| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > unissd | Structured version Visualization version GIF version | ||
| Description: Subclass relationship for subclass union. Deduction form of uniss 4879. (Contributed by David Moews, 1-May-2017.) |
| Ref | Expression |
|---|---|
| unissd.1 | ⊢ (𝜑 → 𝐴 ⊆ 𝐵) |
| Ref | Expression |
|---|---|
| unissd | ⊢ (𝜑 → ∪ 𝐴 ⊆ ∪ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | unissd.1 | . 2 ⊢ (𝜑 → 𝐴 ⊆ 𝐵) | |
| 2 | uniss 4879 | . 2 ⊢ (𝐴 ⊆ 𝐵 → ∪ 𝐴 ⊆ ∪ 𝐵) | |
| 3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → ∪ 𝐴 ⊆ ∪ 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ⊆ wss 3914 ∪ cuni 4871 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-v 3449 df-ss 3931 df-uni 4872 |
| This theorem is referenced by: unieq 4882 dffv2 6956 onfununi 8310 fiuni 9379 dfac2a 10083 incexc 15803 incexc2 15804 isacs1i 17618 isacs3lem 18501 acsmapd 18513 acsmap2d 18514 dprdres 19960 dprd2da 19974 eltg3i 22848 unitg 22854 tgss 22855 tgcmp 23288 cmpfi 23295 alexsubALTlem4 23937 ptcmplem3 23941 ustbas2 24113 uniioombllem3 25486 madess 27788 shsupunss 31275 locfinref 33831 cmpcref 33840 dya2iocucvr 34275 omssubadd 34291 carsggect 34309 carsgclctun 34312 cvmscld 35260 fnemeet1 36354 fnejoin1 36356 onsucsuccmpi 36431 heibor1 37804 heiborlem10 37814 hbt 43119 pwsal 46313 prsal 46316 intsaluni 46327 caragenuni 46509 caragendifcl 46512 cnfsmf 46738 smfsssmf 46741 smfpimbor1lem2 46797 toplatglb 48989 setrecsss 49690 |
| Copyright terms: Public domain | W3C validator |