Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > unissd | Structured version Visualization version GIF version |
Description: Subclass relationship for subclass union. Deduction form of uniss 4844. (Contributed by David Moews, 1-May-2017.) |
Ref | Expression |
---|---|
unissd.1 | ⊢ (𝜑 → 𝐴 ⊆ 𝐵) |
Ref | Expression |
---|---|
unissd | ⊢ (𝜑 → ∪ 𝐴 ⊆ ∪ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | unissd.1 | . 2 ⊢ (𝜑 → 𝐴 ⊆ 𝐵) | |
2 | uniss 4844 | . 2 ⊢ (𝐴 ⊆ 𝐵 → ∪ 𝐴 ⊆ ∪ 𝐵) | |
3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → ∪ 𝐴 ⊆ ∪ 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ⊆ wss 3883 ∪ cuni 4836 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-tru 1542 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-v 3424 df-in 3890 df-ss 3900 df-uni 4837 |
This theorem is referenced by: unieq 4847 dffv2 6845 onfununi 8143 fiuni 9117 dfac2a 9816 incexc 15477 incexc2 15478 isacs1i 17283 isacs3lem 18175 acsmapd 18187 acsmap2d 18188 dprdres 19546 dprd2da 19560 eltg3i 22019 unitg 22025 tgss 22026 tgcmp 22460 cmpfi 22467 alexsubALTlem4 23109 ptcmplem3 23113 ustbas2 23285 uniioombllem3 24654 shsupunss 29609 locfinref 31693 cmpcref 31702 dya2iocucvr 32151 omssubadd 32167 carsggect 32185 carsgclctun 32188 cvmscld 33135 madess 33986 fnemeet1 34482 fnejoin1 34484 onsucsuccmpi 34559 heibor1 35895 heiborlem10 35905 hbt 40871 pwsal 43746 prsal 43749 intsaluni 43758 caragenuni 43939 caragendifcl 43942 cnfsmf 44163 smfsssmf 44166 smfpimbor1lem2 44220 toplatglb 46175 setrecsss 46292 |
Copyright terms: Public domain | W3C validator |