![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > unissd | Structured version Visualization version GIF version |
Description: Subclass relationship for subclass union. Deduction form of uniss 4939. (Contributed by David Moews, 1-May-2017.) |
Ref | Expression |
---|---|
unissd.1 | ⊢ (𝜑 → 𝐴 ⊆ 𝐵) |
Ref | Expression |
---|---|
unissd | ⊢ (𝜑 → ∪ 𝐴 ⊆ ∪ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | unissd.1 | . 2 ⊢ (𝜑 → 𝐴 ⊆ 𝐵) | |
2 | uniss 4939 | . 2 ⊢ (𝐴 ⊆ 𝐵 → ∪ 𝐴 ⊆ ∪ 𝐵) | |
3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → ∪ 𝐴 ⊆ ∪ 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ⊆ wss 3976 ∪ cuni 4931 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1540 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-v 3490 df-ss 3993 df-uni 4932 |
This theorem is referenced by: unieq 4942 dffv2 7017 onfununi 8397 fiuni 9497 dfac2a 10199 incexc 15885 incexc2 15886 isacs1i 17715 isacs3lem 18612 acsmapd 18624 acsmap2d 18625 dprdres 20072 dprd2da 20086 eltg3i 22989 unitg 22995 tgss 22996 tgcmp 23430 cmpfi 23437 alexsubALTlem4 24079 ptcmplem3 24083 ustbas2 24255 uniioombllem3 25639 madess 27933 shsupunss 31378 locfinref 33787 cmpcref 33796 dya2iocucvr 34249 omssubadd 34265 carsggect 34283 carsgclctun 34286 cvmscld 35241 fnemeet1 36332 fnejoin1 36334 onsucsuccmpi 36409 heibor1 37770 heiborlem10 37780 hbt 43087 pwsal 46236 prsal 46239 intsaluni 46250 caragenuni 46432 caragendifcl 46435 cnfsmf 46661 smfsssmf 46664 smfpimbor1lem2 46720 toplatglb 48673 setrecsss 48793 |
Copyright terms: Public domain | W3C validator |