| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > unissd | Structured version Visualization version GIF version | ||
| Description: Subclass relationship for subclass union. Deduction form of uniss 4867. (Contributed by David Moews, 1-May-2017.) |
| Ref | Expression |
|---|---|
| unissd.1 | ⊢ (𝜑 → 𝐴 ⊆ 𝐵) |
| Ref | Expression |
|---|---|
| unissd | ⊢ (𝜑 → ∪ 𝐴 ⊆ ∪ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | unissd.1 | . 2 ⊢ (𝜑 → 𝐴 ⊆ 𝐵) | |
| 2 | uniss 4867 | . 2 ⊢ (𝐴 ⊆ 𝐵 → ∪ 𝐴 ⊆ ∪ 𝐵) | |
| 3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → ∪ 𝐴 ⊆ ∪ 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ⊆ wss 3902 ∪ cuni 4859 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1544 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-v 3438 df-ss 3919 df-uni 4860 |
| This theorem is referenced by: unieq 4870 dffv2 6917 onfununi 8261 fiuni 9312 dfac2a 10021 incexc 15744 incexc2 15745 isacs1i 17563 isacs3lem 18448 acsmapd 18460 acsmap2d 18461 dprdres 19943 dprd2da 19957 eltg3i 22877 unitg 22883 tgss 22884 tgcmp 23317 cmpfi 23324 alexsubALTlem4 23966 ptcmplem3 23970 ustbas2 24141 uniioombllem3 25514 madess 27822 oldss 27824 shsupunss 31324 locfinref 33852 cmpcref 33861 dya2iocucvr 34295 omssubadd 34311 carsggect 34329 carsgclctun 34332 cvmscld 35315 fnemeet1 36406 fnejoin1 36408 onsucsuccmpi 36483 heibor1 37856 heiborlem10 37866 hbt 43169 pwsal 46359 prsal 46362 intsaluni 46373 caragenuni 46555 caragendifcl 46558 cnfsmf 46784 smfsssmf 46787 smfpimbor1lem2 46843 toplatglb 49038 setrecsss 49739 |
| Copyright terms: Public domain | W3C validator |