦𝑅𝑥}) ∪ ran (𝑥 ∈ dom 𝑅 ↦ {𝑦 ∈ dom 𝑅 ∣ ¬ 𝑥𝑅𝑦})))
224, 21uneq12d 4128 . . . 4 (𝑅 ∈ PosetRel → ({ran 𝑅} ∪ (ran (𝑥 ∈ ran 𝑅 ↦ {𝑦 ∈ ran 𝑅 ∣ ¬ 𝑦𝑅𝑥}) ∪ ran (𝑥 ∈ ran 𝑅 ↦ {𝑦 ∈ ran 𝑅 ∣ ¬ 𝑥𝑅𝑦}))) = ({dom 𝑅} ∪ (ran (𝑥 ∈ dom 𝑅 ↦ {𝑦 ∈ dom 𝑅 ∣ ¬ 𝑦𝑅𝑥}) ∪ ran (𝑥 ∈ dom 𝑅 ↦ {𝑦 ∈ dom 𝑅 ∣ ¬ 𝑥𝑅𝑦}))))
2322fveq2d 6844 . . 3 (𝑅 ∈ PosetRel → (fi‘({ran 𝑅} ∪ (ran (𝑥 ∈ ran 𝑅 ↦ {𝑦 ∈ ran 𝑅 ∣ ¬ 𝑦𝑅𝑥}) ∪ ran (𝑥 ∈ ran 𝑅 ↦ {𝑦 ∈ ran 𝑅 ∣ ¬ 𝑥𝑅𝑦})))) = (fi‘({dom 𝑅} ∪ (ran (𝑥 ∈ dom 𝑅 ↦ {𝑦 ∈ dom 𝑅 ∣ ¬ 𝑦𝑅𝑥}) ∪ ran (𝑥 ∈ dom 𝑅 ↦ {𝑦 ∈ dom 𝑅 ∣ ¬ 𝑥𝑅𝑦})))))
2423fveq2d 6844 . 2 (𝑅 ∈ PosetRel → (topGen‘(fi‘({ran 𝑅} ∪ (ran (𝑥 ∈ ran 𝑅 ↦ {𝑦 ∈ ran 𝑅 ∣ ¬ 𝑦𝑅𝑥}) ∪ ran (𝑥 ∈ ran 𝑅 ↦ {𝑦 ∈ ran 𝑅 ∣ ¬ 𝑥𝑅𝑦}))))) = (topGen‘(fi‘({dom 𝑅} ∪ (ran (𝑥 ∈ dom 𝑅 ↦ {𝑦 ∈ dom 𝑅 ∣ ¬ 𝑦𝑅𝑥}) ∪ ran (𝑥 ∈ dom 𝑅 ↦ {𝑦 ∈ dom 𝑅 ∣ ¬ 𝑥𝑅𝑦}))))))
25 cnvps 18519 . . 3 (𝑅 ∈ PosetRel → 𝑅 ∈ PosetRel)
26 df-rn 5642 . . . 4 ran 𝑅 = dom 𝑅
27 eqid 2729 . . . 4 ran (𝑥 ∈ ran 𝑅 ↦ {𝑦 ∈ ran 𝑅 ∣ ¬ 𝑦𝑅𝑥}) = ran (𝑥 ∈ ran 𝑅 ↦ {𝑦 ∈ ran 𝑅 ∣ ¬ 𝑦𝑅𝑥})
28 eqid 2729 . . . 4 ran (𝑥 ∈ ran 𝑅 ↦ {𝑦 ∈ ran 𝑅 ∣ ¬ 𝑥𝑅𝑦}) = ran (𝑥 ∈ ran 𝑅 ↦ {𝑦 ∈ ran 𝑅 ∣ ¬ 𝑥𝑅𝑦})
2926, 27, 28ordtval 23109 . . 3 (𝑅 ∈ PosetRel → (ordTop‘𝑅) = (topGen‘(fi‘({ran 𝑅} ∪ (ran (𝑥 ∈ ran 𝑅 ↦ {𝑦 ∈ ran 𝑅 ∣ ¬ 𝑦𝑅𝑥}) ∪ ran (𝑥 ∈ ran 𝑅 ↦ {𝑦 ∈ ran 𝑅 ∣ ¬ 𝑥𝑅𝑦}))))))
3025, 29syl 17 . 2 (𝑅 ∈ PosetRel → (ordTop‘𝑅) = (topGen‘(fi‘({ran 𝑅} ∪ (ran (𝑥 ∈ ran 𝑅 ↦ {𝑦 ∈ ran 𝑅 ∣ ¬ 𝑦𝑅𝑥}) ∪ ran (𝑥 ∈ ran 𝑅 ↦ {𝑦 ∈ ran 𝑅 ∣ ¬ 𝑥𝑅𝑦}))))))
31 eqid 2729 . . 3 ran (𝑥 ∈ dom 𝑅 ↦ {𝑦 ∈ dom 𝑅 ∣ ¬ 𝑦𝑅𝑥}) = ran (𝑥 ∈ dom 𝑅 ↦ {𝑦 ∈ dom 𝑅 ∣ ¬ 𝑦𝑅𝑥})
32 eqid 2729 . . 3 ran (𝑥 ∈ dom 𝑅 ↦ {𝑦 ∈ dom 𝑅 ∣ ¬ 𝑥𝑅𝑦}) = ran (𝑥 ∈ dom 𝑅 ↦ {𝑦 ∈ dom 𝑅 ∣ ¬ 𝑥𝑅𝑦})
331, 31, 32ordtval 23109 . 2 (𝑅 ∈ PosetRel → (ordTop‘𝑅) = (topGen‘(fi‘({dom 𝑅} ∪ (ran (𝑥 ∈ dom 𝑅 ↦ {𝑦 ∈ dom 𝑅 ∣ ¬ 𝑦𝑅𝑥}) ∪ ran (𝑥 ∈ dom 𝑅 ↦ {𝑦 ∈ dom 𝑅 ∣ ¬ 𝑥𝑅𝑦}))))))
3424, 30, 333eqtr4d 2774 1 (𝑅 ∈ PosetRel → (ordTop‘𝑅) = (ordTop‘𝑅))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206   = wceq 1540  wcel 2109  {crab 3402  cun 3909  {csn 4585   class class class wbr 5102  cmpt 5183  ccnv 5630  dom cdm 5631  ran crn 5632  cfv 6499  ficfi 9337  topGenctg 17376  ordTopcordt 17438  PosetRelcps 18505
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3403  df-v 3446  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-br 5103  df-opab 5165  df-mpt 5184  df-id 5526  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-iota 6452  df-fun 6501  df-fv 6507  df-ordt 17440  df-ps 18507
This theorem is referenced by:  ordtrest2  23124  cnvordtrestixx  33896
  Copyright terms: Public domain W3C validator