| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > unissd | Structured version Visualization version GIF version | ||
| Description: Subclass relationship for subclass union. Deduction form of uniss 4891. (Contributed by David Moews, 1-May-2017.) |
| Ref | Expression |
|---|---|
| unissd.1 | ⊢ (𝜑 → 𝐴 ⊆ 𝐵) |
| Ref | Expression |
|---|---|
| unissd | ⊢ (𝜑 → ∪ 𝐴 ⊆ ∪ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | unissd.1 | . 2 ⊢ (𝜑 → 𝐴 ⊆ 𝐵) | |
| 2 | uniss 4891 | . 2 ⊢ (𝐴 ⊆ 𝐵 → ∪ 𝐴 ⊆ ∪ 𝐵) | |
| 3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → ∪ 𝐴 ⊆ ∪ 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ⊆ wss 3926 ∪ cuni 4883 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2707 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2065 df-clab 2714 df-cleq 2727 df-clel 2809 df-v 3461 df-ss 3943 df-uni 4884 |
| This theorem is referenced by: unieq 4894 dffv2 6974 onfununi 8355 fiuni 9440 dfac2a 10144 incexc 15853 incexc2 15854 isacs1i 17669 isacs3lem 18552 acsmapd 18564 acsmap2d 18565 dprdres 20011 dprd2da 20025 eltg3i 22899 unitg 22905 tgss 22906 tgcmp 23339 cmpfi 23346 alexsubALTlem4 23988 ptcmplem3 23992 ustbas2 24164 uniioombllem3 25538 madess 27840 shsupunss 31327 locfinref 33872 cmpcref 33881 dya2iocucvr 34316 omssubadd 34332 carsggect 34350 carsgclctun 34353 cvmscld 35295 fnemeet1 36384 fnejoin1 36386 onsucsuccmpi 36461 heibor1 37834 heiborlem10 37844 hbt 43154 pwsal 46344 prsal 46347 intsaluni 46358 caragenuni 46540 caragendifcl 46543 cnfsmf 46769 smfsssmf 46772 smfpimbor1lem2 46828 toplatglb 48975 setrecsss 49565 |
| Copyright terms: Public domain | W3C validator |