Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > unissd | Structured version Visualization version GIF version |
Description: Subclass relationship for subclass union. Deduction form of uniss 4858. (Contributed by David Moews, 1-May-2017.) |
Ref | Expression |
---|---|
unissd.1 | ⊢ (𝜑 → 𝐴 ⊆ 𝐵) |
Ref | Expression |
---|---|
unissd | ⊢ (𝜑 → ∪ 𝐴 ⊆ ∪ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | unissd.1 | . 2 ⊢ (𝜑 → 𝐴 ⊆ 𝐵) | |
2 | uniss 4858 | . 2 ⊢ (𝐴 ⊆ 𝐵 → ∪ 𝐴 ⊆ ∪ 𝐵) | |
3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → ∪ 𝐴 ⊆ ∪ 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ⊆ wss 3897 ∪ cuni 4850 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-ext 2708 |
This theorem depends on definitions: df-bi 206 df-an 397 df-tru 1543 df-ex 1781 df-sb 2067 df-clab 2715 df-cleq 2729 df-clel 2815 df-v 3443 df-in 3904 df-ss 3914 df-uni 4851 |
This theorem is referenced by: unieq 4861 dffv2 6902 onfununi 8219 fiuni 9257 dfac2a 9958 incexc 15621 incexc2 15622 isacs1i 17436 isacs3lem 18330 acsmapd 18342 acsmap2d 18343 dprdres 19699 dprd2da 19713 eltg3i 22183 unitg 22189 tgss 22190 tgcmp 22624 cmpfi 22631 alexsubALTlem4 23273 ptcmplem3 23277 ustbas2 23449 uniioombllem3 24821 shsupunss 29817 locfinref 31897 cmpcref 31906 dya2iocucvr 32357 omssubadd 32373 carsggect 32391 carsgclctun 32394 cvmscld 33340 madess 34117 fnemeet1 34613 fnejoin1 34615 onsucsuccmpi 34690 heibor1 36024 heiborlem10 36034 hbt 41159 pwsal 44093 prsal 44096 intsaluni 44105 caragenuni 44287 caragendifcl 44290 cnfsmf 44516 smfsssmf 44519 smfpimbor1lem2 44575 toplatglb 46539 setrecsss 46658 |
Copyright terms: Public domain | W3C validator |