MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ordtcnv Structured version   Visualization version   GIF version

Theorem ordtcnv 21739
Description: The order dual generates the same topology as the original order. (Contributed by Mario Carneiro, 3-Sep-2015.)
Assertion
Ref Expression
ordtcnv (𝑅 ∈ PosetRel → (ordTop‘𝑅) = (ordTop‘𝑅))

Proof of Theorem ordtcnv
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2821 . . . . . . . 8 dom 𝑅 = dom 𝑅
21psrn 17809 . . . . . . 7 (𝑅 ∈ PosetRel → dom 𝑅 = ran 𝑅)
32eqcomd 2827 . . . . . 6 (𝑅 ∈ PosetRel → ran 𝑅 = dom 𝑅)
43sneqd 4571 . . . . 5 (𝑅 ∈ PosetRel → {ran 𝑅} = {dom 𝑅})
5 vex 3498 . . . . . . . . . . . . 13 𝑦 ∈ V
6 vex 3498 . . . . . . . . . . . . 13 𝑥 ∈ V
75, 6brcnv 5747 . . . . . . . . . . . 12 (𝑦𝑅𝑥𝑥𝑅𝑦)
87a1i 11 . . . . . . . . . . 11 (𝑅 ∈ PosetRel → (𝑦𝑅𝑥𝑥𝑅𝑦))
98notbid 319 . . . . . . . . . 10 (𝑅 ∈ PosetRel → (¬ 𝑦𝑅𝑥 ↔ ¬ 𝑥𝑅𝑦))
103, 9rabeqbidv 3486 . . . . . . . . 9 (𝑅 ∈ PosetRel → {𝑦 ∈ ran 𝑅 ∣ ¬ 𝑦𝑅𝑥} = {𝑦 ∈ dom 𝑅 ∣ ¬ 𝑥𝑅𝑦})
113, 10mpteq12dv 5143 . . . . . . . 8 (𝑅 ∈ PosetRel → (𝑥 ∈ ran 𝑅 ↦ {𝑦 ∈ ran 𝑅 ∣ ¬ 𝑦𝑅𝑥}) = (𝑥 ∈ dom 𝑅 ↦ {𝑦 ∈ dom 𝑅 ∣ ¬ 𝑥𝑅𝑦}))
1211rneqd 5802 . . . . . . 7 (𝑅 ∈ PosetRel → ran (𝑥 ∈ ran 𝑅 ↦ {𝑦 ∈ ran 𝑅 ∣ ¬ 𝑦𝑅𝑥}) = ran (𝑥 ∈ dom 𝑅 ↦ {𝑦 ∈ dom 𝑅 ∣ ¬ 𝑥𝑅𝑦}))
136, 5brcnv 5747 . . . . . . . . . . . 12 (𝑥𝑅𝑦𝑦𝑅𝑥)
1413a1i 11 . . . . . . . . . . 11 (𝑅 ∈ PosetRel → (𝑥𝑅𝑦𝑦𝑅𝑥))
1514notbid 319 . . . . . . . . . 10 (𝑅 ∈ PosetRel → (¬ 𝑥𝑅𝑦 ↔ ¬ 𝑦𝑅𝑥))
163, 15rabeqbidv 3486 . . . . . . . . 9 (𝑅 ∈ PosetRel → {𝑦 ∈ ran 𝑅 ∣ ¬ 𝑥𝑅𝑦} = {𝑦 ∈ dom 𝑅 ∣ ¬ 𝑦𝑅𝑥})
173, 16mpteq12dv 5143 . . . . . . . 8 (𝑅 ∈ PosetRel → (𝑥 ∈ ran 𝑅 ↦ {𝑦 ∈ ran 𝑅 ∣ ¬ 𝑥𝑅𝑦}) = (𝑥 ∈ dom 𝑅 ↦ {𝑦 ∈ dom 𝑅 ∣ ¬ 𝑦𝑅𝑥}))
1817rneqd 5802 . . . . . . 7 (𝑅 ∈ PosetRel → ran (𝑥 ∈ ran 𝑅 ↦ {𝑦 ∈ ran 𝑅 ∣ ¬ 𝑥𝑅𝑦}) = ran (𝑥 ∈ dom 𝑅 ↦ {𝑦 ∈ dom 𝑅 ∣ ¬ 𝑦𝑅𝑥}))
1912, 18uneq12d 4139 . . . . . 6 (𝑅 ∈ PosetRel → (ran (𝑥 ∈ ran 𝑅 ↦ {𝑦 ∈ ran 𝑅 ∣ ¬ 𝑦𝑅𝑥}) ∪ ran (𝑥 ∈ ran 𝑅 ↦ {𝑦 ∈ ran 𝑅 ∣ ¬ 𝑥𝑅𝑦})) = (ran (𝑥 ∈ dom 𝑅 ↦ {𝑦 ∈ dom 𝑅 ∣ ¬ 𝑥𝑅𝑦}) ∪ ran (𝑥 ∈ dom 𝑅 ↦ {𝑦 ∈ dom 𝑅 ∣ ¬ 𝑦𝑅𝑥})))
20 uncom 4128 . . . . . 6 (ran (𝑥 ∈ dom 𝑅 ↦ {𝑦 ∈ dom 𝑅 ∣ ¬ 𝑥𝑅𝑦}) ∪ ran (𝑥 ∈ dom 𝑅 ↦ {𝑦 ∈ dom 𝑅 ∣ ¬ 𝑦𝑅𝑥})) = (ran (𝑥 ∈ dom 𝑅 ↦ {𝑦 ∈ dom 𝑅 ∣ ¬ 𝑦𝑅𝑥}) ∪ ran (𝑥 ∈ dom 𝑅 ↦ {𝑦 ∈ dom 𝑅 ∣ ¬ 𝑥𝑅𝑦}))
2119, 20syl6eq 2872 . . . . 5 (𝑅 ∈ PosetRel → (ran (𝑥 ∈ ran 𝑅 ↦ {𝑦 ∈ ran 𝑅 ∣ ¬ 𝑦𝑅𝑥}) ∪ ran (𝑥 ∈ ran 𝑅 ↦ {𝑦 ∈ ran 𝑅 ∣ ¬ 𝑥𝑅𝑦})) = (ran (𝑥 ∈ dom 𝑅 ↦ {𝑦 ∈ dom 𝑅 ∣ ¬ 𝑦𝑅𝑥}) ∪ ran (𝑥 ∈ dom 𝑅 ↦ {𝑦 ∈ dom 𝑅 ∣ ¬ 𝑥𝑅𝑦})))
224, 21uneq12d 4139 . . . 4 (𝑅 ∈ PosetRel → ({ran 𝑅} ∪ (ran (𝑥 ∈ ran 𝑅 ↦ {𝑦 ∈ ran 𝑅 ∣ ¬ 𝑦𝑅𝑥}) ∪ ran (𝑥 ∈ ran 𝑅 ↦ {𝑦 ∈ ran 𝑅 ∣ ¬ 𝑥𝑅𝑦}))) = ({dom 𝑅} ∪ (ran (𝑥 ∈ dom 𝑅 ↦ {𝑦 ∈ dom 𝑅 ∣ ¬ 𝑦𝑅𝑥}) ∪ ran (𝑥 ∈ dom 𝑅 ↦ {𝑦 ∈ dom 𝑅 ∣ ¬ 𝑥𝑅𝑦}))))
2322fveq2d 6668 . . 3 (𝑅 ∈ PosetRel → (fi‘({ran 𝑅} ∪ (ran (𝑥 ∈ ran 𝑅 ↦ {𝑦 ∈ ran 𝑅 ∣ ¬ 𝑦𝑅𝑥}) ∪ ran (𝑥 ∈ ran 𝑅 ↦ {𝑦 ∈ ran 𝑅 ∣ ¬ 𝑥𝑅𝑦})))) = (fi‘({dom 𝑅} ∪ (ran (𝑥 ∈ dom 𝑅 ↦ {𝑦 ∈ dom 𝑅 ∣ ¬ 𝑦𝑅𝑥}) ∪ ran (𝑥 ∈ dom 𝑅 ↦ {𝑦 ∈ dom 𝑅 ∣ ¬ 𝑥𝑅𝑦})))))
2423fveq2d 6668 . 2 (𝑅 ∈ PosetRel → (topGen‘(fi‘({ran 𝑅} ∪ (ran (𝑥 ∈ ran 𝑅 ↦ {𝑦 ∈ ran 𝑅 ∣ ¬ 𝑦𝑅𝑥}) ∪ ran (𝑥 ∈ ran 𝑅 ↦ {𝑦 ∈ ran 𝑅 ∣ ¬ 𝑥𝑅𝑦}))))) = (topGen‘(fi‘({dom 𝑅} ∪ (ran (𝑥 ∈ dom 𝑅 ↦ {𝑦 ∈ dom 𝑅 ∣ ¬ 𝑦𝑅𝑥}) ∪ ran (𝑥 ∈ dom 𝑅 ↦ {𝑦 ∈ dom 𝑅 ∣ ¬ 𝑥𝑅𝑦}))))))
25 cnvps 17812 . . 3 (𝑅 ∈ PosetRel → 𝑅 ∈ PosetRel)
26 df-rn 5560 . . . 4 ran 𝑅 = dom 𝑅
27 eqid 2821 . . . 4 ran (𝑥 ∈ ran 𝑅 ↦ {𝑦 ∈ ran 𝑅 ∣ ¬ 𝑦𝑅𝑥}) = ran (𝑥 ∈ ran 𝑅 ↦ {𝑦 ∈ ran 𝑅 ∣ ¬ 𝑦𝑅𝑥})
28 eqid 2821 . . . 4 ran (𝑥 ∈ ran 𝑅 ↦ {𝑦 ∈ ran 𝑅 ∣ ¬ 𝑥𝑅𝑦}) = ran (𝑥 ∈ ran 𝑅 ↦ {𝑦 ∈ ran 𝑅 ∣ ¬ 𝑥𝑅𝑦})
2926, 27, 28ordtval 21727 . . 3 (𝑅 ∈ PosetRel → (ordTop‘𝑅) = (topGen‘(fi‘({ran 𝑅} ∪ (ran (𝑥 ∈ ran 𝑅 ↦ {𝑦 ∈ ran 𝑅 ∣ ¬ 𝑦𝑅𝑥}) ∪ ran (𝑥 ∈ ran 𝑅 ↦ {𝑦 ∈ ran 𝑅 ∣ ¬ 𝑥𝑅𝑦}))))))
3025, 29syl 17 . 2 (𝑅 ∈ PosetRel → (ordTop‘𝑅) = (topGen‘(fi‘({ran 𝑅} ∪ (ran (𝑥 ∈ ran 𝑅 ↦ {𝑦 ∈ ran 𝑅 ∣ ¬ 𝑦𝑅𝑥}) ∪ ran (𝑥 ∈ ran 𝑅 ↦ {𝑦 ∈ ran 𝑅 ∣ ¬ 𝑥𝑅𝑦}))))))
31 eqid 2821 . . 3 ran (𝑥 ∈ dom 𝑅 ↦ {𝑦 ∈ dom 𝑅 ∣ ¬ 𝑦𝑅𝑥}) = ran (𝑥 ∈ dom 𝑅 ↦ {𝑦 ∈ dom 𝑅 ∣ ¬ 𝑦𝑅𝑥})
32 eqid 2821 . . 3 ran (𝑥 ∈ dom 𝑅 ↦ {𝑦 ∈ dom 𝑅 ∣ ¬ 𝑥𝑅𝑦}) = ran (𝑥 ∈ dom 𝑅 ↦ {𝑦 ∈ dom 𝑅 ∣ ¬ 𝑥𝑅𝑦})
331, 31, 32ordtval 21727 . 2 (𝑅 ∈ PosetRel → (ordTop‘𝑅) = (topGen‘(fi‘({dom 𝑅} ∪ (ran (𝑥 ∈ dom 𝑅 ↦ {𝑦 ∈ dom 𝑅 ∣ ¬ 𝑦𝑅𝑥}) ∪ ran (𝑥 ∈ dom 𝑅 ↦ {𝑦 ∈ dom 𝑅 ∣ ¬ 𝑥𝑅𝑦}))))))
3424, 30, 333eqtr4d 2866 1 (𝑅 ∈ PosetRel → (ordTop‘𝑅) = (ordTop‘𝑅))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 207   = wceq 1528  wcel 2105  {crab 3142  cun 3933  {csn 4559   class class class wbr 5058  cmpt 5138  ccnv 5548  dom cdm 5549  ran crn 5550  cfv 6349  ficfi 8863  topGenctg 16701  ordTopcordt 16762  PosetRelcps 17798
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1787  ax-4 1801  ax-5 1902  ax-6 1961  ax-7 2006  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2151  ax-12 2167  ax-ext 2793  ax-sep 5195  ax-nul 5202  ax-pow 5258  ax-pr 5321  ax-un 7450
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 842  df-3an 1081  df-tru 1531  df-ex 1772  df-nf 1776  df-sb 2061  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ral 3143  df-rex 3144  df-rab 3147  df-v 3497  df-sbc 3772  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-nul 4291  df-if 4466  df-pw 4539  df-sn 4560  df-pr 4562  df-op 4566  df-uni 4833  df-br 5059  df-opab 5121  df-mpt 5139  df-id 5454  df-xp 5555  df-rel 5556  df-cnv 5557  df-co 5558  df-dm 5559  df-rn 5560  df-res 5561  df-iota 6308  df-fun 6351  df-fv 6357  df-ordt 16764  df-ps 17800
This theorem is referenced by:  ordtrest2  21742  cnvordtrestixx  31056
  Copyright terms: Public domain W3C validator