| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > unissd | Structured version Visualization version GIF version | ||
| Description: Subclass relationship for subclass union. Deduction form of uniss 4882. (Contributed by David Moews, 1-May-2017.) |
| Ref | Expression |
|---|---|
| unissd.1 | ⊢ (𝜑 → 𝐴 ⊆ 𝐵) |
| Ref | Expression |
|---|---|
| unissd | ⊢ (𝜑 → ∪ 𝐴 ⊆ ∪ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | unissd.1 | . 2 ⊢ (𝜑 → 𝐴 ⊆ 𝐵) | |
| 2 | uniss 4882 | . 2 ⊢ (𝐴 ⊆ 𝐵 → ∪ 𝐴 ⊆ ∪ 𝐵) | |
| 3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → ∪ 𝐴 ⊆ ∪ 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ⊆ wss 3917 ∪ cuni 4874 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-v 3452 df-ss 3934 df-uni 4875 |
| This theorem is referenced by: unieq 4885 dffv2 6959 onfununi 8313 fiuni 9386 dfac2a 10090 incexc 15810 incexc2 15811 isacs1i 17625 isacs3lem 18508 acsmapd 18520 acsmap2d 18521 dprdres 19967 dprd2da 19981 eltg3i 22855 unitg 22861 tgss 22862 tgcmp 23295 cmpfi 23302 alexsubALTlem4 23944 ptcmplem3 23948 ustbas2 24120 uniioombllem3 25493 madess 27795 shsupunss 31282 locfinref 33838 cmpcref 33847 dya2iocucvr 34282 omssubadd 34298 carsggect 34316 carsgclctun 34319 cvmscld 35267 fnemeet1 36361 fnejoin1 36363 onsucsuccmpi 36438 heibor1 37811 heiborlem10 37821 hbt 43126 pwsal 46320 prsal 46323 intsaluni 46334 caragenuni 46516 caragendifcl 46519 cnfsmf 46745 smfsssmf 46748 smfpimbor1lem2 46804 toplatglb 48993 setrecsss 49694 |
| Copyright terms: Public domain | W3C validator |