| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > unissd | Structured version Visualization version GIF version | ||
| Description: Subclass relationship for subclass union. Deduction form of uniss 4869. (Contributed by David Moews, 1-May-2017.) |
| Ref | Expression |
|---|---|
| unissd.1 | ⊢ (𝜑 → 𝐴 ⊆ 𝐵) |
| Ref | Expression |
|---|---|
| unissd | ⊢ (𝜑 → ∪ 𝐴 ⊆ ∪ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | unissd.1 | . 2 ⊢ (𝜑 → 𝐴 ⊆ 𝐵) | |
| 2 | uniss 4869 | . 2 ⊢ (𝐴 ⊆ 𝐵 → ∪ 𝐴 ⊆ ∪ 𝐵) | |
| 3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → ∪ 𝐴 ⊆ ∪ 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ⊆ wss 3905 ∪ cuni 4861 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-v 3440 df-ss 3922 df-uni 4862 |
| This theorem is referenced by: unieq 4872 dffv2 6922 onfununi 8271 fiuni 9337 dfac2a 10043 incexc 15762 incexc2 15763 isacs1i 17581 isacs3lem 18466 acsmapd 18478 acsmap2d 18479 dprdres 19927 dprd2da 19941 eltg3i 22864 unitg 22870 tgss 22871 tgcmp 23304 cmpfi 23311 alexsubALTlem4 23953 ptcmplem3 23957 ustbas2 24129 uniioombllem3 25502 madess 27808 oldss 27810 shsupunss 31308 locfinref 33810 cmpcref 33819 dya2iocucvr 34254 omssubadd 34270 carsggect 34288 carsgclctun 34291 cvmscld 35248 fnemeet1 36342 fnejoin1 36344 onsucsuccmpi 36419 heibor1 37792 heiborlem10 37802 hbt 43106 pwsal 46300 prsal 46303 intsaluni 46314 caragenuni 46496 caragendifcl 46499 cnfsmf 46725 smfsssmf 46728 smfpimbor1lem2 46784 toplatglb 48989 setrecsss 49690 |
| Copyright terms: Public domain | W3C validator |