![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > unissd | Structured version Visualization version GIF version |
Description: Subclass relationship for subclass union. Deduction form of uniss 4727. (Contributed by David Moews, 1-May-2017.) |
Ref | Expression |
---|---|
unissd.1 | ⊢ (𝜑 → 𝐴 ⊆ 𝐵) |
Ref | Expression |
---|---|
unissd | ⊢ (𝜑 → ∪ 𝐴 ⊆ ∪ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | unissd.1 | . 2 ⊢ (𝜑 → 𝐴 ⊆ 𝐵) | |
2 | uniss 4727 | . 2 ⊢ (𝐴 ⊆ 𝐵 → ∪ 𝐴 ⊆ ∪ 𝐵) | |
3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → ∪ 𝐴 ⊆ ∪ 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ⊆ wss 3825 ∪ cuni 4706 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1758 ax-4 1772 ax-5 1869 ax-6 1928 ax-7 1964 ax-8 2050 ax-9 2057 ax-10 2077 ax-11 2091 ax-12 2104 ax-ext 2745 |
This theorem depends on definitions: df-bi 199 df-an 388 df-or 834 df-tru 1510 df-ex 1743 df-nf 1747 df-sb 2014 df-clab 2754 df-cleq 2765 df-clel 2840 df-nfc 2912 df-v 3411 df-in 3832 df-ss 3839 df-uni 4707 |
This theorem is referenced by: dffv2 6578 onfununi 7775 fiuni 8679 dfac2a 9341 incexc 15042 incexc2 15043 isacs1i 16776 isacs3lem 17624 acsmapd 17636 acsmap2d 17637 dprdres 18890 dprd2da 18904 eltg3i 21263 unitg 21269 tgss 21270 tgcmp 21703 cmpfi 21710 alexsubALTlem4 22352 ptcmplem3 22356 ustbas2 22527 uniioombllem3 23879 shsupunss 28894 locfinref 30706 cmpcref 30715 dya2iocucvr 31144 omssubadd 31160 carsggect 31178 cvmscld 32065 fnemeet1 33175 fnejoin1 33177 onsucsuccmpi 33251 heibor1 34478 heiborlem10 34488 hbt 39071 prsal 41980 caragenuni 42170 caragendifcl 42173 cnfsmf 42394 smfsssmf 42397 smfpimbor1lem2 42451 setrecsss 44110 |
Copyright terms: Public domain | W3C validator |