Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > unissd | Structured version Visualization version GIF version |
Description: Subclass relationship for subclass union. Deduction form of uniss 4847. (Contributed by David Moews, 1-May-2017.) |
Ref | Expression |
---|---|
unissd.1 | ⊢ (𝜑 → 𝐴 ⊆ 𝐵) |
Ref | Expression |
---|---|
unissd | ⊢ (𝜑 → ∪ 𝐴 ⊆ ∪ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | unissd.1 | . 2 ⊢ (𝜑 → 𝐴 ⊆ 𝐵) | |
2 | uniss 4847 | . 2 ⊢ (𝐴 ⊆ 𝐵 → ∪ 𝐴 ⊆ ∪ 𝐵) | |
3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → ∪ 𝐴 ⊆ ∪ 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ⊆ wss 3887 ∪ cuni 4839 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 397 df-tru 1542 df-ex 1783 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-v 3434 df-in 3894 df-ss 3904 df-uni 4840 |
This theorem is referenced by: unieq 4850 dffv2 6863 onfununi 8172 fiuni 9187 dfac2a 9885 incexc 15549 incexc2 15550 isacs1i 17366 isacs3lem 18260 acsmapd 18272 acsmap2d 18273 dprdres 19631 dprd2da 19645 eltg3i 22111 unitg 22117 tgss 22118 tgcmp 22552 cmpfi 22559 alexsubALTlem4 23201 ptcmplem3 23205 ustbas2 23377 uniioombllem3 24749 shsupunss 29708 locfinref 31791 cmpcref 31800 dya2iocucvr 32251 omssubadd 32267 carsggect 32285 carsgclctun 32288 cvmscld 33235 madess 34059 fnemeet1 34555 fnejoin1 34557 onsucsuccmpi 34632 heibor1 35968 heiborlem10 35978 hbt 40955 pwsal 43856 prsal 43859 intsaluni 43868 caragenuni 44049 caragendifcl 44052 cnfsmf 44276 smfsssmf 44279 smfpimbor1lem2 44333 toplatglb 46287 setrecsss 46406 |
Copyright terms: Public domain | W3C validator |