| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > unissd | Structured version Visualization version GIF version | ||
| Description: Subclass relationship for subclass union. Deduction form of uniss 4868. (Contributed by David Moews, 1-May-2017.) |
| Ref | Expression |
|---|---|
| unissd.1 | ⊢ (𝜑 → 𝐴 ⊆ 𝐵) |
| Ref | Expression |
|---|---|
| unissd | ⊢ (𝜑 → ∪ 𝐴 ⊆ ∪ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | unissd.1 | . 2 ⊢ (𝜑 → 𝐴 ⊆ 𝐵) | |
| 2 | uniss 4868 | . 2 ⊢ (𝐴 ⊆ 𝐵 → ∪ 𝐴 ⊆ ∪ 𝐵) | |
| 3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → ∪ 𝐴 ⊆ ∪ 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ⊆ wss 3898 ∪ cuni 4860 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-ext 2705 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1544 df-ex 1781 df-sb 2068 df-clab 2712 df-cleq 2725 df-clel 2808 df-v 3439 df-ss 3915 df-uni 4861 |
| This theorem is referenced by: unieq 4871 dffv2 6925 onfununi 8269 fiuni 9321 dfac2a 10030 incexc 15748 incexc2 15749 isacs1i 17567 isacs3lem 18452 acsmapd 18464 acsmap2d 18465 dprdres 19946 dprd2da 19960 eltg3i 22879 unitg 22885 tgss 22886 tgcmp 23319 cmpfi 23326 alexsubALTlem4 23968 ptcmplem3 23972 ustbas2 24143 uniioombllem3 25516 madess 27824 oldss 27826 shsupunss 31330 locfinref 33877 cmpcref 33886 dya2iocucvr 34320 omssubadd 34336 carsggect 34354 carsgclctun 34357 cvmscld 35340 fnemeet1 36433 fnejoin1 36435 onsucsuccmpi 36510 heibor1 37873 heiborlem10 37883 hbt 43250 pwsal 46440 prsal 46443 intsaluni 46454 caragenuni 46636 caragendifcl 46639 cnfsmf 46865 smfsssmf 46868 smfpimbor1lem2 46924 toplatglb 49128 setrecsss 49829 |
| Copyright terms: Public domain | W3C validator |