![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > unissd | Structured version Visualization version GIF version |
Description: Subclass relationship for subclass union. Deduction form of uniss 4920. (Contributed by David Moews, 1-May-2017.) |
Ref | Expression |
---|---|
unissd.1 | ⊢ (𝜑 → 𝐴 ⊆ 𝐵) |
Ref | Expression |
---|---|
unissd | ⊢ (𝜑 → ∪ 𝐴 ⊆ ∪ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | unissd.1 | . 2 ⊢ (𝜑 → 𝐴 ⊆ 𝐵) | |
2 | uniss 4920 | . 2 ⊢ (𝐴 ⊆ 𝐵 → ∪ 𝐴 ⊆ ∪ 𝐵) | |
3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → ∪ 𝐴 ⊆ ∪ 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ⊆ wss 3963 ∪ cuni 4912 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-ext 2706 |
This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1540 df-ex 1777 df-sb 2063 df-clab 2713 df-cleq 2727 df-clel 2814 df-v 3480 df-ss 3980 df-uni 4913 |
This theorem is referenced by: unieq 4923 dffv2 7004 onfununi 8380 fiuni 9466 dfac2a 10168 incexc 15870 incexc2 15871 isacs1i 17702 isacs3lem 18600 acsmapd 18612 acsmap2d 18613 dprdres 20063 dprd2da 20077 eltg3i 22984 unitg 22990 tgss 22991 tgcmp 23425 cmpfi 23432 alexsubALTlem4 24074 ptcmplem3 24078 ustbas2 24250 uniioombllem3 25634 madess 27930 shsupunss 31375 locfinref 33802 cmpcref 33811 dya2iocucvr 34266 omssubadd 34282 carsggect 34300 carsgclctun 34303 cvmscld 35258 fnemeet1 36349 fnejoin1 36351 onsucsuccmpi 36426 heibor1 37797 heiborlem10 37807 hbt 43119 pwsal 46271 prsal 46274 intsaluni 46285 caragenuni 46467 caragendifcl 46470 cnfsmf 46696 smfsssmf 46699 smfpimbor1lem2 46755 toplatglb 48790 setrecsss 48932 |
Copyright terms: Public domain | W3C validator |